
Transport Layer 3-1

Chapter 3
Transport Layer

Computer Networking:
A Top Down Approach
4th edition.
Jim Kurose, Keith Ross
Addison-Wesley, July
2007.

A note on the use of these ppt slides:
We’re making these slides freely available to all (faculty, students, readers).

They’re in PowerPoint form so you can add, modify, and delete slides

(including this one) and slide content to suit your needs. They obviously

represent a lot of work on our part. In return for use, we only ask the

following:

 If you use these slides (e.g., in a class) in substantially unaltered form,

that you mention their source (after all, we’d like people to use our book!)

 If you post any slides in substantially unaltered form on a www site, that

you note that they are adapted from (or perhaps identical to) our slides, and

note our copyright of this material.

Thanks and enjoy! JFK/KWR

All material copyright 1996-2007

J.F Kurose and K.W. Ross, All Rights Reserved

Transport Layer 3-2

Chapter 3 outline

 3.1 Transport-layer
services

 3.2 Multiplexing and
demultiplexing

 3.3 Connectionless
transport: UDP

 3.4 Principles of
reliable data transfer

 3.5 Connection-oriented
transport: TCP
 segment structure

 reliable data transfer

 flow control

 connection management

 3.6 Principles of
congestion control

 3.7 TCP congestion
control

Transport Layer 3-3

TCP reliable data transfer

 TCP creates rdt
service on top of IP’s
unreliable service

 Pipelined segments

 Cumulative acks

 TCP uses single
retransmission timer

 Retransmissions are
triggered by:
 timeout events

 duplicate acks

 Initially consider
simplified TCP sender:
 ignore duplicate acks

 ignore flow control,
congestion control

Transport Layer 3-4

TCP sender events:
data rcvd from app:

 Create segment with
seq #

 seq # is byte-stream
number of first data
byte in segment

 start timer if not
already running (think
of timer as for oldest
unacked segment)

 expiration interval:
TimeOutInterval

timeout:

 retransmit segment
that caused timeout

 restart timer

 Ack rcvd:

 If acknowledges
previously unacked
segments
 update what is known to

be acked

 start timer if there are
outstanding segments

Transport Layer 3-5

TCP
sender
(simplified)

 NextSeqNum = InitialSeqNum

 SendBase = InitialSeqNum

 loop (forever) {

 switch(event)

 event: data received from application above

 create TCP segment with sequence number NextSeqNum

 if (timer currently not running)

 start timer

 pass segment to IP

 NextSeqNum = NextSeqNum + length(data)

 event: timer timeout

 retransmit not-yet-acknowledged segment with

 smallest sequence number

 start timer

 event: ACK received, with ACK field value of y

 if (y > SendBase) {

 SendBase = y

 if (there are currently not-yet-acknowledged segments)

 start timer

 }

 } /* end of loop forever */

Comment:
• SendBase-1: last
cumulatively
ack’ed byte
Example:
• SendBase-1 = 71;
y= 73, so the rcvr
wants 73+ ;
y > SendBase, so
that new data is
acked

Transport Layer 3-6

Fast Retransmit

 Time-out period often
relatively long:
 long delay before

resending lost packet

 Detect lost segments
via duplicate ACKs.
 Sender often sends

many segments back-to-
back

 If segment is lost,
there will likely be many
duplicate ACKs.

 If sender receives 3
ACKs for the same
data, it supposes that
segment after ACKed
data was lost:
 fast retransmit: resend

segment before timer
expires

Transport Layer 3-7

 event: ACK received, with ACK field value of y

 if (y > SendBase) {

 SendBase = y

 if (there are currently not-yet-acknowledged segments)

 start timer

 }

 else {

 increment count of dup ACKs received for y

 if (count of dup ACKs received for y = 3) {

 resend segment with sequence number y

 }

Fast retransmit algorithm:

a duplicate ACK for
already ACKed segment

fast retransmit

Transport Layer 3-8

Chapter 3 outline

 3.1 Transport-layer
services

 3.2 Multiplexing and
demultiplexing

 3.3 Connectionless
transport: UDP

 3.4 Principles of
reliable data transfer

 3.5 Connection-oriented
transport: TCP
 segment structure

 reliable data transfer

 flow control

 connection management

 3.6 Principles of
congestion control

 3.7 TCP congestion
control

Transport Layer 3-9

TCP Flow Control

 receive side of TCP
connection has a
receive buffer:

 speed-matching
service: matching the
send rate to the
receiving app’s drain
rate

 app process may be
slow at reading from
buffer

sender won’t overflow
receiver’s buffer by

transmitting too much,
 too fast

flow control

Transport Layer 3-10

TCP Flow control: how it works

(Suppose TCP receiver
discards out-of-order
segments)

 spare room in buffer
= RcvWindow

= RcvBuffer-[LastByteRcvd -

LastByteRead]

 Rcvr advertises spare
room by including value
of RcvWindow in
segments

 Sender limits unACKed
data to RcvWindow
 guarantees receive

buffer doesn’t overflow

Transport Layer 3-11

Chapter 3 outline

 3.1 Transport-layer
services

 3.2 Multiplexing and
demultiplexing

 3.3 Connectionless
transport: UDP

 3.4 Principles of
reliable data transfer

 3.5 Connection-oriented
transport: TCP
 segment structure

 reliable data transfer

 flow control

 connection management

 3.6 Principles of
congestion control

 3.7 TCP congestion
control

Transport Layer 3-12

TCP Connection Management

Recall: TCP sender, receiver
establish “connection”
before exchanging data
segments

 initialize TCP variables:

 seq. #s

 buffers, flow control
info (e.g. RcvWindow)

 client: connection initiator
 Socket clientSocket = new

Socket("hostname","port

number");
 server: contacted by client
 Socket connectionSocket =

welcomeSocket.accept();

Three way handshake:

Step 1: client host sends TCP
SYN segment to server

 specifies initial seq #

 no data

Step 2: server host receives
SYN, replies with SYNACK
segment

 server allocates buffers

 specifies server initial
seq. #

Step 3: client receives SYNACK,
replies with ACK segment,
which may contain data

Transport Layer 3-13

TCP Connection Management (cont.)

Closing a connection:

client closes socket:
clientSocket.close();

Step 1: client end system
sends TCP FIN control

segment to server

Step 2: server receives
FIN, replies with ACK.
Closes connection, sends
FIN.

client server

close

close

closed

ti
m

e
d
 w

ai
t

Transport Layer 3-14

TCP Connection Management (cont.)

Step 3: client receives FIN,
replies with ACK.

 Enters “timed wait” -
will respond with ACK
to received FINs

Step 4: server, receives
ACK. Connection closed.

Note: with small
modification, can handle
simultaneous FINs.

client server

closing

closing

closed

ti
m

e
d
 w

ai
t

closed

Transport Layer 3-15

TCP Connection Management (cont)

TCP client
lifecycle

TCP server
lifecycle

