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Abstract

Named Entity Recognition (NER), Part-of-Speech (POS) tagging and Dependency Parsing

are tasks that are central to Natural Language Processing (NLP) because they provide

important information that can be used for other higher level NLP tasks. We develop a

series of Deep Learning models that can perform these tasks in Greek. We experiment

with GreekBERT, a pre-trained Transformer model for Greek, and XLM-R, a multi-lingual

pre-trained Transformer model, providing additional training to (�ne-tuning) both models

in Greek for the tasks we consider. We �nd that using GreekBERT leads to better results

in Dependency Parsing. In NER and POS tagging, GreekBERT and XLM-R lead to similar

results. This work was combined with the work of the BSc thesis of Nikolaos Smyrnioudis

[Smy21]. The two theses jointly developed a publicly available Transformer-based toolkit

for Greek NLP. In this thesis, the emphasis was mostly in Part-of-Speech tagging as well

as Dependency Parsing.
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Περίληψη

Η αναγνώριση ονοµάτων οντοτήτων (Named Entity Recognition), η ϰατηγοριοποίηση

λέξεων σε µέρη του λόγου (Part-of-Speech Tagging, POS tagging) ϰαι η συνταϰτιϰή

ανάλυση εξαρτήσεων (Dependency Parsing) είναι προβλήµατα πολύ ϰεντριϰά στην επεξ-

εργασία φυσιϰής γλώσσας (ΕΦΓ, Natural Language Processing, NLP) γιατί η επίλυση τους

µας προσφέρει πολύτιµη πληροφορία που µπορεί να χρησιµοποιηϑεί σε άλλα προβλή-

µατα ΕΦΓ. Σε αυτή την εργασία αναπτύσσουµε µια σειρά µοντέλων βασισµένων στην

ΒαϑιάΜάϑηση (Deep Learning) για την επίλυση των συγϰεϰριµένων προβληµάτων στην

ελληνιϰή γλώσσα. Πειραµατιζόµαστε µε το GreekBERT, ένα προ-εϰπαιδευµένο µοντέλο

Transformer για την ελληνιϰή γλώσσα, ϰαϑώς ϰαι µε το XLM-R, ένα πολύγλωσσο προ-

εϰπαιδευµένο µοντέλο Transformers, παρέχοντας συµπληρωµατιϰή εϰπαίδευση (�ne-

tuning) ϰαι στα δύο µοντέλα για τα προβλήµατα που εξετάζουµε. Η χρήση του Greek-

BERT οδηγεί σε ϰαλύτερα αποτελέσµατα στη συνταϰτιϰή ανάλυση εξαρτήσεων. Στην

αναγνώριση ονοµάτων οντοτήτων (NER) ϰαι στην ϰατηγοριοποίηση σε µέρη του λό-

γου (POS tagging), το GreekBERT ϰαι το XLM-R οδηγούν σε παρόµοια αποτελέσµατα.

Αυτή η εργασία συνδυάστηϰε µε την πτυχιαϰή εργασία του Νιϰόλαου Σµυρνιούδη. Οι

δύο εργασίες ανέπτυξαν από ϰοινού µια δηµόσια διαϑέσιµη εργαλειοϑήϰη ΕΦΓ για την

ελληνιϰή γλώσσα, βασισµένη σε Transformers. Στην παρούσα εργασία, η έµφαση δίδε-

ται στην ϰατηγοριοποίηση λέξεων σε µέρη του λόγου ϰαι στην συνταϰτιϰή ανάλυση

εξαρτήσεων.
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1Introduction

Named Entity Recognition (NER), Part-of-Speech (POS) tagging and Dependency Parsing

are tasks that are central to Natural Language Processing (NLP) because they provide

important information that can be used for other NLP tasks. We develop a series of Deep

Learning models that can perform these tasks in Greek. We experiment with GreekBERT

[Kou+20], a pre-trained Transformer [Vas+17] model for Greek, and XLM-R [Con+19a], a

multi-lingual pre-trained Transformer model, providing additional training to (�ne-tuning)

both models in Greek for the tasks we consider. This work was combined with the work

of the BSc thesis of Nikolaos Smyrnioudis [Smy21]. The two theses jointly developed a

publicly available Transformer-based toolkit for Greek NLP. In this thesis, the emphasis

was mostly in Part-of-Speech tagging and Dependency Parsing."

1.1 POS tagging

Part of speech tagging (POS tagging or grammatical tagging), as Jurafsky et al. (2017)

[JM17] de�ne it, is the process of taking a sequence of words and assigning each word a

part of speech like NOUN or VERB.

Some words are ambiguous and it is impossible to assign a speci�c POS tag to them if we

don’t fully understand the context. For example, the word book can be either a noun or a

verb. It depends on the sentence it appeared. Knowing the POS tags of words can help in

several other important tasks, such as NER [Far+08], dependency parsing, information

retrieval [CM98] and text-to-speech synthesis [SB11].

Sentence Pos tags

Janet NOUN

will AUX

back AUX

the DET

bill NOUN

Tab. 1.1: Example of POS tagging from [JM17].
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I prefer the morning �ight through Denver

root

nsubj

dobj

det

nmod

nmod

case

Fig. 1.1: Dependency tree from [JM17].

Relations Description

NSUBJ Nominal subject

CCOMP Clausal complement

NMOD Nominal modi�er

DET Determiner

CASE Prepositions, postpositions and other case markers

CONJ Conjunct

Tab. 1.2: Selected dependency relations from [De +14]

1.2 Dependency Parsing

In order to understand what Dependency Parsing is, we have to know what dependency

trees are. As Jurafsky et al. (2017) [JM17] say, a dependency tree describes the syntactic

structure of a sentence in terms of the words/lemmas in a sentence and an associated set

of directed binary grammatical relations that hold among the words. Relations among the

words are illustrated with directed, labeled arcs from heads to dependents. The tree also

includes a root node that explicitly marks the head of the entire sentence.

One of the most common ways to illustrate dependency relationships is shown in Figure

1.1 and some of the most common relations are shown in Table 1.2. Dependency parsing is

the process of creating trees like this by parsing a sentence, creating the correct arrows

and assigning to each one of them the correct label.

Dependency parsing can deal with morphologically rich languages that have a relatively

free word order [JM17]. They help us understand the structure and relationships involved

in putting words together. For example, dependency parsing can tell us what the subjects

and objects of a verb are, as well as which words are modifying/describing the subject.

This can be very useful to improve question-answering systems, according to [SL07] and

[Cui+05].

Also, Dependency Parsing can be useful in Machine Translation (MT), as [QC06] states,

and it has been used to bene�t Machine Translation several times in the past. For example,

[GM09] used their dependency parser’s scores as an extra feature in their machine learning
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experiments and they observed signi�cant improvement. According to [Cai+14], pre-

ordering rules used in machine translation can be improved by dependency parsing.

Finally, in [Yu+15], an evaluation MT metric based on dependency-parsing was created.

1.3 What has been done until now

POS and DP are already supported by toolkits like spaCy
1
, NLTK

2
and Stanza

3
in many

di�erent languages. However, high performance in these tasks is very important and we

can get improvements for a speci�c language by optimizing the models for that language.

1.4 What we did

For our models we used the GreekBERT transformer [Kou+20]. GreekBERT is an instance

of the BERT transformer architecture [Dev+18] which is pretrained on exclusively Greek

corpora. A very strong advantage of GreekBERT, as the authors of [Kou+20] point out,

other than the extensive Greek datasets on which it was pretrained, is the lower rate of

fragmentation in Greek words compared to other multilingual transformer models.

BERT models such as ours use only the encoder transformer modules introduced in

[Vas+17] and are pretrained on text corpora in an self-supervised fashion. One of the

pre-training tasks is Masked Language Modelling (MLM), in which the model, given a

sentence with some words replaced with the MASK token tries to predict the missing words.

The other pre-training task is Next Sentence Prediction (NSP), in which the model given

two sentences tries to predict if one sentence would follow the other in a document.

Apart from GreekBERT, for our experiments we also used the XLM-R Transformer [Con+19b].

XLM-R is also an instance of the BERT architecture, but it is pretrained with text sources

from multiple languages.

Using GreekBERT or XLM-R, we developed task speci�c prediction heads for POS tagging

and DP and �ne-tuned each one to perform well on task speci�c benchmarks. The bench-

mark we used is the Greek treebank from the Universal Dependencies dataset. [Niv+16].

We compared our models’ performance on the benchmarks mentioned with the perfor-

mance of the Stanza toolkit [Qi+20] on POS tagging and DP.

1
https://spacy.io/

2
https://www.nltk.org/

3
https://stanfordnlp.github.io/stanza/
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Fig. 1.2: An illustration of GreekBERT pretraining. Figure taken from [Kou+20].

Segmentation

se ##g ##ment ##ation

Tab. 1.3: A word segmented into subword tokens. The initial subword token is "se" and the

non-initial sub-word tokens are , ##g , ##ment, ##ation

.

1.5 Handling subwords

Before moving on to the main chapters of the thesis, let us clarify how we use the sub-

words (Table 1.3) generated by the tokenizers of the pre-trained Transformer models we

employ (GreekBERT, XLM-R). For all tasks we extract labels only for the �rst subword

token of each word and assign these labels to the whole word. However this doesn’t

mean that the model will not utilize all the sub-words for its predictions. Each layer of

GreekBERT or XLM-R, produces embeddings for all the sub-words, and the embedding

of each sub-word is a function of the previous layer’s embeddings (except the �rst layer

where the embeddings are retrieved from a look-up table) including non initial subword

embeddings.

4 Chapter 1 Introduction



2Part of Speech Tagging

2.1 Introduction

As already discussed, part of speech tagging is the task of assigning one tag per word in

a sentence which contains useful syntactic and semantic information for the word in its

context. These tags indicate, for example, if a word is a verb, noun etc.

However there are also more detailed tags that reveal grammatical phenomena that can be

assigned to words like the gender of the noun, the degree of an adjective etc. These tags

are called morphological tags.

2.2 Related Work

Part of speech tagging has been studied for decades in natural language processing. Here

we only brie�y mention some indicative previous work. Before Deep Learning emerged,

[Kup92] used Hidden Markov Models (HMM) to predict POS tags. [LMP01a] improved

POS tagging by introducing Conditional Random Fields (CRFs) [LMP01b], achieving higher

accuracy than older HMM models. With the rise of Deep Learning techniques [Col+11]

extracted features from text that they fed in a multilayer Feed Forward Neural Network and

obtain state-of-the-art results in many tasks, one of which was POS tagging. [DZ14] were

the �rst to use character level information with bidirectional LSTMs [HS97] successfully

for POS tagging. [Lin+15] also used a character level LSTM for POS tagging and achieved

state of the art results. [NV18] improved the state-of-the-art (at the time) results of UDPipe

at POS tagging on the English Penn Treebank. Recently, [Qi+20] reached a state-of-the-art

level in many languages for POS tagging and morphological tagging with their multilingual

toolkit.

2.3 Dataset

The dataset we used to train and test our model is the Greek treebank from the Universal

Dependencies treebank [Niv+16]. This dataset contains data and syntactic annotations for

multiple languages. The Greek treebank contains information for every word of the corpus

5



Sentence Το σϰορ του αγώνα άνοιξε ο Γουέν Ρούνι στο σ το 22ο ...

Pos tags DET X DET NOUN VERB DET X X _ ADP DET NUM ...

Tab. 2.1: An example of a sentence which contains a word with underscore POS tag.

in columns. Every word is annotated with the universal POS tag (UPOS), morhological

features (FEATS), the dependant word index (HEAD) as well as the dependency relation

(DEPREL).

For �ne-grained POS tagging the labels are numerous. We refer the reader to Universal

Dependencies website, where complete lists of UPOS tag
1

and morphological features
2

labels exist.

There is also an extra underscore pos tag which is used only in the following pronoun-

determiner composites: στο, στα, στην etc. In this case when you encounter these kinds

of words in a sentence the two following words are the original composite word divided

into its two subwords. Those subwords have the actual part of speech tags (preposition

and determiner), while the original composite word does not have a POS tag. For example

the word "στο" is divided to σ and το. We used only the two latter subwords to train our

model, ignoring the original composite word.

2.4 Properties

We observed some properties and we used them to fairly evaluate our model. The �rst

property is that each part of speech tag has morphological categories from some speci�c

sets of morphological categories. For example, a NOUN cannot have the Voice feature. The

second one is that not all words with the same pos tag have the exact same morphological

features. For example, NOUN was found with only 3 sets of features, as shown in Table 2.2.

Thus, we used the union of all these sets for each pos tag. For instance, given that a word

has been predicted as a NOUN we will predict only the labels of the Abbr, Case, Gender

and Number features. Tables 2.3 and 2.4 show the sets described above for ADJ and VERV

POS tags respectively.

The underscore in Table 2.2 means that some nouns were found with an underscore

tag. That is why we added an extra label at each one of the morphological category, an

underscore.

1
https://universaldependencies.org/u/pos/

2
https://universaldependencies.org/u/feat/index.html
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NOUN

Abbr

_

Case, Gender, Number

Tab. 2.2: The sets of morphological categories with which the NOUN POS tag encountered in the

training set.

ADJ

Case, Degree, Gender, Number

Case, Gender, Number

Tab. 2.3: The sets of morphological categories with which the ADJ POS tag encountered in the

training set

VERB

Aspect, Mood, Number, Person, VerbForm, Voice

Aspect, VerbForm, Voice

Aspect, Mood, Number, Person, Tense, VerbForm, Voice

Aspect, Case, Gender, Number, VerbForm, Voice

Tab. 2.4: The sets of morphological categories with which the VERB POS tag encountered in the

training set.

Sentence Pos tags Features

Η DET ’Case’: ’Nom’, ’De�nite’: ’Def’, ’Gender’: ’Fem’, ’Number’: ’Sing’, ’PronType’: ’Art’

Μάντσεστερ X ’Foreign’: ’Yes’

Γιουνάιτεντ X ’Foreign’: ’Yes’

ηττήϑηϰε VERB ’Aspect’: ’Perf’, ’Mood’: ’Ind’, ’Number’: ’Sing’, ’Person’: ’3’, ’Tense’: ’Past’, ’VerbForm’: ’Fin’, ’Voice’: ’Pass’

από ADP None

την DET ’Case’: ’Acc’, ’De�nite’: ’Def’, ’Gender’: ’Fem’, ’Number’: ’Sing’, ’PronType’: ’Art’

Ατλέτιϰο X ’Foreign’: ’Yes’

Μπιλµπάο X ’Foreign’: ’Yes’

µε ADP None

σϰορ X ’Foreign’: ’Yes’

2:3 NUM ’NumType’: ’Card’

Tab. 2.5: Sentence example 1.

2.4 Properties 7



Sentence Pos tag Features

Ωστόσο CCONJ None

, PUNCT None

ο DET ’Case’: ’Nom’, ’De�nite’: ’Def’, ’Gender’: ’Masc’, ’Number’: ’Sing’, ’PronType’: ’Art’

Γουέν X ’Foreign’: ’Yes’

Ρούνι X ’Foreign’: ’Yes’

µε ADP None

πέναλτι X ’Foreign’: ’Yes’

µείωσε VERB ’Aspect’: ’Perf’, ’Mood’: ’Ind’, ’Number’: ’Sing’, ’Person’: ’3’, ’Tense’: ’Past’, ’VerbForm’: ’Fin’, ’Voice’: ’Act’

το DET ’Case’: ’Acc’, ’De�nite’: ’Def’, ’Gender’: ’Neut’, ’Number’: ’Sing’, ’PronType’: ’Art’

σϰορ X ’Foreign’: ’Yes’

για ADP None

την DET ’Case’: ’Acc’, ’De�nite’: ’Def’, ’Gender’: ’Fem’, ’Number’: ’Sing’, ’PronType’: ’Art’

Μάντσεστερ X ’Foreign’: ’Yes’

. PUNCT None

Tab. 2.6: Sentence example 2.

2.5 Model

Our model for POS tagging works as follows: Every input sentence is tokenized and then

the GreekBERT or XLM-R model generates embeddings for each token. The model has

N + 1 linear layers, one for each of the N morphological categories and 1 more for the

universal part-of-speech tag. Each one of them takes as input the output embeddings of

the bert model. From every layer the class with the highest score is chosen. This method

can also be characterised as a multi-task learning approach because the model has many

outputs for each input and for each of those outputs a loss is computed. With these losses

the model is trained, and over time it learns to predict correct values for every output. For

each predicted label we compute a cross-entropy loss. Thus, the �nal loss is computed by

summing all these losses.

More formally, for input tokens xi, i = 0, . . . , n , GreekBERT or XLM-R generates em-

beddings ei, i = 0, . . . , n, where for every i, ei ∈ R768
. Finally these embeddings are

transformed to yij = Ajei + bj ∈ RC(j), j = 0, . . . , N + 1, i = 0, . . . , n where C(j) is

the number of possible classes at the speci�c output.

2.6 Results

2.6.1 Experimental Results

We calculated f1-scores which is simple because for every output class o and gold class

g, a true positive is counted if o = g. If o 6= g then a false positive is counted for o and a

false negative is counted for g.

8 Chapter 2 Part of Speech Tagging



Fig. 2.1: An illustration of our POS model. For every input token one prediction is made for every

morphological category as well as the universal part-of-speech. The loss is computed by

summing the cross-entropy losses for each predicted label.

Learning rate Dropout Grad accumulation steps

[5e-5, 3e-5, 2e-5 ] [0, 0.1, 0.2] [4, 8]

Tab. 2.7: Hyperparameters.

We deal with categories and each category contains classes so there are multiple f1-scores

for each category. This means that we can describe the performance of each category

by micro and macro averages and therefore we have described overall performance of

part-of-speech tagging with N + 1 numbers. However, because the occurrences of each

morphosyntactic category are sparse, the most common category is the underscore so we

exclude it from the �nal scores, in order to emphasize on the valuable information that

our model learns.

We tuned the model for the di�erent hyperparameters in Table 3.3 and optimized with

grid search the macro-f1 score of the UPOS tag. Early stopping was also used on macro-f1

in order to prevent over�tting. For training we used the AdamW optimizer from PyTorch

[LH17] and the cross-entropy loss as the training objective.

We can see that in Table 2.9, that without excluding the underscore class and using the

properties, the scores are too high, especially the micro-f1 scores. Using our custom

changes to the calculation of the f1-scores will enable us to evaluate the di�erent models

more fairly for morphological tagging.

2.6 Results 9



Simple evaluation Oversampling Evaluation using properties

micro-f1 macro-f1 micro-f1 macro-f1 micro-f1 macro-f1

POS tag 0.98 0.96 0.98 0.96 0.98 0.96

Tab. 2.8: Micro-f1 and macro-f1 results for POS tagging.

Morphosyntactic category
Simple evaluation Evaluation using properties

micro-f1 macro-f1 micro-f1 macro-f1

Case 0.98 0.99 0.98 0.97

De�nite 1 1 1 1

Gender 0.99 0.98 0.98 0.98

Number 0.99 0.99 0.99 0.99

PronType 1 0.98 1 0.97

Foreign 0.99 0.88 0.88 0.88

Aspect 1 0.99 0.99 0.99

Mood 1 0.96 0.99 0.83

Person 1 1 1 1

Tense 1 1 1 1

VerbForm 1 0.96 0.99 0.93

Voice 1 0.97 0.96 0.96

NumType 1 0.95 0.99 0.96

Poss 1 1 0.98 0.98

Degree 1 0.75 0.86 0.50

Abbr 1 0.97 0.94 0.94

Tab. 2.9: Micro-f1 and macro-f1 results using plain f1 score calculation and evaluation using

properties.

10 Chapter 2 Part of Speech Tagging



Metric Stanza Oversampled Regular

micro-f1 tag 0.98 0.98 0.98

macro-f1 tag 0.96 0.97 0.97

Tab. 2.10: Micro-f1 and macro-f1 results for Stanza, the oversampled model and the regular model.

Metric GreekBERT XLMR

micro-f1 0.98 0.98

macro-f1 0.97 0.97

Tab. 2.11: Micro-f1 and macro-f1 results for GreekBERT and XLMR, results on the test set.

However, we can easily see that most morphosyntactic categories achieve respectable

micro-f1 scores but there are some with especially bad macro-f1 scores. For the Degree

and Mood categories we have found that some of their classes have very few occurrences

in the training set. In order to solve this problem we oversampled in the training set any

sentences that contained words in the problematic classes of the aforementioned categories.

The results show that there is a signi�cant improvement in the macro-f1 scores for the

problematic categories.

Moreover, we use the properties described in the Properties section so given the pos tag

we evaluate our model using only the expected morphological features.

2.6.2 Comparing to Stanza

We ran the Stanza [Qi+20] NLP toolkit to the same test set we used which contains 456

sentences. However, we excluded 20 sentences because the tokenization was di�erent from

the expected. One of the sentences has the problem that the word ’Ε.Ε.’ is split to ’E.E’ and

’.’ while the other 19 have the same problem that only in some cases before words like στις,

στα etc an extra capital σ, Σ is added. We computed the f1 scores using the properties we

describe in Section 2.4 section.

In tables 2.10 and 2.11 the results show that for predicting POS tags the models’ perfor-

mance is almost the same and in tables 3.3 and 2.13 the results show that for predicting

morphological tags the models perform very similarly in all categories.

2.6 Results 11



Morphosyntactic category
GreekBERT XLMR

micro-f1 macro-f1 micro-f1 macro-f1

Case 0.98 0.97 0.98 0.78

De�nite 1 1 1 1

Gender 0.98 0.98 0.96 0.95

Number 0.99 0.99 0.99 0.99

PronType 1 0.97 0.99 0.69

Foreign 0.88 0.88 0.91 0.91
Aspect 0.99 0.99 0.98 0.98

Mood 0.99 0.83 0.99 0.59

Person 1 1 0.99 0.99

Tense 1 1 0.99 0.99

VerbForm 0.99 0.93 1 0.97
Voice 0.96 0.96 0.98 0.98

NumType 0.99 0.96 0.93 0.70

Poss 0.98 0.98 0.97 0.97

Degree 0.86 0.50 0.88 0.47

Abbr 0.94 0.94 0.95 0.95

Tab. 2.12: Comparison of mophosyntactic category scores using XLMR and GreekBERT to generate

embeddings, results on test set.
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Morphosyntactic category
Stanza toolkit Oversampled model Regular model

micro-f1 macro-f1 micro-f1 macro-f1 micro-f1 macro-f1

Case 0.98 0.97 0.98 0.95 0.98 0.97

De�nite 1 1 1 1 1 1

Gender 0.97 0.97 0.98 0.98 0.98 0.98

Number 0.99 0.99 0.99 0.99 0.99 0.99

PronType 0.99 0.94 1 0.95 1 0.97

Foreign 0.79 0.79 0.88 0.88 0.88 0.88
Aspect 0.98 0.98 0.99 0.98 0.99 0.99

Mood 0.99 0.59 1 0.97 0.99 0.83

Person 0.99 0.98 1 0.99 1 1

Tense 0.98 0.98 1 1 1 1

VerbForm 1 0.97 1 0.96 0.99 0.93

Voice 0.99 0.99 0.97 0.96 0.96 0.96

NumType 0.95 0.93 0.94 0.93 0.99 0.96

Poss 0.96 0.96 0.99 0.99 0.98 0.98

Degree 0.89 0.57 0.96 0.87 0.86 0.50

Abbr 0.96 0.96 0.96 0.96 0.94 0.94

Tab. 2.13: Micro-f1 and macro-f1 results for Stanza, the Oversampled model and the Regular model

as well as XLMR (not oversampled).
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3Dependency Parsing

3.1 Problem statement

As already discussed, dependency parsing is the task of predicting which word depends on

which from a sentence. This is formalised as extracting a dependency graph in a sentence.

Each edge (i, j) in this graph means that word i is dependant on word j. For (i, j) we also

call j the head of the word i. We represent this relationship with an arrow pointing from

the head to the dependant word. Every arc also has one label describing the way word i

modi�es word j.

3.1.1 Related Work

Like POS tagging, dependency parsing has been studied for decades in natural language

processing. Here we brie�y refer to only some indicative previous work. [Eis97] developed

the �rst statistical models that were based on context-free grammars (CFG) and used

graph-based parsing but only allowing projective dependency graphs. [McD+05] formalize

the problem of predicting the dependency graph given arc scores as �nding the Minimum

Spanning Tree of the weighted graph but extended it to non-projective dependency graphs

allowing for an increase in accuracy in non-projective languages. When Deep Learning

emerged, [KG16] were the �rst to use LSTMs for DP to the best of our knowledge. More

recently, [DQM17] used bia�ne classi�ers to produce the arc scores from LSTM embeddings

achieving state-of-the art in multiple languages.

Η Μάντσεστερ Γιουνάιτεντ ηττήϑηϰε από την Ατλέτιϰο Μπιλµπάο µε σϰορ 2:3

root

det

nsubj

�at case

det

obl:agent

�at

case

obl

nmod

Fig. 3.1: Dependency tree example 1.
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Ωστόσο , o Γουέν Ρούνι µε πέναλτι µείωσε το σϰορ για την Μάντσεστερ .

root

cc

punct det

nsubj

�at case
obl

det

obj
case

det

obl

punct

Fig. 3.2: Dependency tree example 2.

Index Sentence Head Deprel

1 Η 2 det

2 Μάντσεστερ 4 nsubj

3 Γιουνάιτεντ 2 �at

4 ηττήϑηϰε 0 root

5 από 7 case

6 την 7 det

7 Ατλέτιϰο 4 obl:agent

8 Μπιλµπάο 7 �at

9 µε 10 case

10 σϰορ 4 obl

11 2:3 10 nmod

Tab. 3.1: Sentence example 1.

3.2 Dataset

The dataset we use is the same as in Section 2 with the only di�erence being that the �elds

of interest are the head of each word and the label of the arc to the head. Many authors

have used the existing POS tag information of the dataset to obtain more features and

information for dependency parsing and others have predicted jointly the dependency

graph and the POS tags of each word. We explore the multitask case later on.

More speci�cally, the head of each word is called ’head’ in the dataset and it is represented

by a number which indicates the dependant word index in the sentence while the label of

the arc to the head is called ’deprel’ (dependency relation) in the dataset and it indicates

the label of the relation between the speci�c word and the dependant one.

The indexing of real words in all sentences starts at 1. However, there is a virtual node

which is called root and is indexed with 0. There is one node with the root dependency

relation in every tree and is called the root word. It is not dependant on any other word

and it is usually the main verb of the sentence.
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Word Index Sentence Head Deprel

1 Χϑες 6 advmod

2 , 1 punct

3 η 4 det

4 Μάντσεστερ 6 nsubj

5 Γιουνάιτεντ 4 �at

6 ηττήϑηϰε 0 root

7 µε 8 case

8 σϰορ 6 obl

9 2:3 8 nmod

10 από 12 case

11 την 12 det

12 Ατλέτιϰο 6 obl:agent

13 Μπιλµπάο 12 �at

14 , 17 punct

15 στα None _

16 σ 17 case

17 τα 17 det

18 πλαίσια 6 obl

19 της 19 det

20 φάσης 17 nmod

21 των 21 det

22 16 19 nmod

23 του 23 det

24 Γιουρόπα 21 nmod

25 Λιγϰ 23 �at

26 2011-2012 23 nmod

27 . 6 punct

Tab. 3.2: Sentence example 2.
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3.3 Model

Fig. 3.3: An illustration of the dependency parsing model. Tokens are fed into our transformer

model which produces embeddings. With these embeddings arc and label predictions are

made. A loss is calculated for the arcs as well as the labels which are both summed to

produce a total model loss.

The model outputs one score for each possible arc in the graph. Essentially, the arc score

for every arc (i, j), where i, j are words in the sentence, is calculated as eiWeT
j where ei,

ej are the transformer’s embeddings for words i and j respectively.

After the arc scores have been calculated we take the best scoring arc starting from i.

Formally we select yi = arg maxjscores(i, j). With the predicted arcs the model can

now predict the labels of each arc.

More concretely, the following representations are created from the embeddings:

h
(arc−dep)
i = W (arc−dep)ei

h
(arc−head)
i = W (arc−head)ei

h
(rel−dep)
i = W (rel−dep)ei

h
(rel−head)
i = W (rel−head)ei
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Fig. 3.4: An illustration of the arc scoring mechanism. For every pair of input tokens a score is

calculated, then the arc starting at each token with the highest score is selected.

The matrices W (arc−dep), W (arc−head), W (rel−dep), W (rel−head)
are parameters of the model

and they are learned. and their sizes are 768x768 meaning that the produced representations

have the same dimensions as the original embeddings.

These representations also have intuitive meanings. h
(arc−dep)
i is the representation of

token i as a head seeking its dependant and h
(arc−head)
i is the representation of token i as

a dependant looking for its head.

We then produce scores for each possible arc (i, j) :

s
(arc)
ij = (h(arc−head)

j )T W (arc)h
(arc−dep)
i + (h(arc−head)

j )T b(arc)

Here, W (arc)
and b(arc)

are parameters that are learned and have size 768x768 and 768

respectively. These terms have intuitive interpretations. The �rst term is the probability

of an arc (i, j) existing given that the dependant is word i and the head word j and the

second term is the probability of an arc (i, j) existing only given that the head is word j.

With these scores we can then predict the head for each token xi as the receiving end of

the arc (i, j) with the highest score.

y
(arc)
i = arg max

j
s

(arc)
ij

This can also be thought as a sequence-labeling problem because we need to predict one

label (the head) for each token.

3.3 Model 19



For the label scores we generate for each arc (i, j), K scores, one for each possible

dependency relation. (Note that ⊕ means concatenation.)

s
(rel)
ijk = (h(rel−head)

j )T U
(rel)
k h

(rel−dep)
i + wT

k (h(rel−head)
j ⊕ h

(rel−dep)
i ) + b

(rel)
k

The intuitive interpretation here is that the �rst term is the probability of the label being k

given that the head is j and the dependant i. The second term is the probability of label k

given either the head being j or the dependant being i and �nally the last term is the prior

probability of a label being k.

The di�erence comparing to the arc scores is that a linear layer is used for the labels and

we need essentially K outputs for the bilinear layer, which is achieved with the K di�erent

U rel
k matrices. The parameters here are the K U rel

k matrices each of size 768x768, the K

wk vectors of size 1536x1 and the bias terms b = b
(rel)
k .

The predictions then for the labels use the predictions for the arcs.

y
(rel)
i = arg max

k
s

(rel)
iy

(arc)
i k

For each of these output scores we can calculate a cross-entropy loss when we have the

true labels available. These losses are then summed which produces a total model loss.

L(xi) = LARC(xi) + LREL(xi)

3.4 Results

3.4.1 Experimental results

The metrics used in dependency parsing are Unlabeled Attachement Score (UAS) and

Labeled Attachment Score (LAS). UAS is the amount of words that got assigned to the

correct head divided by the total amount of words. LAS is the amount of words that got

assigned the correct head and the correct dependency relation divided by the total amount

of words. In other words, UAS is the percentage of the words that get the correct head,
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Learning rate Dropout Grad accumulation steps

[5e-5, 3e-5, 2e-5 ] [0, 0.1, 0.2] [4, 8]

Tab. 3.3: Hyperparameters.

Stanza GreekBERT XLM-R

UAS 0.91 0.94 0.89

LAS 0.88 0.92 0.87

Tab. 3.4: UAS and LAS scores in the test set for Stanza, our GreekBERT based model and our

XLM-R based model.

while the LAS is the percentage of the words that get both the correct head and label. So

UAS is independent of label, while LAS considers both.

As already discussed, we experimented with two pre-trained Transformer-based models for

producing the embeddings, GreekBERT and XLM-R. We tuned the models for the di�erent

hyperparameters in 3.3 and optimized with grid search the UAS score. Early stopping was

also used on UAS in order to avoid over�tting. For training we used the AdamW optimizer

from PyTorch [LH17] and the cross-entropy loss as the training objective.

3.4.2 Comparing to stanza

We ran the Stanza [Qi+20] NLP toolkit to the same test set we used. However, we have

excluded 20 sentences because the tokenization was di�erent from the expected one as we

explained thoroughly in Section 2.6.2.

From the results in Table 3.4 we see that our parser with the GreekBERT outperforms both

Stanza and our XLM-R based parser by a large margin.
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4Conclusions and Future work

4.1 Key takeaways

We developed a model that can do POS and DP that is optimized for the Greek language.

The models achieve state-of-the-art results in all tasks. Signi�cant gains in performance

were observed in DP, where our model outperformed Stanza’s Greek dependency parser

by a large margin. Also, XML-R performed much worse than GreekBert in DP. We believe

that this gain in performance can be largely attributed to the extensive Greek datasets on

which GreekBERT was pretrained.

4.2 Further work

This Greek NLP pipeline can be extended with many more tasks. First of all, toxicity

detection can be added. Toxicity detection is very important for use cases where users can

comment or review a certain product. In these cases the inputs from the users need to be

moderated in case they contain harmful language [Pav+17], [Pav+20], [Pav+21].

Making the pipeline more e�cient is also very important not only for the environmental

cost of the models but also for speeding up systems. Distillation [HVD15] and Quantization

[Hub+17] are widely used techniques especially in BERT models. A user could theoretically

choose some amount of accuracy loss in return for speed. This could further be combined

with Multi-task Learning (MTL) for more speed up gains.

Finally, it’s good to have highly tuned models for these tasks because the users of the

features of the toolkit will bene�t greatly from an increase in performance. There are

many parameters that can be tuned more and alternative learning strategies. For exam-

ple for hyperparameter tuning, Hyperopt [BYC+13] can be used to also utilize possible

hyperparameters that are continuous such as learning rate, which we tuned using Grid

Search.
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