Chapter 4
Network Layer

A note on the use of these ppt slides:
We’re making these slides freely available to all (faculty, students, readers). They’re in PowerPoint form so you see the animations; and can add, modify, and delete slides (including this one) and slide content to suit your needs. They obviously represent a lot of work on our part. In return for use, we only ask the following:

❖ If you use these slides (e.g., in a class) that you mention their source (after all, we’d like people to use our book!)
❖ If you post any slides on a www site, that you note that they are adapted from (or perhaps identical to) our slides, and note our copyright of this material.

Thanks and enjoy! JFK/KWR

All material copyright 1996-2012
J.F Kurose and K.W. Ross, All Rights Reserved
Chapter 4: network layer

chapter goals:

- understand principles behind network layer services:
 - network layer service models
 - forwarding versus routing
 - how a router works
 - routing (path selection)
 - broadcast, multicast

- instantiation, implementation in the Internet
Chapter 4: outline

4.1 introduction
4.2 virtual circuit and datagram networks
4.3 what’s inside a router
4.4 IP: Internet Protocol
 - datagram format
 - IPv4 addressing
 - ICMP
 - IPv6

4.5 routing algorithms
 - link state
 - distance vector
 - hierarchical routing

4.6 routing in the Internet
 - RIP
 - OSPF
 - BGP

4.7 broadcast and multicast routing
Network layer

- transport segment from sending to receiving host
- on sending side, encapsulates segments into datagrams
- on receiving side, delivers segments to transport layer
- network layer protocols in *every* host, router
- router examines header fields in all IP datagrams passing through it
Two key network-layer functions

- **forwarding**: move packets from router’s input to appropriate router output
- **routing**: determine route taken by packets from source to dest.
 - **routing algorithms**
 - **analogy**:
 - **routing**: process of planning trip from source to dest
 - **forwarding**: process of getting through single interchange
Interplay between routing and forwarding

Routing algorithm determines the end-end-path through the network.

Forwarding table determines the local forwarding at this router.

<table>
<thead>
<tr>
<th>header value</th>
<th>output link</th>
</tr>
</thead>
<tbody>
<tr>
<td>0100</td>
<td>3</td>
</tr>
<tr>
<td>0101</td>
<td>2</td>
</tr>
<tr>
<td>0111</td>
<td>2</td>
</tr>
<tr>
<td>1001</td>
<td>1</td>
</tr>
</tbody>
</table>

Value in arriving packet’s header: 0111

1. 0111
2. 3
3. 2
4. 1
Connection setup

- 3rd important function in some network architectures:
 - ATM, frame relay, X.25
- before datagrams flow, two end hosts and intervening routers establish virtual connection
 - routers get involved
- network vs transport layer connection service:
 - network: between two hosts (may also involve intervening routers in case of VCs)
 - transport: between two processes
Network service model

Q: What service model for “channel” transporting datagrams from sender to receiver?

example services for individual datagrams:
- guaranteed delivery
- guaranteed delivery with less than 40 msec delay

example services for a flow of datagrams:
- in-order datagram delivery
- guaranteed minimum bandwidth to flow
- restrictions on changes in inter-packet spacing
Network Layer Service Models

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Internet</td>
<td>best effort</td>
<td>none</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no (inferred via loss)</td>
</tr>
<tr>
<td>ATM</td>
<td>CBR</td>
<td>constant rate</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>no congestion</td>
</tr>
<tr>
<td>ATM</td>
<td>VBR</td>
<td>guaranteed rate</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>no congestion</td>
</tr>
<tr>
<td>ATM</td>
<td>ABR</td>
<td>guaranteed minimum</td>
<td>no</td>
<td>yes</td>
<td>no</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>ATM</td>
<td>UBR</td>
<td>none</td>
<td>no</td>
<td>yes</td>
<td>no</td>
<td>no</td>
<td>no</td>
</tr>
</tbody>
</table>
Chapter 4: outline

4.1 introduction
4.2 virtual circuit and datagram networks
4.3 what’s inside a router
4.4 IP: Internet Protocol
 - datagram format
 - IPv4 addressing
 - ICMP
 - IPv6
4.5 routing algorithms
 - link state
 - distance vector
 - hierarchical routing
4.6 routing in the Internet
 - RIP
 - OSPF
 - BGP
4.7 broadcast and multicast routing
Connection, connection-less service

- **datagram** network provides network-layer connectionless service
- **virtual-circuit** network provides network-layer connection service
- analogous to TCP/UDP connection-oriented / connectionless transport-layer services, but:
 - **service**: host-to-host
 - **no choice**: network provides one or the other
 - **implementation**: in network core
Virtual circuits

“source-to-dest path behaves much like telephone circuit”
 - performance-wise
 - network actions along source-to-dest path

- call setup, teardown for each call *before* data can flow
- each packet carries VC identifier (not destination host address)
- *every* router on source-dest path maintains “state” for each passing connection
- link, router resources (bandwidth, buffers) may be *allocated* to VC (dedicated resources = predictable service)
VC implementation

a VC consists of:

1. *path* from source to destination
2. *VC numbers*, one number for each link along path
3. *entries in forwarding tables* in routers along path
 ∷ packet belonging to VC carries VC number (rather than dest address)
 ∷ VC number can be changed on each link.
 ▪ new VC number comes from forwarding table
VC forwarding table

forwarding table in northwest router:

<table>
<thead>
<tr>
<th>Incoming interface</th>
<th>Incoming VC #</th>
<th>Outgoing interface</th>
<th>Outgoing VC #</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>12</td>
<td>3</td>
<td>22</td>
</tr>
<tr>
<td>2</td>
<td>63</td>
<td>1</td>
<td>18</td>
</tr>
<tr>
<td>3</td>
<td>7</td>
<td>2</td>
<td>17</td>
</tr>
<tr>
<td>1</td>
<td>97</td>
<td>3</td>
<td>87</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

VC routers maintain connection state information!
Virtual circuits: signaling protocols

- used to setup, maintain, and teardown VC
- used in ATM, frame-relay, X.25
- not used in today’s Internet

Diagram:
- 1. initiate call
- 2. incoming call
- 3. accept call
- 4. call connected
- 5. data flow begins
- 6. receive data
Datagram networks

- no call setup at network layer
- routers: no state about end-to-end connections
 - no network-level concept of “connection”
- packets forwarded using destination host address
Datagram forwarding table

Routing algorithm

Local forwarding table

<table>
<thead>
<tr>
<th>dest address</th>
<th>output link</th>
</tr>
</thead>
<tbody>
<tr>
<td>address-range 1</td>
<td>3</td>
</tr>
<tr>
<td>address-range 2</td>
<td>2</td>
</tr>
<tr>
<td>address-range 3</td>
<td>2</td>
</tr>
<tr>
<td>address-range 4</td>
<td>1</td>
</tr>
</tbody>
</table>

IP destination address in arriving packet’s header

4 billion IP addresses, so rather than list individual destination address list range of addresses (aggregate table entries)
Datagram forwarding table

<table>
<thead>
<tr>
<th>Destination Address Range</th>
<th>Link Interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>11001000 00010111 00010000 00000000 through 11001000 00010111 00011000 00000000 11111111</td>
<td>0</td>
</tr>
<tr>
<td>11001000 00010111 00011000 00000000 through 11001000 00010111 00011000 11111111</td>
<td>1</td>
</tr>
<tr>
<td>11001000 00010111 00011001 00000000 through 11001000 00010111 00011111 11111111</td>
<td>2</td>
</tr>
<tr>
<td>otherwise</td>
<td>3</td>
</tr>
</tbody>
</table>

Q: but what happens if ranges don’t divide up so nicely?
Longest prefix matching

When looking for forwarding table entry for given destination address, use *longest* address prefix that matches destination address.

<table>
<thead>
<tr>
<th>Destination Address Range</th>
<th>Link interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>11001000 00010111 00010*** *******</td>
<td>0</td>
</tr>
<tr>
<td>11001000 00010111 00011000 *******</td>
<td>1</td>
</tr>
<tr>
<td>11001000 00010111 00011*** *******</td>
<td>2</td>
</tr>
<tr>
<td>otherwise</td>
<td>3</td>
</tr>
</tbody>
</table>

Examples:

DA: 11001000 00010111 00010110 10100001

which interface?

DA: 11001000 00010111 00011000 10101010

which interface?
Datagram or VC network: why?

Internet (datagram)
- data exchange among computers
 - “elastic” service, no strict timing req.
- many link types
 - different characteristics
 - uniform service difficult
- “smart” end systems (computers)
 - can adapt, perform control, error recovery
 - *simple inside network, complexity at “edge”*

ATM (VC)
- evolved from telephony
- human conversation:
 - strict timing, reliability requirements
 - need for guaranteed service
- “dumb” end systems
 - telephones
 - *complexity inside network*
Chapter 4: outline

4.1 introduction
4.2 virtual circuit and datagram networks
4.3 what's inside a router
4.4 IP: Internet Protocol
 - datagram format
 - IPv4 addressing
 - ICMP
 - IPv6
4.5 routing algorithms
 - link state
 - distance vector
 - hierarchical routing
4.6 routing in the Internet
 - RIP
 - OSPF
 - BGP
4.7 broadcast and multicast routing
Router architecture overview

two key router functions:

- run routing algorithms/protocol (RIP, OSPF, BGP)
- forwarding datagrams from incoming to outgoing link
Input port functions

- **Physical layer**: bit-level reception
- **Data link layer**: e.g., Ethernet, see chapter 5

Decentralized switching:
- Given datagram dest., lookup output port using forwarding table in input port memory (*match plus action*)
- Goal: complete input port processing at ‘line speed’
- Queuing: if datagrams arrive faster than forwarding rate into switch fabric
Switching fabrics

- transfer packet from input buffer to appropriate output buffer
- switching rate: rate at which packets can be transfer from inputs to outputs
 - often measured as multiple of input/output line rate
 - N inputs: switching rate N times line rate desirable

- three types of switching fabrics
Switching via memory

first generation routers:
- traditional computers with switching under direct control of CPU
- packet copied to system’s memory
- speed limited by memory bandwidth (2 bus crossings per datagram)
Switching via a bus

- datagram from input port memory to output port memory via a shared bus
- *bus contention*: switching speed limited by bus bandwidth
- 32 Gbps bus, Cisco 5600: sufficient speed for access and enterprise routers
Switching via interconnection network

- overcome bus bandwidth limitations
- banyan networks, crossbar, other interconnection nets initially developed to connect processors in multiprocessor
- advanced design: fragmenting datagram into fixed length cells, switch cells through the fabric.
- Cisco 12000: switches 60 Gbps through the interconnection network
Output ports

- **buffering** required when datagrams arrive from fabric faster than the transmission rate
- **scheduling discipline** chooses among queued datagrams for transmission
Output port queueing

- Buffering when arrival rate via switch exceeds output line speed
- Queueing (delay) and loss due to output port buffer overflow!
How much buffering?

- RFC 3439 rule of thumb: average buffering equal to “typical” RTT (say 250 msec) times link capacity C
 - e.g., C = 10 Gpbs link: 2.5 Gbit buffer
- recent recommendation: with N flows, buffering equal to

$$\frac{\text{RTT} \cdot C}{\sqrt{N}}$$
Input port queuing

- fabric slower than input ports combined -> queueing may occur at input queues
 - *queueing delay and loss due to input buffer overflow!*
- Head-of-the-Line (HOL) blocking: queued datagram at front of queue prevents others in queue from moving forward

```
output port contention: only one red datagram can be transferred.
lower red packet is blocked
```

```
one packet time later: green packet experiences HOL blocking
```