
FINITE AND INFINITE EXCHANGEABILITY
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Background/History

Definition: A sequence X = (X1, X2, · · · ) of random elements

with values in some measurable space S is called exchangeable

if its law is invariant under permutations of finitely many ele-

ments.

Concept first discussed by Jules Haag (ICM 1924)

The first rigorous representation theorem proved by de Finetti

(1931).

Dynkin (1953) treated the case S = R.

Hewitt and Savage (1955) generalized this to compact Hausdorff

S equipped with the Baire σ-field.

Ryll-Nardzewski (1961) replaced exchangeability by the weaker

notion of spreadability (any subsequence has the same law as

the original sequence).

Dubins and Savage (1979) gave a counterexample to the repre-

sentation theorem for a sufficiently weird space S.
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The infinite exchangeability representation theorem

Theorem [de Finetti, Ryll-Nardzweski]. Suppose that S is a

Borel space and X = (X1, X2, · · · ) a spreadable sequence of

random elements with values in S. Let I be the σ-field of

invariant events. Consider the regular conditional probability

η(ω, ·) := P (X1 ∈ ·|I ),

as a random probability measure on S. Then

P (X ∈ ·|I ) = η∞,

where η∞(·, ω) is the countably infinite product of η(·, ω) by
itself.

Corollary. In particular, for all measurable A ⊂ S,

P (X ∈ A) = E[η∞(A)] =

∫

P(S)

π∞(A)µ(dπ)

where

P(S) := set of probability measures on S

(equipped with the standard σ-field induced by projections),

and

µ := law of η, µ ∈ P(P(S)).
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de Finetti follows from Birkhoff

The best proof is in Kallenberg’s book on probabilistic symme-

tries. It goes like this.

By spreadability, for all m ≥ 1,

(X1, . . . , Xn−1, Xn, Xn+1, . . .)
(d)
= (X1, . . . , Xn−1, Xn+m, Xn+m+1, . . .)

and so for f1, . . . , fn bounded measurable on S and g bounded

and shift-invariant on S∞,

E[f1(X1) · · · fn(Xn)g(X)] = E[f1(X1) · · · fn−1(Xn−1)Rm,n g(X)]

where Rm,n = m−1
∑m

j=1 fn(Xn+j) → η[fn], as m → ∞, a.s.,

by the ergodic theorem. Therefore,

E[f1(X1) · · · fn(Xn)g(X)] = E[f1(X1) · · · fn−1(Xn−1) η[fn] g(X)]

· · · = E[η[f1] · · · η[fn−1] η[fn] g(X)]

and this obviously implies that

P ((X1, . . . , Xn) ∈ ·|I ) = ηn,

from which the result is immediate.

N.B.1. The assumption that S is Borel is only needed to ensure that the regular conditional

distribution η exists.

N.B.2. The probability measure µ in the representation theorem is unique.

N.B.3. Obviously, the representation theorem also holds for arbitrary Cartesian products

ST rather than SN of a Borel space S.
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My favorite example

Let B = (B(t), t ∈ R) be standard Brownian motion with

2-sided parameter. Let B1, B2, . . . be i.i.d. copies of B. Then

Wn := Bn◦ · · · ◦B1 → W∞,

in the sense of convergence of finite-dimensional distributions.

Furthermore,

(W∞(t), t 6= 0)

is exchangeable and, therefore, by de Finetti’s theorem, a mix-

ture of i.i.d. random variables. The mixing measure µ can be

found as follows. Let

ηn :=

∫ 1

0

1{Wn(t) ∈ ·} dt

be the occupation measure of Wn on the unit interval. Then ηn
converges, in distribution, as a random element of P(R) to a

random probability measure η∞. Then µ is the law of η∞.

C.F. Curien and K. (2012). Iterating BMs ad libitum. JOTP

27, 433-448.

6



Finite exchangeability

(X1, . . . , Xn) is (finitely or n-)exchangeable if its law is invariant

under all n! permutations.

Finite exchangeability is often more natural than infinite ex-

changeability.

Examples:

1) In Statistics, one may deal with unordered data but the size

is always finite. Therefore, the assumption that the data comes

from an exchangeable infinite sequence may be impractical or

wrong.

2) Draw n balls at random from an urn containing N ≥ n balls,

some of which are colored red, some blue, etc.

3) The n-coalescent.

4) The Curie-Weiss Ising model in n dimensions.

5) A random vector in R
n with density being a symmetric func-

tion.
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Natural questions

1. Does a de Finetti-type representation result hold?

2. Given an n-exchangeable sequence (X1, . . . , Xn) and N > n

is there an N -exchangeable sequence (Y1, . . . , YN) such that

(X1, . . . , Xn) has the same law as (Y1, . . . , Yn)?

Answers are no and no, in general.

Example. An urn contains one red and one blue ball. Pick them

at random.

The probability measure P = 1
2δrb +

1
2δbr on {r, b}2 cannot be

written as a mixture of independent measures.

Moreover, there is no exchangeable probability measure Q on

{r, b}3 such that its projection of {r, b}2 be equal to P .
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Finite exchangeability representation result

Theorem. Let (X1, . . . , Xn) be an exchangeable sequence of

length n of random elements of an arbitrary measurable space

S. Then there is a finite signed measure ξ on P(S) such that

P ((X1, . . . , Xn) ∈ A) =

∫

P(S)

πn(A)ξ(dπ),

for measurable A ⊂ Sn.

References

– Jaynes (1986).

– Diaconis (1977).

– Kerns and Szekely (2006).

– Janson, K. and Yuan (2016).
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An algebraic result

Let n and d be positive integers. A composition of length n of

d is a sequence λ = (λ1, . . . , λn) of n nonnegative integers such

that λ1+ · · ·+λd = n. The number of such compositions is the

number of placements of n unlabelled balls in d labelled boxes,

that is,
(

n+d−1
d−1

)

.

Denote by Nn(d) the set of the n-compositions of d.

Theorem. The polynomials

pλ(x1, . . . , xd) := (λ1x1 + · · · + λdxd)
n, λ ∈ Nn(d),

form a basis of the space of all homogeneous polynomials of

degree n in d variables x1, . . . , xd.

N.B.1. It is obvious that xλ11 · · · xλdd , λ ∈ Nn(d), form a basis for

the space of degree-n homogeneous polynomials in d variables

but this is not of immediate help.

N.B.2. The theorem above is equivalent to the statement that

the multinomial Dyson matrix (the transition probability matrix

of the Wright-Fisher Markov chain with d types) is invertible.
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Urn measures-idea of proof

Let σ be a permutation of {1, . . . , n}. With σX = (Xσ(1), . . . , Xσ(n)),

we have

P (X ∈ A) =
1

n!

∑

σ

P (σX ∈ A) = EUX(A),

where

Ux =
1

n!

∑

σ

δσx

is an urn measure: an urn contains items labelled x1, . . . , xn;

select all of them, without replacement, at random. The reason

for the representation is that UX itself can be written as an

integral with respect to a random signed measure on the space

of probability measures of S.

We explain this for the case |S| = d < ∞. The general case is

a bit more involved.

A point measure ν on S is a measure with nonnegative integer

values. Let Nn(S) be the set of point measures of total mass

n. For x ∈ Sn let εx =
∑n

i=1 δxi ∈ Nn(S). Let S
n(ν) := {x ∈

Sn : εx = ν}. Then

Sn =
⋃

ν∈Nn(S)

Sn(ν),

and the union is disjoint. Note |Sn(ν)| =
(

n
ν

)

= n!/
∏

a ν{a}!.
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...idea of proof

Sn(ν) is an “urn”. There is only one exchangeable probability

measure supported on Sn(ν), the uniform measure:

uν =

(

n

ν

)−1
∑

z∈Sn(ν)

δz.

Hence, if Q is exchangeable probability measure on Sn we have

Q =
∑

ν∈Nn(S)

Q(Sn(ν))uν.

In particular, with

Q = πν, π ∈ P(S),

we have Q(T n(ν)) =
(

n
ν

)

πν =
(

n
ν

)
∏

a π{a}
ν{a}. Specializing

further, take

π =
1

n
λ, λ ∈ Nn(S).

Then

λn =
∑

ν∈Nn(S)

(

n

ν

)

λν uν.

The earlier algebraic result says that

uν =
∑

λ∈Nn(S)

M(ν, λ)λn.

On noticing that Ux = uεx we complete the proof for the finite

S case.
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Extendibility

Theorem. Let S be a lcH (locally compact Hausdorff space)

and (X1, . . . , Xn) a random element of Sn with exchangeable

law such that the law of X1 is inner and outer regular. Let

N > n. Then (X1, . . . , Xn) is N -extendible if and only if, for

all ε > 0 and all bounded measurable f : Sn → R, there is

(a1, . . . , aN) ∈ SN such that

|Ef (X1, . . . , Xn)| ≤
1 + ε

N(N − 1) · · · (N − n + 1)

∣

∣

∣

∣

∣

∑

σ

f (aσ(1), . . . , aσ(n))

∣

∣

∣

∣

∣

where the sum ranges over all one-to-one functions σ : {1, . . . , n} →
{1, . . . , N}.

C.F. K and Yuan (2016).
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Symmetrizing operators

The idea of proof is based on the following.

Let f (x1, . . . , xn) be a real-valued function of n variables. We

can create a symmetric function of N variables by

UN
n f (x1 . . . , xN) =

1

(N)n

∑

f (xσ(1), . . . , xσ(n))

where (N)n = N(N − 1) · · · (N − n + 1).

Probabilistically, we select at random, without replacement, n

items from an urn containing the items x1, . . . , xN and evaluate

f at the selected items.

Let b(Sn) be the space of bounded measurable real-valued func-

tions on Sn, equipped with the sup norm and let UN
n b(Sn) be

its image under UN
n . We next define the linear functional

E : UN
n b(Sn) → R

by the recipe

E(UN
n f ) = Ef (X1, . . . , Xn).

It is not clear that E is a function. But it is, due to algebraic

properties of urn measures.

If (X1, . . . , Xn) is exchangeable then ‖E‖ = 1 and this trans-

lates to the condition of the theorem. The converse needs work.
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The converse

Suppose ‖E‖ = 1. The idea for proving the bulk of the theorem

is based on

Extend E to bsym(S
N) via the Hahn-Banach theorem and let

E ′ be the extension. Let L : b(SN) → R be obtained by sym-

metrization:

L = E ′
◦UN

N .

We have

‖L‖ = ‖E ′‖ = ‖E‖.

This implies that F (A) := L(1A) is a finitely additive nonneg-

ative set function. But it is not a probability measure even in

“good” cases. The point is to extract a probability measure.

Next, restrict L onto the space Cc(S
N) of continuous com-

pactly supported real-valued functions on SN and use Urysohn’s

lemma and inner regularity of the law of (X1, . . . , Xn) to deduce

that ‖L|Cc(S
N)‖ = 1.

Then use the Riesz representation theorem and outer regularity

in order to represent

Lf =

∫

SN

fdλ

for some symmetric regular probability measure λ on SN .
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It turns out that a random element (Y1, . . . , YN) of S
N with

law λ is an N -extension of (X1, . . . , Xn).
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