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Chapter 3 outline 

 3.1 Transport-layer 
services 

 3.2 Multiplexing and 
demultiplexing 

 3.3 Connectionless 
transport: UDP 

 3.4 Principles of 
reliable data transfer 

 3.5 Connection-oriented 
transport: TCP 
 segment structure 

 reliable data transfer 

 flow control 

 connection management 

 3.6 Principles of 
congestion control 

 3.7 TCP congestion 
control 
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TCP reliable data transfer 

 TCP creates rdt 
service on top of IP’s 
unreliable service 

 Pipelined segments 

 Cumulative acks 

 TCP uses single 
retransmission timer 

 

 Retransmissions are 
triggered by: 
 timeout events 

 duplicate acks 

 Initially consider 
simplified TCP sender: 
  ignore duplicate acks 

 ignore flow control, 
congestion control 
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TCP sender events: 
data rcvd from app: 

 Create segment with 
seq # 

 seq # is byte-stream 
number of first data 
byte in  segment 

 start timer if not 
already running (think 
of timer as for oldest 
unacked segment) 

 expiration interval: 
TimeOutInterval  

timeout: 

 retransmit segment 
that caused timeout 

 restart timer 

 Ack rcvd: 

 If acknowledges 
previously unacked 
segments 
 update what is known to 

be acked 

 start timer if there are  
outstanding segments 
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TCP  
sender 
(simplified) 

        NextSeqNum = InitialSeqNum 

       SendBase = InitialSeqNum 

 

        loop (forever) {  

           switch(event)  

 

           event: data received from application above  

                 create TCP segment with sequence number NextSeqNum  

                 if (timer currently not running) 

                       start timer 

                 pass segment to IP  

                 NextSeqNum = NextSeqNum + length(data)  

 

            event: timer timeout 

                 retransmit not-yet-acknowledged segment with  

                         smallest sequence number 

                 start timer 

 

            event: ACK received, with ACK field value of y  

                 if (y > SendBase) {  

                       SendBase = y 

                      if (there are currently not-yet-acknowledged segments) 

                               start timer  

                      }  

 

         }  /* end of loop forever */  

Comment: 
• SendBase-1: last  
cumulatively  
ack’ed byte 
Example: 
• SendBase-1 = 71; 
y= 73, so the rcvr 
wants 73+ ; 
y > SendBase, so 
that new data is  
acked 
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Fast  Retransmit 

 Time-out period  often 
relatively long: 
 long delay before 

resending lost packet 

 Detect lost segments 
via duplicate ACKs. 
 Sender often sends 

many segments back-to-
back 

 If segment is lost, 
there will likely be many 
duplicate ACKs. 

 

 

 If sender receives 3 
ACKs for the same 
data, it supposes that 
segment after ACKed 
data was lost: 
 fast retransmit: resend 

segment before timer 
expires 



Transport Layer 3-7 

  

 event: ACK received, with ACK field value of y  

                 if (y > SendBase) {  

                       SendBase = y 

                       if (there are currently not-yet-acknowledged segments) 

                             start timer  

                     }  

                 else {  

                         increment count of dup ACKs received for y 

                         if (count of dup ACKs received for y = 3) { 

                               resend segment with sequence number y 

                          } 
          

Fast retransmit algorithm: 

a duplicate ACK for  
already ACKed segment 

fast retransmit 
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Chapter 3 outline 

 3.1 Transport-layer 
services 

 3.2 Multiplexing and 
demultiplexing 

 3.3 Connectionless 
transport: UDP 

 3.4 Principles of 
reliable data transfer 

 3.5 Connection-oriented 
transport: TCP 
 segment structure 

 reliable data transfer 

 flow control 

 connection management 

 3.6 Principles of 
congestion control 

 3.7 TCP congestion 
control 
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TCP Flow Control 

 receive side of TCP 
connection has a 
receive buffer: 

 speed-matching 
service: matching the 
send rate to the 
receiving app’s drain 
rate 

 app process may be 
slow at reading from 
buffer 

sender won’t overflow 
receiver’s buffer by 

transmitting too much, 
 too fast 

flow control 
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TCP Flow control: how it works 

(Suppose TCP receiver 
discards out-of-order 
segments) 

 spare room in buffer 
= RcvWindow 

= RcvBuffer-[LastByteRcvd - 

LastByteRead] 

 Rcvr advertises spare 
room by including value 
of RcvWindow in 
segments 

 Sender limits unACKed 
data to RcvWindow 
 guarantees receive 

buffer doesn’t overflow 
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Chapter 3 outline 

 3.1 Transport-layer 
services 

 3.2 Multiplexing and 
demultiplexing 

 3.3 Connectionless 
transport: UDP 
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 3.5 Connection-oriented 
transport: TCP 
 segment structure 

 reliable data transfer 

 flow control 
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 3.6 Principles of 
congestion control 

 3.7 TCP congestion 
control 
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TCP Connection Management 

Recall: TCP sender, receiver 
establish “connection” 
before exchanging data 
segments 

 initialize TCP variables: 

 seq. #s 

 buffers, flow control 
info (e.g. RcvWindow) 

 client: connection initiator 
  Socket clientSocket = new   

Socket("hostname","port 

number");  
 server: contacted by client 
  Socket connectionSocket = 

welcomeSocket.accept(); 

Three way handshake: 

Step 1: client host sends TCP 
SYN segment to server 

 specifies initial seq # 

 no data 

Step 2: server host receives 
SYN, replies with SYNACK 
segment 

 server allocates buffers 

 specifies server initial 
seq. # 

Step 3: client receives SYNACK, 
replies with ACK segment, 
which may contain data 
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TCP Connection Management (cont.) 

Closing a connection: 

client closes socket: 
clientSocket.close();  

Step 1: client end system 
sends TCP FIN control 

segment to server  

Step 2: server receives 
FIN, replies with ACK. 
Closes connection, sends 
FIN.  

client server 

close 

close 

closed 

ti
m
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d
 w

ai
t 



Transport Layer 3-14 

TCP Connection Management (cont.) 

Step 3: client receives FIN, 
replies with ACK.  

 Enters “timed wait” - 
will respond with ACK 
to received FINs  

Step 4: server, receives 
ACK.  Connection closed.  

Note: with small 
modification, can handle 
simultaneous FINs. 

client server 

closing 

closing 

closed 

ti
m

e
d
 w

ai
t 

closed 
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TCP Connection Management (cont) 

TCP client 
lifecycle 

TCP server 
lifecycle 


