Akamai Peering and IPv6

Kams Yeung
Akamai Technologies
Equinix Asia Peering Forum
23rd Aug, 2012
Agenda

Akamai Introduction
• Who’s Akamai?
• Intelligent Platform & Traffic Snapshot

Basic Technology
• Akamai mapping
• Finding the IP address
• Downloading www.example.com

Peering with Akamai
• Why Akamai peer with ISPs
• Why ISPs peer with Akamai
• Peering at Equinix AP

Akamai & IPv6 World Launch
Akamai Overview

Who is Akamai?

Akamai is a leading provider of a Cloud platform, which delivers, accelerates and secure content and APPLICATIONS over the Internet. Our key differentiator is our highly distributed (intelligent) platform, made up of more than 100,000 servers in 80 countries.

- Public company – symbol AKAM
- Founded: 1998
- Headquarters: Cambridge, MA, USA
- 30+ worldwide offices, including Europe and Asia
- 2,300+ employees worldwide
The Akamai Intelligent Platform

The world’s largest on-demand, distributed computing platform delivers all forms of web content and applications

The Akamai Intelligent Platform:

| 101,890 Servers | 1,930 Locations | 1,070 Networks | 700+ Cities | 83 Countries |

Typical daily traffic:
- More than 2 trillion requests served
- Delivering over 10 terabits/second
- 15-30% of all daily web traffic
Basic Technology

Akamai mapping
How CDNs Work

When content is requested from CDNs, the user is directed to the optimal server

- This is usually done through the DNS, especially for non-network CDNs, e.g. Akamai
- It can be done through anycasting for network owned CDNs

Users who query DNS-based CDNs be returned different A records for the same hostname

This is called “mapping”

The better the mapping, the better the CDN
How Akamai CDN Work

Example of Akamai mapping

• Notice the different A records for different locations:

[NYC] % host www.symantec.com
www.symantec.com CNAME e5211.b.akamaiedge.net.
e5211.b.akamaiedge.net. A 207.40.194.46
e5211.b.akamaiedge.net. A 207.40.194.49

[Boston] % host www.symantec.com
www.symantec.com CNAME e5211.b.akamaiedge.net.
e5211.b.akamaiedge.net. A 81.23.243.152
e5211.b.akamaiedge.net. A 81.23.243.145
How Akamai CDN Work

Akamai use multiple criteria to choose the optimal server

• These include standard network metrics:
 • Latency
 • Throughput
 • Packet loss

• These also include things like CPU load on the server, HD space, network utilization, etc.
Finding the IP Address: The Akamai Way

Diagram:
- **End User** connects to the **Browser's Cache**.
- The **Local Name Server** resolves the domain to an IP address.
- The **Akamai High-Level DNS Servers** provide the IP address.
- The **Akamai Low-Level DNS Servers** complete the resolution.

Steps:
1. **End User**
2. **Browser's Cache**
3. **Local Name Server**
4. **example.com**'s nameserver (a212.g.akamai.net)
5. 10.10.123.5
6. **example.com**
7. 15.15.125.6
8. akamai.net
9. www.example.com
10. a212.g.akamai.net
11. g.akamai.net
12. 20.20.123.55
13. a212.g.akamai.net
14. 30.30.123.5
15. OS
16. **End User**
Downloading www.example.com with Akamai’s EdgeSuite

- User enters www.example.com
- 1. Browser requests IP address for www.example.com
- 2. DNS returns IP address of optimal Akamai server
- 3. Browser requests HTML
- 4. Akamai server assembles page, contacting customer Web server if necessary
- 5. Optimal Akamai server returns Akamaized HTML
- 6. Browser obtains IP address of optimal Akamai servers for embedded objects
- 7. Browser obtains objects from optimal Akamai servers
Peering with Akamai
Why Akamai Peer with ISPs

The first and foremost reason to peer is improved performance
• Since Akamai tries to serve content as “close” to the end user as possible, peering directly with networks (over non-congested links) obviously helps

Peering gives better throughput
• Removing intermediate AS hops seems to give higher peak traffic for same demand profile
• Might be due to lower latency opening TCP windows faster
• Might be due to lower packet loss
Why Akamai Peer with ISPs

Redundancy
• Having more possible vectors to deliver content increases reliability

Burstability
• During large events, having direct connectivity to multiple networks allows for higher burstability than a single connection to a transit provider

Burstability is important to Akamai
• One of the reasons customers use Akamai is for burstability
Why Akamai Peer with ISPs

Peering reduces costs
• Reduces transit bill

Network Intelligence
• Receiving BGP directly from multiple ASes helps CDNs map the Internet

Backup for on-net servers
• If there are servers on-net, the IX can act as a backup during downtime and overflow
• Allows serving different content types
Why ISPs peer with Akamai

Performance
• Akamai and ISPs are in the same business, just on different sides - we both want to serve end users as quickly and reliably as possible
• You know more about your network than Akamai ever will, so working with Akamai directly can help them deliver the content more quickly and reliably

Cost Reduction
• Transit savings
• Possible backbone savings
Why ISPs peer with Akamai

Marketing

• Claim performance benefits over competitors
• Keep customers from seeing “important” web sites through their second uplink

Because you are nice :-}
How Akamai use IXes

- Akamai (Non-network CDNs) do not have a backbone, so each IX instance is independent.
- Akamai uses transit to pull content into the servers.
- Content is then served to peers over the IX.
How Akamai use IXes

Akamai usually do not announce large blocks of address space because no one location has a large number of servers
• It is not uncommon to see a single /24 from Akamai at an IX

This does not mean you will not see a lot of traffic
• How many web servers does it take to fill a gigabit these days?
Akamai Peering at Equinix Asia Pacific

<table>
<thead>
<tr>
<th>Exchange Point Name</th>
<th>ASN</th>
<th>IP Address</th>
<th>Mbit/sec</th>
</tr>
</thead>
<tbody>
<tr>
<td>Equinix Hong Kong</td>
<td>20940</td>
<td>119.27.63.102</td>
<td>10000</td>
</tr>
<tr>
<td>Equinix Hong Kong</td>
<td>20940</td>
<td>2001:DE8:7::2:940:1</td>
<td>10000</td>
</tr>
<tr>
<td>Equinix Singapore</td>
<td>20940</td>
<td>202.79.197.102</td>
<td>10000</td>
</tr>
<tr>
<td>Equinix Singapore</td>
<td>20940</td>
<td>2001:DE8:4::2:940:1</td>
<td>10000</td>
</tr>
<tr>
<td>Equinix Sydney</td>
<td>20940</td>
<td>202.167.228.102</td>
<td>1000</td>
</tr>
<tr>
<td>Equinix Sydney</td>
<td>20940</td>
<td>2001:DE8:6::2:940:1</td>
<td>1000</td>
</tr>
<tr>
<td>Equinix Tokyo</td>
<td>20940</td>
<td>203.190.230.22</td>
<td>10000</td>
</tr>
<tr>
<td>Equinix Tokyo</td>
<td>20940</td>
<td>2001:DE8:5::2:940:1</td>
<td>10000</td>
</tr>
</tbody>
</table>

... and many other public IX locations
Akamai & IPv6

World IPv6 Launch
How we enable IPv6

Dual-stacking edge servers
Customer properties can be dual-stacked
- Terminate IPv4 and IPv6 connections in server software
- Can go forward to customer origin via IPv4 (or IPv6)
World IPv6 Launch Day: deployment status

In-production serving HTTP over IPv6 to users, tried to dual-stack every server everywhere

As of 2012-06-06, IPv6 now live in…
… over 53 countries
… over 175 cities (in all continents except Antarctica)
… over 225 networks
… over 600 Akamai server locations
… over 37,000 Akamai servers

Compare to a total of 1070 networks in 83 countries

(many network providers don’t have working IPv6 yet, not all networks have full IPv6 routing table)
World IPv6 Launch: A closer look from Akamai

IPv6 Addresses
• 2011: 280,229
• 2012: 18,899,253
• 67x

IPv6 Requests
• 2011: 8,343,590
• 2012: 3,394,971,156
• 460x

The above comparisons are for 24-hour periods (6/8/2011 and 6/6/2012)
World IPv6 Launch: Observations

Types of Addresses
- 16.5m native IPv6
- 2.6m 6to4 & Teredo

Native IPv6 by Geo
- US: ~73%
- EU: ~21%
- Asia: ~5%
- RoW: ~1%

Request by Network
- Verizon: 38.1%
- AT&T: 18.1%
- Free: 16.6%
World IPv6 Launch: End-user growth in the U.S.

IPv6 requests from U.S. end users against a dual-stack consumer-oriented site.

- 900% increase over the past year (0.12%)
- 1.04% prefer IPv6
World IPv6 Launch: Three drivers of IPv6 growth

1. Content availability
 - Customers opting in to have their sites, content, and applications permanently available dual-stacked.

2. Availability of IPv6 from access network providers
 - IPv6 in production networks, e.g. Verizon Wireless, AT&T, and Comcast.
 - Some ISPs, Universities and Research Labs in Europe and Asia that have had IPv6 deployed

3. End-user device support
 - Recent desktop and laptop OS and client software supports IPv6
 - Many home routers / gateways start to support IPv6 recently.
 - 4G LTE smart phones.
Akamai has a lot of customers on IPv6

- Over 700 US government hostnames
- Over 20 US government agencies
- 1/3 of top-30 World IPv6 Launch Day participants (by Alexa rank), etc.

Those customers who were dual-stacked before World IPv6 Launch show 0.3% to 1.5% of their traffic on IPv6
IPv6 traffic continue to grow after World IPv6 Launch

- Steadily rising by a few percent week-over-week since World IPv6 Launch
- All public-facing U.S. Federal government sites must be enabled for IPv6 by the end of September 2012.
- Users upgrade their devices over the next few years
- **We really running out of IPv4!**
Summary

• Akamai Intelligent Platform
 • Highly distributed edge servers
 • Akamai mapping is different than BGP routing

• Peering with Akamai
 • Improve user experience
 • Reduce transit/peering cost

• IPv6 traffic is still small today, but catching up
 • Dual-stack approach
 • IPv4 is really running out!
Questions?

Kams Yeung <kams@akamai.com>

More information:
Peering: http://as20940.peeringdb.com
IPv6: http://www.akamai.com/ipv6