Max-Min Fairness

Γεώργιος Δ. Σταμούλης
Fair Allocation of Bandwidth

- In a single link → Allocate equal quantities of bandwidth to all flows

 ![Diagram of bandwidth allocation in a single link]

 $x_1 = \frac{C}{2}$
 $x_2 = \frac{C}{2}$

- This is not possible on a network-wide basis.

 - Constraint: a flow traversing multiple links should be allocated the same bandwidth in each link

 ![Diagram of bandwidth allocation in a network-wide scenario]

 $x_1 = \frac{C}{4}$
 $x_2 = \frac{C}{4}$
 $x_3 = \frac{C}{4}$
 $x_4 = \frac{C}{4}$
 $x_5 = ?$
 $x_6 = ?$
Max-min Fair Allocation

- Bandwidth allocation is “as balanced as possible”, while allocating as much bandwidth as possible.

- The bandwidth of a flow cannot be increased without decreasing that of a flow with less or equal bandwidth.
How is it derived? → Filling process

- Initially all flows have 0 bandwidth.

- Gradually increase all flows evenly, until some link gets saturated.
How is it derived? \(\rightarrow \) Filling process

- Keep on increasing evenly all **non**-saturated flows, until there are no such flows anymore.
Why is this allocation max-min fair?

- Observations: According to the process
 - For the path of each flow \(i \), there is a link \(l \) that is saturated and the bandwidth of the flow \(i \) is either greater or equal to that of all flows in this link \(l \).
 - Indeed, this is the link where we stop raising the bandwidth of the flow.

- Thus, if the bandwidth of flow \(i \) were to be increased, then in the link \(l \) it can only obtain the extra bandwidth from flows with bandwidth already less than or equal to that of \(i \).
Last Observations

- Some bandwidth may inevitably be left unallocated at the end

- The sharing of bandwidth among ABR virtual circuits in an ATM network applying Explicit Rate congestion control approaches max-min the fair allocation