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Abstract

Named Entity Recognition (NER), Part-of-Speech (POS) tagging and Dependency Parsing

are tasks that are central to Natural Language Processing (NLP) because they provide

important information that can be used for other higher level NLP tasks. We develop a

series of Deep Learning models that can perform these tasks in Greek. We experiment

with GreekBERT, a pre-trained Transformer model for Greek, and XLM-R, a multi-lingual

pre-trained Transformer model, providing additional training to (�ne-tuning) both models

in Greek for the tasks we consider. We �nd that using GreekBERT leads to better results

in Dependency Parsing. In NER and POS tagging, GreekBERT and XLM-R lead to similar

results. This work was combined with the work of the BSc thesis of Chrysa Dikonimaki

[Dik21]. The two theses jointly developed a publicly available Transformer-based toolkit

for Greek NLP. In this thesis, the emphasis was mostly in NER and multi-task learning

experiments that jointly considered all three tasks.
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Περίληψη

Η αναγνώριση ονοµάτων οντοτήτων (Named Entity Recognition), η ϰατηγοριοποίηση

λέξεων σε µέρη του λόγου (Part-of-Speech Tagging, POS tagging) ϰαι η συνταϰτιϰή

ανάλυση εξαρτήσεων (Dependency Parsing) είναι προβλήµατα πολύ ϰεντριϰά στην επεξ-

εργασία φυσιϰής γλώσσας (ΕΦΓ, Natural Language Processing, NLP) γιατί η επίλυση τους

µας προσφέρει πολύτιµη πληροφορία που µπορεί να χρησιµοποιηϑεί σε άλλα προβλή-

µατα ΕΦΓ. Σε αυτή την εργασία αναπτύσσουµε µια σειρά µοντέλων βασισµένων στην

ΒαϑιάΜάϑηση (Deep Learning) για την επίλυση των συγϰεϰριµένων προβληµάτων στην

ελληνιϰή γλώσσα. Πειραµατιζόµαστε µε το GreekBERT, ένα προ-εϰπαιδευµένο µοντέλο

Transformer για την ελληνιϰή γλώσσα, ϰαϑώς ϰαι µε το XLM-R, ένα πολύγλωσσο προ-

εϰπαιδευµένο µοντέλο Transformers, παρέχοντας συµπληρωµατιϰή εϰπαίδευση (�ne-

tuning) ϰαι στα δύο µοντέλα για τα προβλήµατα που εξετάζουµε. Η χρήση του Greek-

BERT οδηγεί σε ϰαλύτερα αποτελέσµατα στη συνταϰτιϰή ανάλυση εξαρτήσεων. Στην

αναγνώριση ονοµάτων οντοτήτων (NER) ϰαι στην ϰατηγοριοποίηση σε µέρη του λόγου

(POS tagging), το GreekBERT ϰαι το XLM-R οδηγούν σε παρόµοια αποτελέσµατα. Αυτή η

εργασία συνδυάστηϰε µε την πτυχιαϰή εργασία της Χρύσας ∆ιϰονιµάϰης [Dik21]. Οι δύο

εργασίες ανέπτυξαν από ϰοινού µια δηµόσια διαϑέσιµη εργαλειοϑήϰη ΕΦΓ για την ελλ-

ηνιϰή γλώσσα, βασισµένη σε Transformers. Στην παρούσα εργασία, η έµφαση δίδεται

στην αναγνώριση ονοµάτων οντοτήτων, ϰαϑώς ϰαι σε πειράµατα από ϰοινού µάϑησης

(multi-task learning) ϰαι για τα τρία προβλήµατα µαζί.

v





Acknowledgements

I would like to thank everyone that has supported me with materials, advice and resources

during the work of this thesis. I would like to especially thank Professor Ion Androutsopou-

los for providing me with important ideas and learning resources for my thesis. Many

thanks also go to John Koutsikakis for assisting with the technicalities of implementing

Deep Learning models with PyTorch and continuous advice and supervision throughout

my work. Many thanks also to Katerina Korre, for proof-reading and writing advice,

to Manolis Kyriakakis for providing code and guidance with the implementation of the

Dependency Parsing model and to Mary Georgiou for assisting with the development of

the toolkit.

vii





Contents

Abstract v

Acknowledgements vii

1 Introduction 1
1.1 What is the problem we solve? . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Why is it important? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.3 What has been done until now . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.4 What we did . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.4.1 Transformer models . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.5 Thesis Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Named Entity Recognition 5
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Why is NER important? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.3 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.4 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.5 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.6 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.6.1 Training details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.6.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3 Multitask Named Entity Recognition - Part of Speech Tagging 13
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.3 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.4 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.5 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.5.1 Training Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.5.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.5.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4 Multitask Dependency Parsing - Part of Speech Tagging 19
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.2 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

ix



4.3 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.4 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.4.1 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.4.2 Training Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

5 Conclusions and Future work 27
5.1 Key takeaways . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

5.2 Further work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

Bibliography 29

List of Acronyms 32

List of Figures 33

List of Tables 34

x



1
Introduction

1.1 What is the problem we solve?

In this thesis we worked on Named Entity Recognition (NER), Part of Speech (POS) Tagging

and Dependency Parsing (DP) for the Greek Language.

NER is the task of locating named entities in text. These can be names of persons, organi-

zations and many more. This task is more semantic in nature, because we need to be able

to understand where the named entities are in a text as well as classify them into semantic

categories.

POS tagging is the task of identifying the part of speech of each word. This can require, for

example, determining which words in a sentence are verbs, nouns or articles. POS tagging

can have more �ne-grained tags. For in�ectionally rich languages like Greek, nouns can

also be characterised by their case, like nominative or accusative, and verbs by their person,

for example 3rd singular or 3rd plural etc. and many other morphological categories.

DP is the task of de�ning the syntactic structure of a sentence. Unlike POS tagging

which studies each word alone (but in its context), in DP we must de�ne the relationships

between words. For example, in the case where the verb is "reimburses", we need to �nd

who reimburses (the subject of the verb) and who is reimbursed (the object of the verb).

1.2 Why is it important?

Information from NER, POS tagging, and DP can be useful in several other tasks, such as

question answering, information extraction, and information retrieval.
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1.3 What has been done until now

NER, POS and DP are already supported by toolkits like spaCy
1
, NLTK

2
and Stanza

3
in

many di�erent languages. However, high performance in these tasks is very important

and we can get improvements for a speci�c language by optimizing the models for that

language.

1.4 What we did

1.4.1 Transformer models

For our models we used the GreekBERT transformer [Kou+20]. GreekBERT is an instance

of the BERT [Dev+18] transformer architecture which is pretrained on exclusively Greek

corpora. A very strong advantage of GreekBERT, as the authors of [Kou+20] point out,

other than the extensive Greek datasets on which it was pretrained, is the lower rate of

fragmentation in Greek words compared to other multilingual transformer models.

BERT models such as ours use only the encoder transformer modules introduced in

[Vas+17] and are pretrained on text corpora in an self-supervised fashion. One of the

self-supervised training tasks is Masked Language Modelling (MLM), in which the model,

given a sentence with some words replaced with the MASK token, tries to predict the

missing words. The other pre-training task is Next Sentence Prediction (NSP), in which

the model given two sentences tries to predict if one sentence would follow the other in a

document.

Apart from GreekBERT, for some of the experiments we used the XLM-R Transformer

[Con+19]. XLM-R is also an instance of the BERT architecture but it is pretrained with

text sources from multiple languages.

Using GreekBERT or XLM-R, we developed task speci�c prediction heads for NER, POS

tagging and DP and �ne-tuned each one to perform well on task speci�c benchmarks. The

benchmarks we used is the NER dataset developed in [BMK20] and the Greek treebank

from the Universal Dependencies dataset [Niv+16].

We compared our models’ performance on the benchmarks mentioned with the perfor-

mance of the Stanza toolkit [Qi+20] on POS tagging and DP (Stanza does not o�er NER for

1
https://spacy.io/

2
https://www.nltk.org/

3
https://stanfordnlp.github.io/stanza/
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Fig. 1.1: An illustration of GreekBERT pretraining. Figure taken from [Kou+20].

Segmentation

se ##g ##ment ##ation

Tab. 1.1: A word segmented into subword tokens. The initial subword token is "se" and the

non-initial subword tokens are "##g", "##ment", "##ation".

Greek). In the case of NER we compared our models’ performance with the results shown

in [BMK20] where di�erent transformer models were tested.

Before moving on to the main chapters of the thesis, let us clarify how we use the sub-

words (Table 1.1) generated by the tokenizers of the pre-trained Transformer models we

employ (GreekBERT, XLM-R). For all tasks we extract labels only for the �rst subword

token of each word and assign these labels to the whole word. However this doesn’t

mean that the model will not utilize all the sub-words for its predictions. Each layer of

GreekBERT or XLM-R, produces embeddings for all the sub-words, and the embedding

of each sub-word is a function of the previous layer’s embeddings (except the �rst layer

where the embeddings are retrieved from a look-up table) including non-initial subword

embeddings.

1.5 Thesis Structure

In 2.1 we describe our model for NER as well as the dataset and the results. In sections

3 and 4 we explore MTL (MultiTask Learning) between NER and POS as well as DP and

POS. In each section we describe the problems in more detail, showing examples from

the datasets, detailed descriptions of the prediction heads as well as details about the

�ne-tuning procedure and the �nal results and comparisons on the benchmarks. Finally in

5 we conclude summarizing our work and results.

1.5 Thesis Structure 3





2Named Entity Recognition

2.1 Introduction

Named Entity Recognition (NER) is the task of locating named entities in some input text.

The named entities are spans of words, meaning continuous words in a sentence, and can

be a location, organisation or named entit1ies from many other categories. Our tagger

can recognise 18 di�erent �ne-grained categories or 4 coarse-grained categories. These

categories with their occurences are listed in tables 2.1 and 2.2.

2.2 Why is NER important?

When we have to deal with large datasets and unstructured data , having a way to easily

and quickly extract useful information is crucial. Several NLP applications need named

entities. For example, we can use them to handle customer requests faster and boost user

satisfaction by identifying product names, serial numbers etc. in customer e-mail messages,

user utterances in chatbot dialogues etc.

Moreover, named entities can be used to obtain feedback per person or organization, by

collecting user posts that mention entities of particular types and applying sentiment anal-

ysis. NER models especially for social networks have also been developed; see [RCE+11]

for a survey of NER models for tweets

Several companies use named entities in their recommendation systems in order to im-

prove customer experience
1
. Also, an interesting application of NER is resume parsing,

where NER can reduce the amount of time recruiters spend to �nd useful information in

unstructured CVs [Tos+15].

2.3 Related work

Older approaches to NER use hand-crafted features. [MAM08] use Brown clusters, dic-

tionary features for each word, as well as a POS tagging system as part of their pipeline.

1
https://www.allerin.com/blog/exploring-named-entity-recognition-use-cases-across-industries
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Category Num. Occurences

ORG 13527

PERSON 10879

CARDINAL 9013

GPE 8367

DATE 7855

PERCENT 1789

ORDINAL 1774

LOC 1753

NORP 1693

TIME 1277

MONEY 1233

EVENT 1209

PRODUCT 826

WORK_OF_ART 757

FAC 722

QUANTITY 685

LAW 284

LANGUAGE 75

Tab. 2.1: The 18 semantic categories of the elNER18 dataset and their occurences (unsplitted).

Category Num. Occurences

ORG 13527

PERSON 10879

LOC 10120

MISC 3659

Tab. 2.2: The 4 semantic categories of the elNER4 dataset and their occurences (unsplitted).

6 Chapter 2 Named Entity Recognition



Sentence Pos tags

Jane B-PER

Villanueva E-PER

of O

United B-ORG

Airlines I-ORG

Holding E-ORG

discussed O

the O

Chicago S-LOC

route O

. O

Tab. 2.3: Example of NER (IOBES tagging) from [Jur20].

Type Tag Sample Categories Example sentences

People PER people, characters Turing is a giant of computer science.

Organization ORG companies, sports teams The IPCC warned about the cyclone.

Location LOC regions, mountains, seas Mt. Sanitas is in Sunshine Canyon.

Geo-Political Entity GPE countries, states Palo Alto is raising the fees for parking.

Tab. 2.4: The 4 coarse-grained NER categories from [Jur20].

2.3 Related work 7



Sentence IOBES tags

΄Ηταν Ο

o Ο

επιϰεφαλής O

της Ο

παράταξης Ο

« O

Αυτοδιοιϰητιϰό B-ORG

Κίνηµα E-ORG

» O

, O

δήµαρχος O

Αµφιλοχίας O

, O

Απόστολος B-PERSON

Κοιµήσης E-PERSON

Tab. 2.5: An example sentence encoded with the IOBES encoding. "Αυτοδοιηϰιτιϰό τµήµα" is an

organization. The �rst word of the organization name is marked as "B-ORG", and the �nal

word as E-ORG. Intermediate words of an organization name would have been tagged as

I-ORG. Words not belonging to any named entity span as well as punctuation marks are

labeled as "O".

For predictions they use CRF [LMP01]. More recently the neural architectures used for

NER were LSTM [HS97] and variants. [Lam+16] compare vanilla LSTMs as well as stacked

LSTMS with a CRF prediction head. More recently, Transformer models [Vas+17] have

also been used in NER [Yam+20] [SSH19]. [BMK20] create a new Greek NER dataset and

compare various transformer models as well as ELMo on this new dataset.

2.4 Dataset

NER datasets contain the text, the named entity spans and the categories of the spans.

There are many encoding schemes for this information, some examples of which are XML

and other markup languages. However the most common ones are IOB encodings [RM95]

and variations. Our toolkit deals with IOBES encodings. In IOBES encodings a span of

words is annotated as follows: if the span consists of only one word it is annotated as S-X

where X the category of the span. If the span is more than one word, the �rst word of the

span is annotated as B-X, the end word as E-X and all words in between as I-X. Lastly, the

tag O is assigned to words that are outside of any span. An example encoding is presented

in Table 2.3 as well as in Table 2.5.

8 Chapter 2 Named Entity Recognition



The dataset we have been experimenting on [BMK20]
2

contains 18 di�erent categories.

It was initially annotated using an existing NER tagger
3

that used 6 categories and was

further processed with the Prodigy tool
4
, an active learning tool for manually annotating

text corpora, to be enhanced with 12 more categories. The same dataset has also been

released with 4 categories by grouping the initial 18 categories to more generic ones.

2.5 Model

Our model for named entity recognition works as follows: Every input sentence is tokenized

and then the GreekBERT or XLM-R model generates embeddings for each token. Then

every embedding is passed through a linear layer that outputs a vector containing logits

for each class for the token. More formally for input tokens xi, i = 0, . . . , n , GreekBERT

or XLM-R generates embeddings ei, i = 0, . . . , n, where for every i, ei ∈ R768
. Finally

these embeddings are transformed to yi = Aei + b ∈ RC , i = 0, . . . , n where C is the

number of possible classes for each token. A and b are parameters that the model learns

and A ∈ RC×768, b ∈ RC
. The predicted classes will be the ones with the greatest score

for every token.

The possible classes of the token are all the possible tags in the IOBES encoding of the

dataset. It is noteworthy that not every named entity category has all possible encoding

tags. For example in the training, validation and test sets the entity LANGUAGE has only

appeared with the tag S-LANGUAGE due to the fact that all languages are written as single

words.

The predictions of the model are then gathered and with the seqeval library
5

they are

chunked to extract the output spans and then the f1-scores are computed. The f1-scores are

computed as follows: For every sentence the gold spans and output spans are represented

as a triple (e, x, y) where e is the entity tag of the span and x , y the indices of the start

and end word. If an output span is contained in the gold spans then it counts as one true

positive. If an output span is not contained in the gold spans it counts as a false positive.

There is also the case where a gold span is not contained in the outputs spans which counts

as a false negative.

An example of this scoring can be seen in Figure 2.2. In the �gure the gold spans are (PER,

1, 2), (LOC, 6, 6) and the predicted spans are (PER, 2, 3), (LOC, 6, 6). From this sentence

a false positive, a false negative is counted for the Person category and a true positive is

2
The dataset can be found here https://github.com/nmpartzio/elNER

3
https://github.com/eellak/gsoc2018-spacy

4
https://prodi.gy/

5
https://pypi.org/project/seqeval/
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Fig. 2.1: An illustration of the NER model. Input tokens are fed to GreekBERT or XLM-R and the

outputs are class labels for every token.

counted for the Location category. If the sentence was the only one in the test dataset the

f1-scores would be 1 for LOC and 0 for PER.

Fig. 2.2: An example application of the entity scoring.

2.6 Experimental Results

In our experiments we compared the model we described above with the same model but

with an additional CRF [LMP01] layer (prediction head) on top, instead of the linear layer

discussed above. We also compared with the best results of [BMK20] who compared many

di�erent models such as BiLSTMs, CNNs with and without a CRF prediction head and

with di�erent embeddings such as ELMo, BERT and fastText. Finally we also experimented

with XLM-R for producing the embeddings.
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Learning rate Dropout Grad accumulation steps

[5e-5, 3e-5, 2e-5 ] [0, 0.1, 0.2] [4, 8]

Tab. 2.6: Hyperparameters that were tested while tuning.

2.6.1 Training details

We tuned the models for the di�erent hyperparameters in table 4.2 and optimized with

grid search the macro-f1 score on the development subset. Early stopping was also used

on macro-f1 in order to avoid over�tting. For training we used the AdamW optimizer from

PyTorch [LH17] and the cross-entropy loss as the training objective.

2.6.2 Results

macro-f1 micro-f1

GreekBERT 0.86 0.91

GreekBERT-CRF 0.84 0.90

[BMK20]-BEST - 0.91

XLM-R 0.87 0.92

We notice that XLM-R obtains the best results. However GreekBERT performs only

marginally worse than XLM-R. We also notice that using a CRF harms the performance as

noted by the drop of f1-scores in the GreekBERT-CRF system.

Finally in Table 2.6.2 we also compare our GreekBERT based NER tagger with the NER

systems of spaCy
6
. The lg pipeline of spaCy has the largest and most complex model while

the sm pipeline has only small rule-based models.

Category GreekBERT spaCy-lg spaCy-md spaCy-sm

EVENT 0.64 0.31 0.29 0.16

GPE 0.93 0.77 0.78 0.65

PERSON 0.96 0.82 0.81 0.68

LOC 0.80 0.01 0.00 0.02

ORG 0.88 0.65 0.64 0.58

PRODUCT 0.75 0.27 0.21 0.21

We notice that GreekBERT strongly outperforms spaCy on these categories. An interesting

disparity in performance is in the LOC category. Speci�cally, out of 175 sentences where

6
We experimented with all the pipelines here https://spacy.io/models/el

2.6 Experimental Results 11



LOC appeared in the test dataset, spaCy-lg only decided a LOC entity exists twice. Further-

more, a lot of entities whose true labels were LOC were annotated as GPE by spaCy. The

situation is similar in the other spaCy pipelines. We hypothesize that the low performance

of spaCy on this dataset can be attributed to the di�erent annotation systems as well as

the di�erent domain of the annotated text sources. It would be interesting to also compare

these performance on a test subset of the dataset that spaCy was trained on, but we leave

that for future work.
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3Multitask Named Entity
Recognition - Part of Speech
Tagging

3.1 Introduction

Apart from NER, we have also developed a model that can predict NER tags as well as

�ne-grained Part-of-Speech (POS) tags and morphosyntactic categories (�ne-grained POS

tagging) which is trained with multitask learning. NER and POS tasks are often combined

and predictions are o�ered in natural language processing pipelines such as SpaCy
1

and

NLTK
2

. Both tasks are classi�ed as sequence-labeling tasks because we need to produce a

label for every token. For work and experiments with models that address only POS tagging,

instead of multi-task models for NER and POS tagging, please consult the companion

thesis of Chrysa Dikonimaki [Dik21].

3.2 Related Work

Multitask learning (MTL) in NLP has been used for a long time. Even before Deep Learning

[Col+11] jointly trained classi�ers for NER, POS, Semantic Role Labeling and other tasks

and [Mil+00] also jointly trained a NER tagger, a POS tagger and a Constituent parser.

[SG16] also use multitask learning for CCG supertagging and POS tagging; for POS tagging

the loss is computed from shallower representations in their neural network architecture.

More recently, [McC+18] proposed a question-answering framework that deals with 10

di�erent NLP tasks. In this framework, a model is given a question along with a context

and then it is asked to �nd the proper answer by generating text. Finally [Rud17] gives a

good overview of multitask learning techniques in Deep Learning. Our work falls in the

category of hard parameter sharing as described in [Rud17].

1
https://spacy.io/

2
https://www.nltk.org/
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3.3 Dataset

The dataset we used for NER is the one presented in [BMK20] and the dataset we used for

POS tagging is the Greek treebank from the Universal Dependencies dataset [Niv+16]. For

NER we used the inputs and labels as described in section 2.1. For POS tagging we used

the UPOS �elds which are the universal part-of-speech tag as well as the FEATS �elds

which contain morphological features for each token.

3.4 Model

Fig. 3.1: The architecture of the MTL model following the hard parameter sharing paradigm.

The model works by sharing a common representation for the two tasks. GreekBERT or

XLM-R produces embeddings for every token of an input sentence and then these are fed

into the task speci�c heads.

For the NER prediction head, the BERT embeddings are linearly transformed and then the

probabilities for each label of every token are computed with a softmax layer.

Similarly for the POS prediction head, the BERT embeddings are linearly transformed, but

with N + 1 di�erent linear layers, one for each of the N morphosyntactic categories and

another one for the Universal part-of-speech tag. Finally, softmax is applied to each one of

these outputs to produce the label probabilities.
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More formally for input tokens xi, i = 0, . . . , n , GreekBERT or XLM-R generates em-

beddings ei, i = 0, . . . , n, where for every i, ei ∈ R768
. For NER, these embeddings are

transformed to

yNER

i = ANERei + bNER ∈ RCNER , i = 0, . . . , n

whereCNER is the number of possible classes for each token for the NER task. The predicted

classes will be the ones with the greatest score for every sentence. ANER and bNER are

parameters of the model and ANER ∈ RCNER×768, bNER ∈ RCNER

We denote as CMSj the number of classes for the morphosyntactic category j and also

CPOS as the number of classes for the universal part-of-speech tag. The class scores for the

morphosyntactic category j are

y
MSj

i = AMSjei + bMSj ∈ RCMSj , i = 0, . . . , n

AMSj and bMSj are parameters of the model and AMSj ∈ R
CMSj

×768, bMSj ∈ R
CMSj

And the class scores for the universal part-of-speech tags are

yPOS

i = APOSei + bPOS ∈ RCPOS , i = 0, . . . , n

APOS and bPOS are parameters of the model and APOS ∈ RCPOS×768, bPOS ∈ RCPOS

For each of these output scores we can calculate a cross-entropy loss when we have the

true labels available. These losses are then summed which produces a total model loss

L(xi) = LNER(xi) + LPOS(xi) +
∑

j

LMSj (xi)

3.5 Experimental Results

3.5.1 Training Details

We tuned the model for the di�erent hyperparameters in 3.1 and optimized with grid search

the sum of the macro-f1 score of the UPOS tag and the macro-f1 score of the NER task.

The best hyperparameters were 3e-05 for the learning rate, 0.2 for the dropout and 4 for
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Learning rate Dropout Grad accumulation steps

[5e-5, 3e-5, 2e-5 ] [0, 0.1, 0.2] [4,8]

Tab. 3.1: Hyperparameters that were tested while tuning.

the gradient accumulation steps. During training, batches from each task are interleaved.

Whenever a POS tagging batch is selected, the model receives a loss only from the POS

prediction head and whenever a NER batch is selected, the model receives a loss only

from the NER prediction head. For training we used the AdamW optimizer from PyTorch

[LH17] and the cross-entropy loss as the training objective.

Early stopping was also used on the aforementioned sum in order to avoid over�tting.

However, we tracked 3 di�erent metrics during early stopping, the macro-f1 score of UPOS

tag, the macro-f1 score of the NER classes, the sum of these two scores and kept track of

the epoch number and the states of the model where each of these metrics was maximized.

We call the checkpoint for the model best at the UPOS metric MTL@UPOS, the model

best at the NER metric MTL@NER and the model best at the sum MTL@UPOS+NER.

We chose to optimize the macro-f1 score during hyperparameter tuning because they are

less dependant on the distributions of the classes present in the test data and thus they

can better re�ect the performance of the model on unseen examples and distributions.

The datasets for the two tasks are di�erent, meaning that only one loss is calculated each

time, but the sentences of each dataset share words and structure because they are in the

same language and therefore information about one task can be propagated to the other

task over the training steps. For separate POS models, we use results from the companion

thesis of Chrysa Dikonimaki.

3.5.2 Results

We compared the performance of our jointly trained models with the models that were

trained for each task separately.

In Table 3.2 the results show that for predicting morphosyntactic categories the models

perform similarly. Exceptions are the Abbr and NumType categories where the seperately

trained model performed better than both MTL models. Finally we can notice that the

information from the NER dataset especially helped it achieve substantially higher macro-f1

scores in the Degree category.

Regarding universal part-of-speech performance in Table 4.4 the MTL@UPOS+NER model

performed slightly worse in both macro and micro F1 scores. Multitask learning does seem
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Morphosyntactic category
MTL@UPOS+NER MTL@UPOS Separate UPOS

micro-f1 macro-f1 micro-f1 macro-f1 micro-f1 macro-f1

Case 0.98 0.98 0.98 0.98 0.98 0.97

De�nite 1 1 1 1 1 1

Gender 0.98 0.97 0.98 0.97 0.98 0.98

Number 0.99 0.99 0.99 0.99 1 1

PronType 1 0.99 1 0.97 1 0.97

Foreign 0.79 0.79 0.89 0.89 0.88 0.88

Aspect 0.98 0.98 0.99 0.99 0.99 0.99

Mood 1 0.97 1 0.97 0.99 0.83

Person 1 0.99 1 1 0.99 0.98

Tense 0.99 0.99 0.99 1 1 1

VerbForm 0.99 0.92 0.99 0.92 0.99 0.93

Voice 0.96 0.96 0.96 0.96 0.96 0.96

NumType 0.94 0.91 0.92 0.85 0.96 0.94
Poss 0.99 0.99 0.98 0.98 0.98 0.98

Degree 0.92 0.61 0.96 0.86 0.92 0.49

Abbr 0.88 0.88 0.84 0.84 0.94 0.94

Tab. 3.2: Micro-f1 and macro-f1 results for the multitask models and the model trained solely on

POS tagging.

Metric MTL@UPOS+NER MTL@UPOS Separate UPOS

micro-f1 0.9789 0.9809 0.9816
macro-f1 0.9588 0.9657 0.9637

Tab. 3.3: F1 results for universal part-of-speech classes.

to help the MTL@UPOS model exceed the initial model in macro-f1 score but not by a

large margin.

Finally in NER at Table 3.4 we also see that the multitask models perform similarly with

the separately trained model except on the Language class where the MTL@NER under-

performed, the Law and Quantity class where the MTL@NER exceeded the other models,

the Product class where MTL@UPOS+NER exceeded the other models. Overall the macro

and micro F1 scores were very similar.

3.5.3 Discussion

Contrary to some results in the literature, jointly training with these two di�erent tasks

only slightly improves the performance if we focus the model to do well on one task.

However the model optimized to perform well on both tasks achieves similar results

3.5 Experimental Results 17



Named entity MTL@UPOS+NER MTL@NER Separate NER

Cardinal 0.92 0.94 0.94

Date 0.92 0.92 0.93

Event 0.65 0.63 0.64

FAC 0.62 0.70 0.61

GPE 0.93 0.94 0.93

Language 0.89 0.73 0.89
Law 0.74 0.78 0.74

LOC 0.77 0.79 0.80

Money 0.97 0.98 0.98

NORP 0.89 0.90 0.89

Ordinal 0.95 0.95 0.96

Organisation 0.87 0.88 0.88

Percent 0.98 0.98 0.99

Person 0.95 0.96 0.96

Product 0.81 0.75 0.75

Quantity 0.85 0.91 0.87

Time 0.91 0.92 0.89

Work of art 0.74 0.75 0.83
Micro avg 0.90 0.91 0.91
Macro avg 0.85 0.86 0.86

Tab. 3.4: F1 scores for each named entity for the jointly trained model and the separately trained

model.

with the specialized models. The latter model on the other hand, needs to only call the

GreekBERT transformer once and the predictions for NER and POS are produced from the

output embeddings. In order for GreekBERT to produce embeddings for one sentence, a

large and complex function must be computed which has a long duration. This results in

great speedup in situations where we would need both NER tags and POS tags and we

would be willing to sacri�ce a small part of the model’s accuracy on the tasks for speed.
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4Multitask Dependency Parsing -
Part of Speech Tagging

4.1 Introduction

Fine grained POS tagging reveals useful syntactic information about every word in a

sentence. Very relevant to this task is dependency parsing (DP). Dependency parsing is

the task of determining which word depends on which in a sentence as well as the type

of this dependency which is called a dependency relation. For example, for POS tagging

we need to determine if a word is an adverb but in dependency parsing we need to �nd

which word is modi�ed by an adverb.

Because these tasks are so closely related, they are often combined. Many dependency

parsers use externally provided POS predictions to make better predictions, or use POS

predictions from another model in the pipeline and then they are jointly trained.

In our model we combine the two tasks with a Multi Task Learning (MTL) approach to

create a tagger and parser. As in Chapter 3, our MTL approach falls in the category of hard

parameter sharing as described in [Rud17].

For �ne-grained POS tagging and Dependency Parsing the labels are numerous. We

refer the reader to Universal Dependencies website, where complete lists of UPOS tag,

morphological feature and dependency relation labels exist.
123

4.2 Dataset

We used the Greek treebank from the Universal Dependencies dataset [Niv+16] which

contains annotated sentences from multiple languages. Every word is annotated with

the universal POS tag (UPOS), morhological features (FEATS), the dependant word index

(HEAD) as well as the dependency relation (DEPREL).

1
https://universaldependencies.org/u/pos/

2
https://universaldependencies.org/u/feat/index.html

3
https://universaldependencies.org/u/dep/
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Fig. 4.1: The sentence "Yesterday, Manchester United lost" in CoNLL-U Format. The universal

part-of-speech tag is highlighted in yellow, the morphological tags are highlighted in

green, the index of the dependant word is highlighted with light orange and �nally the

dependency relation is highlighted in light blue.

Fig. 4.2: The dependency graph of the sentence "Yesterday, Manchester United lost" in CoNLL-U

Format. An arc going from wordi to wordj means that wordi depends on (or modi�es)

wordj . For example the word Χϑές (Yesterday) is an adverb that modi�es ηττήϑηϰε (lost).

4.3 Model

The model works by sharing a common representation for the two tasks. GreekBERT or

XLM-R produces embeddings for every token of an input sentence and then these are fed

into the task speci�c heads.

For the POS prediction head, the BERT embeddings are linearly transformed by N + 1
di�erent linear layers, one for each of the N morphosyntactic categories and 1 more for

the universal part-of-speech tag.
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Sentence Head Deprel POS tag Features

Χϑες 6 advmod ADV None

, 1 punct PUNCT None

η 4 det DET ’Case’: ’Nom’, ’De�nite’: ’Def’, ’Gender’: ’Fem’, ’Number’: ’Sing’, ’PronType’: ’Art’

Μάντσεστερ 6 nsubj X ’Foreign’: ’Yes’

Γιουνάιτεντ 4 �at X ’Foreign’: ’Yes’

ηττήϑηϰε 0 root VERB ’Aspect’: ’Perf’, ’Mood’: ’Ind’, ’Number’: ’Sing’, ’Person’: ’3’, ’Tense’: ’Past’, ’VerbForm’: ’Fin’, ’Voice’: ’Pass’

µε 8 case ADP None

σϰορ 6 obl NOUN ’Case’: ’Acc’, ’Gender’: ’Neut’, ’Number’: ’Plur’

2:3 8 nmod NUM ’NumType’: ’Card’

από 12 case ADP None

την 12 det DET ’Case’: ’Acc’, ’De�nite’: ’Def’, ’Gender’: ’Fem’, ’Number’: ’Sing’, ’PronType’: ’Art’

Ατλέτιϰο 6 obl:agent X ’Foreign’: ’Yes’

Μπιλµπάο 12 �at X ’Foreign’: ’Yes’

, 17 punct PUNCT None

στα None None

σ 17 case ADP None

τα 17 det DET ’Case’: ’Acc’, ’Gender’: ’Neut’, ’Number’: ’Plur’

πλαίσια 6 obl NOUN ’Case’: ’Acc’, ’Gender’: ’Neut’, ’Number’: ’Plur’

της 19 det DET ’Case’: ’Gen’, ’De�nite’: ’Def’, ’Gender’: ’Fem’, ’Number’: ’Sing’, ’PronType’: ’Art’

φάσης 17 nmod NOUN ’Case’: ’Gen’, ’Gender’: ’Fem’, ’Number’: ’Sing’

των 21 det DET ’Case’: ’Gen’, ’De�nite’: ’Def’, ’Gender’: ’Fem’, ’Number’: ’Plur’, ’PronType’: ’Art’

16 19 nmod NUM ’NumType’: ’Card’

του 23 det DET ’Case’: ’Gen’, ’De�nite’: ’Def’, ’Gender’: ’Neut’, ’Number’: ’Sing’, ’PronType’: ’Art’

Γιουρόπα 21 nmod X ’Foreign’: ’Yes’

Λιγϰ 23 �at X ’Foreign’: ’Yes’

2011-2012 23 nmod NUM ’NumType’: ’Card’

. 6 punct PUNCT None

Tab. 4.1: Sentence example 2.

For the Dependency Parsing prediction head we used the architecture speci�ed in [DQM17].

The di�erence is that we use GreekBERT’s embeddings instead of an LSTM and we don’t

use POS embeddings.

More formally for input tokens xi, i = 0, . . . , n , GreekBERT or XLM-R generates embed-

dings ei, i = 0, . . . , n, where for every i, ei ∈ R768
.

We denote as CMSj the number of classes for the morphosyntactic category j and also

CPOS as the number of classes for the universal part-of-speech tag. The class scores for the

morphosyntactic category j are

y
MSj

i = AMSjei + bMSj ∈ RCMSj , i = 0, . . . , n

AMSj and bMSj are parameters of the model and AMSj ∈ R
CMSj

×768, bMSj ∈ R
CMSj

And the class scores for the universal part-of-speech tags are

yPOS

i = APOSei + bPOS ∈ RCPOS , i = 0, . . . , n

APOS and bPOS are parameters of the model and APOS ∈ RCPOS×768, bPOS ∈ RCPOS
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Fig. 4.3: The architecture of the MTL model following the hard parameter sharing paradigm.

For dependency parsing, the following representations are created from the embeddings:

h
(arc−dep)
i = W (arc−dep)ei

h
(arc−head)
i = W (arc−head)ei

h
(rel−dep)
i = W (rel−dep)ei

h
(rel−head)
i = W (rel−head)ei

The matricesW (arc−dep),W (arc−head),W (rel−dep),W (rel−head)
are parameters of the model

which are learned, and their sizes are 768x768 meaning that the produced representations

have the same dimensions as the original embeddings.

These representations also have intuitive meanings. h
(arc−dep)
i is the representation of

token i as a head seeking its dependant and h
(arc−head)
i is the representation of token i as

a dependant looking for its head.

We then produce scores for each possible arc (i, j):

s
(arc)
ij = (h(arc−head)

j )TW (arc)h
(arc−dep)
i + (h(arc−head)

j )T b(arc)
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Here, W (arc)
and b(arc)

are parameters that are learned and have size 768x768 and 768

respectively. These terms have intuitive interpretations. The �rst term is the probability

of an arc (i, j) existing given that the dependant is word i and the head word j and the

second term is the probability of an arc (i, j) existing only given that the head is word j.

With these scores we can then predict the head for each token xi as the receiving end of

the arc (i, j) with the highest score.

y
(arc)
i = arg max

j
s

(arc)
ij

This can also be thought as a sequence-labeling problem because we need to predict one

label (the head) for each token.

For the label scores we generate for each arc (i, j), K scores, one for each possible

dependency relation. (Note that ⊕ means concatenation)

s
(rel)
ijk = (h(rel−head)

j )TU
(rel)
k h

(rel−dep)
i + wT

k (h(rel−head)
j ⊕ h(rel−dep)

i ) + b
(rel)
k

The intuitive interpretation here is that the �rst term is the probability of the label being

k given that the head is j and the dependant i. The second term is the probability of the

label being k given that the head is j, plus the probability of the label being k given that

the dependent is i.

The di�erence comparing to the arc scores is that a linear layer is used for the labels and

we need essentiallyK outputs for the bilinear layer, which is achieved with theK di�erent

U rel
k matrices. The parameters here are the K U rel

k matrices each of size 768x768, the K

wk vectors of size 1536x1 and the bias terms b = b
(rel)
k .

The predictions then for the labels use the predictions for the arcs.

y
(rel)
i = arg max

k
s

(rel)
iy

(arc)
i k

For each of these output scores we can calculate a cross-entropy loss when we have the

true labels available. These losses are then summed which produces a total model loss.
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L(xi) = LARC(xi) + LREL(xi) + LPOS(xi) +
∑

j

LMSj (xi)

4.4 Experimental Results

4.4.1 Evaluation

The metrics of interest are Unlabeled Attachment Score (UAS) and Labeled Attachment

Score (LAS) for DP. UAS is the number of words that got assigned the correct head divided

by the total words and LAS is the number of words that got assigned the correct head and

dependency relation to the head divided to the total number of words.

Regarding �ne grained POS tagging, we calculate the f1-scores for the UPOS tag and

calculate a modi�ed version of f1-score for the morphosyntactic categories. Speci�cally, for

a given gold UPOS tag there is a strict subset of morphological features that can be present

and for this reason we ignore the model’s outputs if there are any for the morphosyntactic

categories that have never been found to occur with the gold UPOS tag.

4.4.2 Training Details

We tuned the hyperparameters once for each metric of focus. We tuned once, optimizing

the UAS score, once optimizing the LAS score and once optimizing the macro-f1 score of

the UPOS tag. Early stopping was also used in each scenario in order to avoid over�tting.

For training we used the AdamW optimizer from PyTorch [LH17] and the cross-entropy

loss as the training objective.

The model optimized for UAS had as hyperparameters 5e-05 for the learning rate, 0.2 for

the dropout, 4 for the gradient accumulation steps and 0.5 for the multitask loss balance

parameter. We call this model MTL@UAS. In the LAS case the optimal hyperparameters

were also the same. When optimizing for the macro-f1 of the UPOS tag, the optimal

hyperparameters were 5e-05 for the learning rate 0.1 for the dropout, 8 for the gradient

accumulation steps and 0.8 for the multitask loss balance term (the loss of the POS task

was higher). We call the last model MTL@POS.

During training batches are formed of multiple sentences from the Universal Dependencies

dataset. Every sentence is annotated with both the dependency tree and relations as well

as the universal POS tag and morphological features.
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Learning rate Dropout Grad accumulation steps λ

[5e-5, 3e-5, 2e-5 ] [0, 0.1, 0.2] [4,8] [0.2 , 0.5 , 0.8]

Tab. 4.2: Hyperparameters that were tested while tuning.

Morphosyntactic category
MTL@UPOS Separate UPOS

micro-f1 macro-f1 micro-f1 macro-f1

Case 0.98 0.99 0.98 0.97

De�nite 1 1 1 1

Gender 0.98 0.98 0.98 0.98

Number 0.99 0.99 1 1
PronType 1 0.95 1 0.97
Foreign 0.86 0.86 0.88 0.88
Aspect 0.99 0.99 0.99 0.99

Mood 0.99 0.66 0.99 0.83
Person 1 1 1 0.98

Tense 1 1 1 1

VerbForm 0.99 0.94 0.99 0.93

Voice 0.97 0.96 0.96 0.96

NumType 0.94 0.91 0.96 0.94
Poss 0.99 0.99 0.98 0.98

Degree 0.92 0.49 0.92 0.49

Abbr 0.95 0.95 0.94 0.94

Tab. 4.3: Micro-f1 and macro-f1 results for the multitask model and the model trained solely on

POS tagging.

4.4.3 Results

We compared the performance of our jointly trained models with the models that were

trained for each task separately. Speci�cally, we compared the MTL model of POS tagging

and DP optimized for UAS, with the model trained only with the DP task in Table 4.5. We

also compare the MTL model of POS tagging and DP optimized for the macro-f1 score of

the UPOS tag in Tables 4.3 and 4.4

In Table 4.3 the results show that for predicting morphosyntactic categories the models

perform very similarly in all categories.

Regarding universal part-of-speech performance in 4.4 the jointly trained model performed

slightly better in both metrics but the improvement was marginal.
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MTL@POS Separate UPOS

micro-f1 0.9817 0.9816

macro-f1 0.9655 0.9637

Tab. 4.4: F1 results for universal part-of-speech classes.

Metric MTL@UAS Separate DP

UAS 0.9208 0.9357
LAS 0.9016 0.9158

Tab. 4.5: UAS and LAS scores for the MTL model trained on DP and POS as well as the Separate

model trained only on DP.

Finally in DP at table 4.5 we see that the optimized MTL model su�ers great losses of

performance as it scores around 0.015 lower on both UAS and LAS metrics.

4.4.4 Discussion

Once again, the multitask models presented above do not present signi�cant gains for each

task. However the multitask models need to only call the GreekBERT model once and the

predictions for DP and POS are produced from the same output embeddings. This results

in great speedup in situations where we would need both POS tags and the dependency

tree of a sentence because GreekBERT needs a lot of computing power to produce the

output embeddings.
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5Conclusions and Future work

5.1 Key takeaways

We developed a model that can perform NER, POS and DP in Greek. The separate models

for each task have pretty good performances. For NER our best results are 0.92 micro-f1

and 0.87 macro-f1. For POS our best results are 0.98 macro-f1 and 0.97 micro-f1 and for DP

our best results are 0.94 UAS and 0.92 LAS. Signi�cant di�erences in performance were

observed in DP, where our model outperformed Stanza’s Greek dependency parser by a

large margin. XLMR also performed poorly in DP achieving 0.89 and 0.87 UAS and LAS

respectively.

Unfortunately, MTL did not enable the models to achieve much better prediction perfor-

mance in any task, and the MTL models that were optimized to perform equally on their

assigned tasks su�ered small losses in prediction performance. The bene�t of MTL is

that, the user can sacri�ce a small bit of prediction accuracy to approximately double the

prediction generation speed if the user wants both predictions for NER and POS or both

predictions for POS and DP.

5.2 Further work

The toolkit of this thesis and the companion thesis pipeline can be extended with many

more tasks. First of all, toxicity detection can be added. Toxicity detection is very important

for use cases where users can comment or review a certain product. In these cases the

inputs from the users need to be moderated in case they contain harmful language [Pav+17],

[Pav+20], [Pav+21].

Making the pipeline more e�cient is also very important not only for the environmental

cost of the models but also for speeding up systems. Distillation [HVD15] and Quantization

[Hub+17] are widely used techniques especially in BERT models. A user could theoretically

choose some amount of accuracy loss in return for speed. This could further be combined

with MTL for more speed up gains.
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Additionally, there are many ways to do MTL which were not explored in this work such

as those mentioned in Section 3.2. A nice idea would be to use lower level Transformer

embeddings for POS tagging while using the �nal layer Transformer embeddings for

Dependency Parsing. Also more combinations of tasks could be explored such as all three

of NER, POS and DP together.

Another unexplored idea is adding hyperparameters to the multitask models’ loss function

to control the e�ect of the gradients of each task. For example instead of adding the losses

in the multitask model of NER and POS we could introduce a hyperparameter β between

0 and 1 so the �nal loss would be a linear combination of the two losses.

Finally, it’s good to have highly tuned models for these tasks because the users of the

features of the toolkit will bene�t greatly from an increase in performance. There are

many parameters that can be tuned more and alternative learning strategies. For example

for hyperparameter tuning, Hyperopt [BYC+13] can be used to also utilize possible hy-

perparameters that are continuous such as the learning rate which we tuned with grid

search.
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