Aloha and slotted aloha

- Slotted aloha: transmissions are synchronized and only start at the beginning of a time slot.
Aloha schemes

- Random schemes, simple.
- Good for initial call setup.
- Channel efficiency only 18% for Aloha, 36% for Slotted Aloha (assuming Poisson distribution for packet arrival and packet length)
- No delay guarantee.
- Combine Aloha with other schemes.
Improvement I: sense the carrier before access the medium
Evolution

• **Aloha**: invented in the 70s.
• **Slotted Aloha**: only transmit at the beginning of a time slot.
• **CSMA**: Carrier Sense Multiple Access, Start transmission only if no transmission is ongoing
• **CSMA/CD**: CD = Collision Detection. Stop ongoing transmission if a collision is detected (e.g. Ethernet).
CSMA

- Non-persistent CSMA: stations sense the carrier and start sending immediately if the medium is idle; otherwise wait for a random amount of time and retry.
- P-persistent CSMA: sense the carrier and if idle, only transmit with probability p; defer to the next slot with probability $1-p$.
- 1-persistent CSMA: many stations listen and transmit at the same time which causes collisions.
Random backoff

- Non-persistent CSMA: stations sense the carrier and start sending immediately if the medium is idle; otherwise wait for a random amount of time (K) and retry.

Exponential Backoff:
- 1st collision: choose K randomly from [0, T].
- 2nd collision: choose K randomly from [0, 2T].
- after next collision double K (and keep doubling on collisions until success.)
Random backoff

- Probability of retransmission attempt (equivalently length of randomization interval) adapted to current load
 - simple, load-adaptive, multiple access

Load (most likely), more nodes trying to send → heavier collisions

randomize retransmissions over longer time interval, to reduce collision probability
MAC in wireless networks

• Can we apply media access methods from fixed networks?
• Example CSMA/CD
 – Carrier Sense Multiple Access with Collision Detection
 – send as soon as the medium is free, listen into the medium if a collision occurs (original method in IEEE 802.3)
CDMA/CD in wireless networks

- Problems in wireless networks
 - signal strength decreases proportional to the square of the distance
 - the sender would apply CS and CD, but the collisions happen at the receiver
 - it might be the case that a sender cannot “hear” the collision, i.e., CD does not work
 - furthermore, CS might not work if, e.g., a terminal is “hidden”
Hidden terminals

- Hidden terminals
 - A sends to B, C cannot receive A
 - C wants to send to B, C senses a “free” medium (CS fails)
 - collision at B, A cannot receive the collision (CD fails)
 - A is “hidden” for C
Exposed terminals

- Exposed terminals
 - B sends to A, C wants to send to another terminal (not A or B)
 - C has to wait, CS signals a medium in use
 - but A is outside the radio range of C, therefore waiting is not necessary
 - C is “exposed” to B
The problem with CSMA/CD

• Carrier sense and collision detection are performed at the transmitter, not the receiver.
• But only collision at the receiver matters.
Near and far terminals

- Terminals A and B send, C receives
 - signal strength decreases proportional to the square of the distance
 - the signal of terminal B therefore drowns out A’s signal
 - C cannot receive A

- precise power control needed!
MACA - collision avoidance

- MACA (Multiple Access with Collision Avoidance) uses short signaling packets for collision avoidance
 - RTS (request to send): a sender request the right to send from a receiver with a short RTS packet before it sends a data packet
 - CTS (clear to send): the receiver grants the right to send as soon as it is ready to receive

- Signaling packets contain
 - sender address
 - receiver address
 - packet size
MACA: hidden terminals

• MACA avoids the problem of hidden terminals
 – A and C want to send to B
 – A sends RTS first
 – C waits after receiving CTS from B
Does this fully solve the problem?

- RTS can still collide.
- Both A and C send RTS to B at the same time.
- But RTS is a small size packet so the chance of collision is much lower.
MACA: exposed terminals

- MACA avoids the problem of exposed terminals
 - B wants to send to A, C to another terminal
 - now C does not have to wait for it cannot receive CTS from A
MACA variant: DFWMAC in IEEE802.11

sender

idle

packet ready to send; RTS

wait for the right to send

RXBusy

time-out; RTS

wait for ACK

CTS; data

ACK: positive acknowledgement
NAK: negative acknowledgement

receiver

idle

data; ACK

time-out ∨
data; NAK

wait for data

RTS; CTS

RXBusy: receiver busy

RxBusy: receiver busy
Improvement II: make reservations
Demand Assigned Multiple Access

- Channel efficiency only 18% for Aloha, 36% for Slotted Aloha (assuming Poisson distribution for packet arrival and packet length)
- Reservation can increase efficiency to 80%
 - a sender reserves a future time-slot
 - sending within this reserved time-slot is possible without collision
 - reservation also causes higher delays
 - typical scheme for satellite links
Demand Assigned Multiple Access

- Examples for reservation algorithms:
 - Explicit Reservation according to Roberts (Reservation-ALOHA)
 - Implicit Reservation (PRMA)
 - Reservation-TDMA
Access method DAMA: Explicit Reservation

- Explicit Reservation (Reservation Aloha):
 - two modes:
 - *ALOHA mode* for reservation: competition for small reservation slots, collisions possible
 - *reserved mode* for data transmission within successful reserved slots (no collisions possible)
 - it is important for all stations to keep the reservation list consistent at any point in time and, therefore, all stations have to synchronize from time to time
Access method DAMA: Explicit Reservation
PRMA: packet reservation MA

- Implicit reservation (PRMA - Packet Reservation MA):
 - a certain number of slots form a frame, frames are repeated
 - stations compete for empty slots according to the slotted aloha principle
 - once a station reserves a slot successfully, this slot is automatically assigned to this station in all following frames as long as the station has data to send
 - competition for this slots starts again as soon as the slot was empty in the last frame
PRMA: packet reservation MA

reservation
ACDABA-F
ACDABA-F
AC-ABAF-
A---BAFD
ACEEBAFD

frame1
A C D A B A F

frame2
A C A B A

frame3
A B A F

frame4
A B A F D

frame5
A C E E B A F D

1 2 3 4 5 6 7 8
time-slot
collision at reservation attempts
Access method DAMA: Reservation-TDMA

- Reservation Time Division Multiple Access
 - every frame consists of N mini-slots and x data-slots
 - every station has its own mini-slot and can reserve up to k data-slots using this mini-slot (i.e. $x = N \times k$).
 - other stations can send data in unused data-slots according to a round-robin sending scheme (best-effort traffic) or Aloha.
Access method DAMA: Reservation-TDMA

- N mini-slots
- $N \times k$ data-slots

- Reservations for data-slots
- Other stations can use free data-slots based on a round-robin scheme

e.g. $N=6$, $k=2$
Access method DAMA: Reservation-TDMA

• Guarantee for worst-case delay.
• Allows a combination of two service models:
 – Fixed delay;
 – Best-effort traffic.
Improvement III: use the basestation for coordination
Polling mechanisms

• If one terminal can be heard by all others, this “central” terminal (a.k.a. base station) can poll all other terminals according to a certain scheme
 – now all schemes known from fixed networks can be used (typical mainframe - terminal scenario)
Polling mechanisms

• Example: Randomly Addressed Polling
 – base station signals readiness to all mobile terminals
 – terminals ready to send can now transmit a random number without collision with the help of CDMA or FDMA (the random number can be seen as dynamic address)
 – the base station now chooses one address for polling from the list of all random numbers (collision if two terminals choose the same address)
 – the base station acknowledges correct packets and continues polling the next terminal
 – this cycle starts again after polling all terminals of the list
ISMA (Inhibit Sense Multiple Access)

• Current state of the medium is signaled via a “busy tone”
 – the base station signals on the downlink (base station to terminals) if the medium is free or not
 – terminals must not send if the medium is busy
 – terminals can access the medium as soon as the busy tone stops
 – the base station signals collisions and successful transmissions via the busy tone and acknowledgements, respectively (media access is not coordinated within this approach)
ISMA (Inhibit Sense Multiple Access)
Summary

• Basic Aloha has a low throughput.
• Extension of basic Aloha Schemes
 – Carrier sense/avoidance
 – Reservation
 – Explore the power of basestation