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Bandwidth Sharing: Objectives and Algorithms
Laurent Massoulié and James Roberts

Abstract—This paper concerns the design of distributed
algorithms for sharing network bandwidth resources among
contending flows. The classical fairness notion is the so-called
max–min fairness. The alternative proportional fairness criterion
has recently been introduced by Kelly; we introduce a third
criterion, which is naturally interpreted in terms of the delays
experienced by ongoing transfers. We prove that fixed-size window
control can achieve fair bandwidth sharing according to any of
these criteria, provided scheduling at each link is performed in
an appropriate manner. We then consider a distributed random
scheme where each traffic source varies its sending rate randomly,
based on binary feedback information from the network. We show
how to select the source behavior so as to achieve an equilibrium
distribution concentrated around the considered fair rate alloca-
tions. This stochastic analysis is then used to assess the asymptotic
behavior of deterministic rate adaption procedures.

Index Terms—Congestion control, distributed random search,
fixed-size window control, max–min fairness, potential delay min-
imization, proportional fairness.

I. INTRODUCTION

I N A NETWORK like the Internet, where a majority of
traffic is generated by the transfer of “elastic” documents

(files, Web pages, etc.), user-perceived performance depends
critically on the way bandwidth is shared between concurrent
flows. The objective is generally to use all available bandwidth
to the fullest while maintaining a certain “fairness” in the
allocations attributed to different flows. The most common
understanding of fairness in a network is max–min fairness,
as defined, for example, in [2]: rates are made as equal as
possible subject only to the constraints imposed by link
capacities. In fact, there appears to be no clear economic reason
why max–min sharing should be preferred over some other
bandwidth allocation. More rational objectives would be to
maximize overall utility accounting for costs and perceived
value or to minimize the expected response time of any transfer.
In this paper, we discuss possible bandwidth-sharing objectives
and the design of the flow-control algorithms by which they
can be achieved. Although we consider here that the network
handles a fixed set of flows, it should be noted that bandwidth
sharing is generally performed in the context of randomly
varying demands as data transfers begin and end. Preliminary
investigations on the impact of this random traffic are described
in [17].
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The appropriateness of the max–min allocation has already
been questioned by Kelly [13], who argues that bandwidth
should rather be shared so as to maximize an objective func-
tion representing the overall utility of the flows in progress.
Assuming a logarithmic utility function where the value of a
flow increases with allocated bandwidth in proportion to

results in so-called “proportional fairness.” An alternative
utility function with decreasing gradient is ( ) leading
to the bandwidth-sharing objective of minimizing the sum of
the reciprocal of rates. This objective may alternatively be
interpreted as minimizing the overall potential delay of the
transfers in progress. All three objectives, max–min fairness,
proportional fairness, and minimum potential delay, can be
generalized to account for deliberate bias in bandwidth allo-
cations according to the value of weights which might, for
instance, reflect different tariff options.

While max–min fairness is often the stated objective, it is
widely recognized that this is imperfectly achieved by most
network flow-control protocols. In particular, it turns out
that the additive-increase–multiplicative-decrease conges-
tion-avoidance principle [6], as implemented, for instance, in
TCP [11], tends to realize proportional rather than max–min
fairness [14]. Max–min fairness can be achieved by explicit-rate
calculation algorithms such as those studied in the context
of the available bit rate (ABR) service class in ATM [1], [9].
However, experience suggests that it is difficult to achieve a
satisfactory compromise between simplicity of the algorithm
and resulting fairness which generally depends on all nodes
implementing the same mechanisms.

Our focus in this paper is mainly on distributed algorithms
which can be implemented without the complexity of ex-
plicit-rate calculations, either by means of fixed end-to-end
window control or by rate adjustments performed by users
in response to binary congestion signals. The study of fixed
windows allows us to investigate how bandwidth sharing de-
pends on the queue service discipline implemented in network
nodes and to illustrate the impact of the round-trip time of
the different routes. To analyze algorithms based on users
increasing and decreasing their rate in response to a binary
congestion signal, we introduce a family of (hypothetical)
random-search algorithms, assuming instantaneous reactions
(i.e., negligible round-trip times). The properties of this family
can be used to derive the precise increase–decrease behavior
necessary to realize particular sharing objectives.

Practical bandwidth-sharing algorithms must obviously take
into account the packetized nature of individual flows and the
resulting imprecision in the notion of rate. In the current study,
however, we assume perfectly fluid flows, assimilating links to
pipes and buffers to reservoirs. The above modeling devices
allow a clearer evaluation of the different bandwidth-sharing

1063-6692/02$17.00 © 2002 IEEE



MASSOULIÉ AND ROBERTS: BANDWIDTH SHARING: OBJECTIVES AND ALGORITHMS 321

objectives and provide valuable intuition to guide the design of
realistic packet-based algorithms. Clearly, however, more exten-
sive investigations would be necessary to bring the present re-
sults to the stage of a practical proposition.

In Section II, we recall the definition of max–min and pro-
portionally fair sharing and their weighted generalizations, and
propose an alternative minimal potential delay criterion. Some
common bandwidth-sharing algorithms are described in Sec-
tion III, notably the fixed end-to-end window, for which we
show how realized sharing depends on the service discipline
implemented in network nodes. A new class of random-search
distributed algorithms which can achieve a target rate allocation
with an arbitrarily small level of noise in response to a binary
congestion indication is introduced in Section IV. The behavior
of these random schemes approximates in some sense that of
more realistic deterministic schemes and thus allows an inves-
tigation of the rate sharing achieved by general-increase–gen-
eral-decrease schemes. Section V presents preliminary conclu-
sions drawn from the results of the studied bandwidth-sharing
models.

II. BANDWIDTH SHARING

In this section, we introduce the considered network model
with fluid flows and discuss possible bandwidth-sharing objec-
tives.

A. Network Model

Consider a network as a set of linkswhere each link
has a capacity . A number of flows compete for access to
these links, each flow being associated with a route consisting
of a subset of , and we use interchangeably the termsrouteor
flow in the sequel. We note when route goes through
link . Let denote the set of routes. Note that some subsets of
routes may use precisely the same set of links.

In the sequel we assume that the set of flows is fixed. We
seek to allocate link bandwidth to the set of flows to meet some
sharing objective. Let denote the allocation of route. Fea-
sible bandwidth allocations must satisfy the capacity constraints

(1)

We assume here that flows are perfectly fluid and ignore the
problems of granularity due to packet size.

To illustrate possible allocation strategies, we consider the
simple linear network depicted in Fig. 1. The network consists
of unit capacity links with long routes which cross every
link, and routes which use linkalone, for . Denote
by the set of long routes and by the set of routes using
only link .

B. Sharing Objectives

We now discuss possible objectives in fixing the bandwidth
allocations . A natural objective might be to choose the
so as to maximize the global network throughput, that is to say,
to maximize . However, a significant drawback with this
sharing objective is that it often leads to allocations where

Fig. 1. Linear network.

must be zero for some flows. For example, consider the linear
network of Fig. 1 with one route on each link and one route
end to end. For a given allocation, in order to maximize the
overall throughput within the capacity constraints we should
allocate to all the other routes giving a total
throughput of . This is maximal for and
is then equal to . More acceptable sharing objectives are dis-
cussed below.

1) Max–Min Fairness:Max–min sharing is the classical
sharing principle in the domain of data networks as discussed,
for instance, by Bertsekas and Gallager [2]. The objective stated
simply is indeed to maximize the minimum of subject to
the capacity constraints. More formally, the allocationsmust
be such that an increase of anywithin the domain of feasible
allocations must be at the cost of a decrease of somesuch
that . This leads to the following defining condition.

For every route , there is at least one link such
that

and (2)

It is known that there exists only one such allocation when the
number of resources and the number of routes are both finite.
The max–min fair shares can then be computed by the fol-
lowing “filling procedure” (see, e.g., [2]): start at time 0 with
null rate allocations along each route. Increase linearly in time
these rate allocations. When at some time the capacity limit is
reached at some link, freeze the rate allocation of those routes
that go through this link, but proceed with this linear filling for
those routes not yet constrained. The desired rate allocation is
obtained as the limit of this procedure.

The max–min allocation for the network of Fig. 1 is

for

for

In the particular case where for , the allocation to all
routes is and the total throughput is , considerably
less than the maximum.

2) Proportional Fairness:The appropriateness of max–min
fairness as a bandwidth-sharing objective has recently been
questioned by Kelly [13] who has introduced the alternative
notion of proportional fairness. Rate allocationsare propor-
tionally fair if they maximize under the capacity
constraints (1). This objective may be interpreted as being to
maximize the overall utility of rate allocations assuming each
route has a logarithmic utility function (the law of diminishing
returns).
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Again, in the case of finitely many links and routes, the vector
of proportionally fair rate shares is unique. It may be charac-
terized as follows. The aggregate of proportional rate changes
with respect to the optimum of any other feasible allocation
is negative, i.e.,

Consider how this rate allocation works in the case of the
linear network of Fig. 1. First, it is clear, by concavity of the
log function, that all routes in the same set must have the
same allocation. Let be the allocation of routes in set
for . We necessarily have for

. This sum is the capacity used at linkand must
therefore be less than or equal to one; however, for any rate
allocation such that this sum is less than one,can be increased
without violating the capacity constraints and this results in an
increase in the objective function to be maximized. It follows
that to determine the optimal rate allocation we must find the
value which maximizes

Differentiating, we have that at the optimum

giving

In the particular case where for , we deduce
the allocation and for .
This corresponds to an overall throughput of .
It is clear from this example that proportional fairness penalizes
long routes more severely than max–min fairness in the interest
of greater overall throughput.

3) Potential Delay Minimization:Recognizing that flows
exist for the transfer of documents, a legitimate band-
width-sharing objective would be to minimize the time delay
needed to complete those transfers. In the present static regime,
it is more appropriate to consider a potential, rather than actual,
flow transfer time equal to the reciprocal of the rate allocation,

. In other words, we would seek the allocations minimizing
the total potential delay . This may alternatively be seen
as a utility maximization where the utility function depends on

through a term proportional to .
Consider the network of Fig. 1. Easy calculations yield the

following rates for those routes in :

and

In the case where , this reduces to
and , hence an overall throughput of

. On this example, this criterion is intermediate between
the two previous ones, in that it penalizes more (less) severely
long routes than max–min (proportional) fairness, resulting in a
larger (smaller) overall throughput. It is not known whether the
same ordering holds for arbitrary network topologies.

4) Weighted Shares:All three criteria admit natural gener-
alizations with weighting factors associated with each route

such that an increase in this weight leads to an increase in the
received share .

The general definition of max–min fairness is then:

For all , there is at least one link such that

and (3)

As in the unweighted case, the corresponding allocation can be
obtained through a filling procedure, but now the speed of in-
crease of the rate along routeshould be . In the case of a
single bottleneck link, the allocation to each route is in propor-
tion to its weight, i.e., we have constant.

A weighted version of the proportional fairness criterion is
described in [13]. The rates are then chosen so as to maximize

. Equivalently, for any other feasible allocations
, the aggregate of weighted proportional rate changes with

respect to the optimum allocation would
be negative. Again, in the case of a single link, the weighted
proportionally fair allocations are such that constant.

Similarly, in its weighted version, the minimum potential
delay allocation is that which minimizes . It coin-
cides with the two previous allocations in the case of a single
link.

The use of weights has been advocated as a means for users
to express the relative value of their traffic with the assumption
that they pay more for a higher value of. Note, however, that
the variation of the optimal allocation with is not straight-
forward: the increase in is approximately proportional to
only when the number of routes sharing a link is large and the
individual allocations are small.

III. CLASSICAL BANDWIDTH-SHARING ALGORITHMS

There are two broad classes of adaptive bandwidth-sharing
algorithms which, following ATM terminology, we refer to as
“explicit-rate” and “congestion-indication” algorithms. A sim-
pler alternative is to employ a fixed end-to-end window on each
route. Analysis of the latter algorithm illustrates the impact on
allocation fairness of queue service disciplines.
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A. Explicit-Rate Calculations

By employing the filling procedure described in Sec-
tion II-B-1, it would be possible for an omniscient central
controller to compute max–min fair shares for all routes and
to update allocations as the number of flows or available
bandwidth changes. Such a solution is, however, clearly
impractical in any moderately large network. Practical ex-
plicit-rate algorithms are based on the distributed calculation of
rate allocations.

The algorithm described by Charnyet al. [5] converges in a
finite number of iterations to an exact max–min fair rate alloca-
tion. The algorithm is based on users progressively discovering
their rate allocation by comparison with the “advertised rate”
of the links on its route. The advertised rateof link is given
by

where denotes the subset of routes which are con-
strained (bottlenecked) by any link other than, is the number
of routes in , and is the total number of routes going through
link . The max–min allocation is characterized by the fact that

for and for . At each step of an
iterative process, the users update an estimate of their rate allo-
cation, setting to the minimum advertised rate on their route.
At the same time, the links progressively discover the members
of set for which .

Alternative explicit-rate algorithms, studied in the context of
ABR, are outlined by Arulambalamet al.[1]. It appears difficult
to find an optimal compromise between achieved fairness, sta-
bility, robustness, speed of convergence, and link utilization. Ex-
plicit-rate algorithms generally impose severe processing con-
straints on network nodes and rely on uniform implementation
throughout the network for optimal efficiency.

B. Congestion Indication

In view of the complexity of explicit-rate algorithms, most
network flow-control protocols are based on simple binary indi-
cations of congestion issued independently by the network links.
In practice, the condition for defining a state of congestion may
depend on buffer occupancy, on measured average input rate or
a combination of both.

By studying the impact on the sharing of a single link of var-
ious possible reactions to the presence or absence of conges-
tion, Chiu and Jain have demonstrated the optimality of addi-
tive-increase and multiplicative-decrease algorithms [6]: in the
absence of congestion, users increase their sending rate linearly
until congestion occurs and then begin to decrease the rate expo-
nentially. The rates of increase and decrease must be chosen to
limit the amplitude of oscillations which can lead to inefficien-
cies in link utilization and to ensure rapid convergence when the
population of active flows changes.

The additive-increase–multiplicative-decrease principle is
widely implemented in proprietary and standardized protocols,
notably in the congestion-avoidance algorithms of TCP [11].
Standard user behavior in ABR in response to the binary
congestion-indication signal is also based on this principle

[1]. It is generally recognized in the ATM community that
congestion indication is less fair than explicit rate due to the
so-called “beat-down” effect: flows routed over a long path are
more often required to reduce their rate than flows on short
routes and are consequently unable to compete fairly.

According to recent results from Kellyet al., the beat-down
effect may simply be another way of saying that conges-
tion-indication algorithms realize proportionally fair rather
than max–min fair sharing [14]. More precisely, it is shown in
[14] that, ignoring the feedback delay and assuming perfectly
fluid traffic, it is possible to create weighted proportionally
fair sharing using a common multiplicative decrease factor and
an additive increase rate proportional to the required weight.
In Section IV, we propose an alternative justification for the
observation that classical flow-control algorithms tend to
produce proportional rather than max–min fair sharing.

C. Fixed End-to-End Window Control

Reliance on nonadaptive end-to-end windows is a feasible
bandwidth-sharing option when link buffers are sufficiently
large to eliminate the possibility of data loss.

Assume route has a window of size (given, say, in bytes)
and let denote the round-trip time associated with route,
excluding any queueing delay on the forward data transfer path.
In general, the use of window control leads to fluctuating rates,
i.e., the vary in time resulting in bursty traffic. However, for
current purposes we shall assume that the network is equipped
with additional mechanisms which smooth out the bursts, en-
abling the establishment of a static regime where theremain
constant. In the assumed fluid model, first-in–first-out (FIFO)
queueing is sufficient to maintain such a static regime, but some
further device would be necessary to smooth out the bursts and
ensure initial convergence. We do not further pursue the search
for such a mechanism, the current aim being to explore how
the fairness of the resulting allocations depend onand .
We consider here how different sharing objectives are realized
depending on the service discipline implemented in network
nodes.

1) Proportional Fairness: In the case of FIFO queueing, we
have the following.

Theorem 1: The fluid model under consideration, with non-
adaptive end-to-end window control and FIFO queueing at each
link, the window and round-trip time of routebeing and

, respectively, has a unique static regime. The associated sta-
tionary rates on each route are characterized as the unique
solution to the optimization problem

(4)

under the constraints , .
Proof: Let denote the volume of traffic from route

currently in the buffer of link . In the assumed static regime,
these quantities, like the , are constant. Now, at any time,
unacknowledged traffic emitted on routeis in one of three
states: in transit on the forward path, queued at some link, or at
destination with an acknowledgment in transit on the backward
path. The total volume of traffic in transit in the forward path
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or whose acknowledgment is in transit on the backward path is
equal to . We deduce the conservation equation

(5)

Assuming servers do not idle, it holds that

for all

On the other hand, when the buffers are not empty, because of
the assumed static regime and FIFO policy, the output rates are
proportional to the buffer contents, i.e.,

for all (6)

Indeed, in order to maintain the static regime, data packets from
different routes should be homogeneously interleaved in the
buffer. Denote by the total buffer content at link, i.e.,

. Summing the previous equation over

(7)

Substituting (7) into (5) yields

(8)

where the and the are nonnegative, and such that for
all , , and . The
Lagrangian associated with the optimization problem (4) is (the
constraints need not be included here)

According to the Kuhn–Tucker theorem, the optimum is the
unique vector satisfying the constraints and such that

The first condition reads

Setting and comparing this with (8) it may readily
be verified that any vector of rates which correspond to a
static regime for the fluid model under consideration is a solu-
tion of the above maximization problem. Since such a solution
is unique, by strict concavity of the objective function, there ex-
ists only one such static rate allocation.

Remark 1: When the round-trip times are negligible, the
objective function in (4) reduces to , so that the
static rates constitute the proportionally fair rate allocation with
weights given by the window sizes.

Remark 2: When the round-trip delays are nonnegligible,
their impact on the can be assessed from (4). Consider, for in-
stance, a single link with unit capacity shared by two routes with
associated round-trip times and window sizes , .
If , then one has . Otherwise,
tedious but straightforward calculations yield

where

and a similar expression holds for.
Related and more general results for FIFO queues have re-

cently been derived by Mo and Walrand [18].
2) Maximum Throughput:Theorem 1 relies on the fact that

the scheduling policy is FIFO. However, when another policy
is used instead, it turns out that an analogous result often holds,
with a suitably modified objective function. This is illustrated
by the following theorem.

Theorem 2: In the setting of Theorem 1, if each link imple-
ments per flow queueing with longest-queue-first (LQF) policy
among queues, in any static regime of the system’s behavior, the
corresponding stationary rates are uniquely characterized as the
solution to the optimization problem

(9)

under the usual nonnegativity and capacity constraints.
Proof: Let denote the amount of connection

packets backlogged at the access of link, in some candidate
static regime and set . The policy is such
that, when , one necessarily has . When

, on the other hand, the policy putsa priori no
constraint on the corresponding allocation. The Lagrangian
associated with (9) reads

At the optimum, we have

Identifying then the Lagrange multipliers with the maximal
buffer contents , this equation is exactly the conservation
equation for packets and acknowledgment on route. Thus, in
any static regime the stationary ratessolve (9); they therefore
do not depend on the static regime under consideration, since
(9), being a strictly concave maximization problem, has a unique
solution.

Remark 3: When the round-trip delays are negligible,
these stationary rates tend to maximize the sum of the through-
puts , weighted by the window sizes .

3) Max–Min Fairness:A particularly interesting allocation
results from the use of the fair queueing scheduling policy (see
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[19] for its description). We interpret fair queueing in the consid-
ered fluid system to imply equal rates for all backlogged flows,
and lesser rates for nonbacklogged flows.

Theorem 3: In the setting of Theorem 1, if at each link
one implements a per-flow fair queueing policy, for any static
system behavior regime, the corresponding stationary rates are
uniquely defined as the max–min fair shares of the network’s
resources with upper bounds on the (that is to say,
the are the max–min fair rate shares in a network identical
to the one under focus where each routecrosses an additional
dedicated access link of capacity ).

Proof: Consider the conservation equation (5). It ensures
that rate cannot exceed . It also implies that if

, there necessarily exists some link , such that
. For this link , it then holds that , since

the associated server is nonidling. Because service at each link
is according to a fair queueing policy, it also holds that when

, .
Summarizing, for all , , and

implies the existence of some such that

and

Equivalently, these static rates are the max–min fair rate shares
with an upper limit on of .

Remark 4: When every round-trip time is small when
compared to the associated window size, the bandwidth
limits are ineffective, so that the stationary rates are the
unweighted max–min fair rates. This differs from the situation
encountered in Theorems 1 and 2, where the window sizes have
a greater impact on the stationary rates, as they translate into
weights. In order to achieve stationary rates which correspond
to the weighted max–min fair allocation, one should implement
weighted fair queueing instead of fair queueing at each link.

Theorem 3 is closely related to results derived for packetized
streams by Hahne [8]. Whereas Theorem 3 deals only with the
characterization of static regimes, conditions are provided in [8],
under which any stationary regime for the system yields as av-
erage rates the max–min fair shares of the network’s capacities.

4) Minimum Potential Delay:To realize an allocation min-
imizing the sum of the potential delays as considered in Sec-
tion II-B-3, we must invent a rather peculiar queueing discipline.

Theorem 4: In the setting of Theorem 1, if at each link one
implements per flow queueing with service rate being shared
between queues in proportion to thesquare rootsof the cor-
responding buffer contents, then for any static regime of the
system’s behavior, the associated stationary rates are uniquely
characterized as the solution to the optimization problem

(10)

under the usual nonnegativity and capacity constraints, and in
the domain , .

Proof: Serving queues in proportion to the square roots of
the buffer contents ensures that for all, in some static regime,

either link is not saturated and the are zero for all ,
or it is saturated and then

Equivalently

where

Substituting this in the conservation equation (5) yields

(11)

Consider now the optimization problem (10). It is easily
checked that the objective function to be minimized is convex
in the domain (note that stationary rates neces-
sarily satisfy this constraint) so that the Kuhn–Tucker theorem
applies, allowing the following characterization of the optimal
values :

where is the multiplier associated with the capacity constraint
at link , and is thus nonnegative and necessarily zero if link
is not saturated. This expression is the same as (11), thus com-
pleting the proof of the theorem.

Remark 5: With negligible round-trip times, the static
regime depicted in the previous theorem realizes the minimum
of , and is thus the minimum potential sojourn time
allocation, with weights given by window sizes.

IV. RANDOM SEARCH AND DETERMINISTIC

INCREASE/DECREASEALGORITHMS

Consider now a generic stochastic algorithm of the Monte
Carlo type (see, e.g., [4] for some background on these) where
routes individually adjust their sending rate according to the
evolution of a random process and the assumed instantaneous
knowledge of whether a proposed increase would lead to the
saturation of any link on its path. The derived algorithms are
not proposed as a practical network solution. However, as is
shown in this section, their analysis can be used to gain some
insight into the properties of deterministic algorithms such
as TCP’s additive-increase–multiplicative-decrease conges-
tion-avoidance mechanism.

A. Distributed Random-Search Algorithms

Assume each routesends data at rate , where
is integer valued and fluctuates between 0 and , and is
a fixed bandwidth unit. The rates change in a Markovian
fashion, jumping from to with rate , and from to
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with rate on condition that this will not lead to ca-
pacity being exceeded at some link. First, consider the auxiliary
process where each evolves in a Markovian fashion, jumping
from to at rate and from to at rate , and
this independently of the link status. Clearly, the individual pro-
cesses are independent and the joint process has a reversible
measure proportional to the weights

where . Now, the process under focus is obtained from
this auxiliary process by setting to zero those transition rates
which would lead to a violation of some capacity constraint.
Again by standard results for reversible Markov processes, a sta-
tionary measure for this process is then given by restrictingto
the configurations which do not violate any capacity constraint.
The stationary distribution of the is thus proportional to the
measure

Different bandwidth-sharing objectives can be satisfied by an
appropriate choice of and .

1) Maximum Throughput:A first choice for the parameters
and is to make them independent of: , .

The measure then takes the form

Thus, when becomes large, the stationary distribution con-
centrates on those rate allocations which maximize the total
throughput .

2) Proportional Fairness:A second choice consists in set-
ting , , and , , for some
parameter . The measure then reads

Thus, when the parameterincreases, the stationary distribution
concentrates on the rate allocations which maximize the sum
of the logarithms of the rates, within the capacity constraints,
i.e., the distribution concentrates on the proportionally fair rate
allocations.

3) Max–Min Fairness: In order to approximate max–min
fair rate sharing, we select and such that for all ,

, where and are two positive pa-
rameters. We could, for instance, set and

. We then have

Assume now that has been chosen sufficiently large so that,
for any feasible rate allocation , . Consider two
feasible allocations and , such that for some ,

, and for any other , either or .
In view of the definition of max–min fairness, if is
the max–min fair rate allocation, for any other rate allocation

there exists such an . The ratio of probabilities
is easily seen to be larger

than

Thus, when tends to infinity, this ratio also tends to infinity. In
other words, the probability distribution concentrates on the
max–min fair rate allocation as .

4) Minimum Potential Delay:In order to approximate the
minimum potential delay allocation, choose ratesand
such that

(Take, for instance, and for
, and ). The stationary measureis then proportional to

and thus concentrates as on the feasible allocations
which minimize the total potential delay .

B. Deterministic General-Increase–General-Decrease
Algorithms

The above random-search framework allows us to derive
more practicaldeterministicrate adjustments realizing partic-
ular bandwidth-sharing objectives.

1) Additive Increase–Multiplicative Decrease:We first de-
vise rates such that the stochastic algorithm of the previous sub-
section mimics the additive-increase–multiplicative-decrease
mechanism. Our choice consists in setting and

, where is a positive constant. When upwards
transitions are feasible, the drift for is constant and equal
to , producing a linear increase in the absence of saturation.
On the other hand, when upwards transitions are impossible,
the drift at some point is exactly , producing an
exponential decay during saturation. In the limit , the
rates evolve continuously in a deterministic fashion according
to this additive-increase–multiplicative-decrease mechanism.

Consider two feasible rate vectors and
. We investigate the ratio of the

probabilities of each vector in the limit . It is easily seen
that this ratio equals

The value of this expression is not changed on adding to
each term of both sums, which may then be recognized as
Riemann sums. The exponent is thus equivalent to
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In the limit , the distribution thus concen-
trates on the feasible rate configuration which maximizes

. We may conclude that, for small ,
this configuration is close to the proportionally fair rate al-
location, because the objective function is then equivalent to

. These arguments add support to the belief that
additive-increase–multiplicative-decrease algorithms realize a
proportionally fair rate sharing, as has already been advanced
by Kelly et al. [14], using a different approach.

2) General Increase–General Decrease:Consider now the
following deterministic control policy: rate increases at
speed in the absence of congestion and decreases at
speed under congestion. The previous paragraph dealt
with the case and . Applying the same
method yields the following result.

Theorem 5: The deterministic congestion-avoidance algo-
rithm with increase and decrease functionsand for route
, , has equilibrium points at those rate allocations at

which the function

(12)

is maximal.
Proof: Approximate this deterministic system behavior

by that of the stochastic algorithm of the previous subsection,
where jumps from to at rate
in the absence of congestion, and jumps fromto
at rate . When tends to zero, the behavior of this
system is the same as that of the deterministic system under
focus. Let us investigate the limiting behavior of the stationary
distribution as goes to zero. Given two feasible rate
allocations , , we have

As , recognizing Riemann sums in the exponent in the
right-hand side, the latter is equivalent to

so that the distribution concentrates on those allocations for
which is maximal and
the result of the theorem follows.

Remark 6: If the objective function has a unique global
maximum in the domain of admissible rate allocations and
no other local maximum, one would expect the deterministic
increase–decrease algorithm to converge indeed to that maxi-
mizing point. However if there are multiple local maxima, it is
likely that the deterministic mechanism will get trapped in any
such local maximum.

Theorem 5 may be used either to gain insight into the nature
of the equilibria achieved by existing increase–decrease mech-
anisms, as in the previous paragraph, or conversely to design

new increase–decrease mechanisms with prespecified equilib-
rium properties. Let us illustrate this by devising functions
and so that the associated equilibrium points minimize the
total potential sojourn time . The corresponding and

should be such that .
Differentiating, we should therefore set

(13)

There is a minor difficulty here: for such and the corre-
sponding integral diverges at zero. However, it is easy to extend
Theorem 5 to the case where some
fails to be integrable at zero, the result then being that
the function maximized at equilibrium has the derivative

.
Returning to (13), if we want to keep the multiplicative de-

crease half of the TCP congestion-avoidance mechanism, we
have , and thus

For large values of , we have . Assuming that
to set instead of the above does not significantly
change the system equilibrium, the following statement makes
sense: “logarithmic-increase–multiplicative-decrease mech-
anisms lead to rate shares that minimize the total potential
delay.” Logarithmic increase could be realized by increasing
the window size on route as follows: just after the window
size has been increased topackets, wait 2 time units before
increasing it to . An implementation closer to the current
congestion-avoidance algorithm of TCP would be to increase
the window size by upon each acknowledgment
reception.

One might wonder whether for appropriately chosen increase
and decrease functionsand the objective function is maxi-
mized at the max–min fair rate allocation. It turns out that there
do not exist functions which guarantee this property to hold for
an arbitrary network configuration.

V. CONCLUSION

The way network bandwidth is shared between contending
flows has a significant impact on user-perceived performance.
We have considered a variety of bandwidth-sharing objectives
including max–min fairness, proportional fairness, and overall
delay minimization. In the current work, we have concentrated
on the protocols and distributed algorithms used to realize these
objectives for a given set of flows each having a fixed network
route.

The algorithms currently used in data networks generally aim
to realize max–min fair sharing, although precision in realizing
this objective is often sacrificed in the interest of simplicity.
There is evidence that classical congestion-indication algo-
rithms based on additive-increase–multiplicative-decrease tend
to produce allocations which are proportionally fair rather than
max–min fair. We have illustrated through a simple example
how proportional fairness tends to produce smaller allocations
on routes using a large number of hops to the advantage of
greater overall throughput. Minimizing potential delay as a
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sharing objective provides an intermediate solution between
max–min and proportional fairness, penalizing long routes less
severely than the latter.

We have demonstrated that a simple fixed-window flow con-
trol produces different sharings depending on the scheduling
discipline employed in network nodes. For example, FIFO tends
to produce weighted proportional fairness, with weights given
by the respective window sizes, while fair queueing leads natu-
rally to max–min fairness.

We have approached the problem of designing a distributed
algorithm realizing a given sharing objective through the study
of a family of so-called Monte Carlo algorithms. The rate of in-
dividual flows varies randomly and independently of the rate of
other flows, except for the condition that transitions to infeasible
states (where link capacities would be exceeded) are barred. By
appropriately choosing transition probabilities, it is possible to
ensure that the random process concentrates on the rate alloca-
tion that realizes the required sharing objective. More practical
algorithms are derived as deterministic limits of the stochastic
processes. In particular, it is shown by this means that the addi-
tive-increase–multiplicative-decrease algorithm tends to realize
proportional sharing, as already shown in [14]. In fact, as in the
cited work, the sharing objective is realized under the (unre-
alistic) assumptions that rate adjustments in response to con-
gestion signals are immediate and that the multiplicative de-
crease factor tends to one (i.e., rate fluctuations occur in a very
limited neighborhood of the congested state). A more realistic
additive-increase–multiplicative-decrease protocol has recently
been analyzed by Hurleyet al. [10], [20] and shown to produce
bandwidth sharing intermediate between max–min and propor-
tional fairness. Other recent works [12], [16] analyze the dy-
namics of rate-control algorithms, and in particular the impact
of round-trip delays on their convergence properties.

To complete the study of how bandwidth-sharing algorithms
affect user-perceived performance, it is necessary to consider
the impact of random changes in the number of flows in
progress. Indeed, the bandwidth-sharing algorithm has its own
impact on this number since the transfer time of a given flow
(i.e., a given document) clearly depends on the rate allocated to
it. Preliminary investigations on the throughput performance of
bandwidth-sharing algorithms are reported in [17], [3]. In this
context, the natural rate-sharing objective would be to minimize
the number of transfers in progress, and thus, by Little’s law,
minimize the mean transfer time. This is the motivation behind
the potential delay-minimization bandwidth sharing introduced
here.
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