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Introduction

About card shuffling

It all started with Diaconis and Shahshahani (1980) with random
transpositions.

Aldous and Diaconis (1986) were the first to prove cutoff for random to
top.

Bayer and Diaconis (1992) studied riffle shuffles.

How many times do we need to repeat this process to be well shuffled? Is
there a phase transition?
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Random to random

The model:

Start with a deck of n cards,

pick a card uniformly at random,

remove it from the deck,

insert it to a random position.

How many times do we need to repeat this process to be well shuffled?
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The mathematical setup

The symmetric group

Each configuration of a deck of n cards corresponds to an element in Sn.

123456↔ id

213456↔ (12)

612345↔ (123456)
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The random walk

Definition

Start at the identity. If g = (a, a + 1, . . . , b)±1 ∈ Sn, then move to g with
probability

P(g) =


1
n2 , if b − a > 1
2
n2 , if b − a = 1
1
n
, if g = id

.

P(id , g) := P(g) is the probability of moving to g in one step.
Similarly, P(x , g) := P(xg).

Many steps of the walk

P t(id , g) gives the probability of moving from the identity to g in t steps.
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The Question

Convergence

P t
id can be treated as a sequence of measures

P t
id → U as t →∞

where U is the uniform measure of Sn.
The convergence is studied under the total variation distance:

||P t
id − U||T .V . =

1

2

∑
x∈Sn

|P t
id(x)− U(x)|

Mixing time

Question: How many steps until the deck is shuffled well enough?
Mixing time:

tmix(ε) = min{t ∈ N : ||P t
id − U||T .V . ≤ ε}
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References

History of the random-to-random

1 Diaconis, Saloff-Coste (1993) proved that O(n log n) steps are enough.

2 Uyemura-Reyes (2002) proved that 1
2
n log n steps are necessary, while

4n log n steps are enough.

3 Diaconis conjectured that 3
4
n log n steps is the correct answer.

4 Subag (2013) proved that 3
4
n log n are necessary.

5 Saloff-Coste and Zuniga (2008) imporved the upper bound to 2n log n,
Morris and Qin (2014) improved to 1.5324n log n.
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Result

Theorem (M.Bernstein, E.N.)

Let = 3
4
n log n + cn, then

||P∗tid − U||T .V ≤ e−c

where c > 0.
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||P∗( 3
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Theorem (Subag)

lim
c→∞
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4
n log n−cn)
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Cutoff

Definition

The sequence of walks on a space An exhibits cutoff at tn with window
wn = o(tn) if and only if

lim
c→∞

lim
n→∞

d(tn − cwn) = 1 and lim
c→∞

lim
n→∞

d(tn + cwn) = 0.

Figure: Cutoff diagram.
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Upper Bound Theorem

Our matrix is

P(x , xg) =


1
n2 , if g = (a, a + 1, . . . , b)±1 ∈ Sn with b − a > 1
2
n2 , if g = (a, a + 1, . . . , b)±1 ∈ Sn with b − a = 1
1
n
, if g = id

0, otherwise.

P is symmetric

P has real eigenvalues:

−1 < λ|G |−1 ≤ λ|G |−2 ≤ . . . ≤ λ1 < λ0 = 1

Upper Bound Theorem

Let λj , j ∈ {0, 1, 2, ..., |G | − 1} be the eigenvalues of P. Then:

4||P∗tid − U||2T .V . ≤
|G |−1∑
j=1

λ2t
j
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The eigenvalues

Dieker, Saliola found the eigenvalues of random to random and described their
multiplicities.

Theorem (Dieker, Saliola)

The ”important” eigenvalues of P are

λk = 1− n + k2 + k

n2
.

for k = 0, . . . n − 2. Each one of these eigenvalues has multiplicity n − 1.
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An important case

The n − 1 dimensional representation

n−1∑
k=0

(n − 1)

(
1− n + k2 + k

n2

)2t

≤

√
n∑

k=0

(n − 1)

(
1− 1

n

)2t

+
n−1∑

k=
√

n+1

(n − 1)

(
1− 2

n

)2t

≤ n3/2e−
2t
n + n2e−

4t
n

The mixing time

This means that after t = 3
4
n log n + cn steps,

n−1∑
k=0

(n − 1)

(
1− n + k2 + k

n2

)2t

≤ 2e−2c
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A conjecture turns out to be wrong

This is surprising!

The biggest eigenvalue term is

n

(
1− 1

n

)2t

and it gives that

t =
1

2
n log n + cn

steps are sufficient to make it small.
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The Bernoulli-Laplace model

Shuffling large decks of cards

Start with 2n cards,

cut the deck into two equally sized piles,

shuffle each pile perfectly,

assemble,

move the k top cards to the bottom.

How many times do we need to repeat this process to be well shuffled?
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Casinos, Cryptography and games

This is one of the ways that casinos shuffle large decks of cards.

Cryptography: security systems.

It is suggested to shuffle like this in board games, for k close to n
2

.
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An equivalent process

The Bernoulli-Laplace urn model

Start with 2 urns, each one containing n balls.

The left one has n white balls and the right has n red balls.

Pick k balls from each urn,

and switch them.
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Convergence

The setup

Let X t count the number of white balls on urn two at time t.

P t(i , j) gives the probability of moving from i to j in t steps.

Each row of P converges to

πn(j) =

(
n
j

)(
n

n−j

)(
2n
n

) 0 ≤ j ≤ n.
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Some History

This model was introduced by Bernoulli and was further studied by
Laplace.

Markov built the first Markov chain using this model.

Diaconis and Shahshahani studied the case k = 1 and proved cutoff
at n

4
log n with window n.

Diaconis and Pal (2017) studied shuffling by shmooshing, which is a
technique used by casinos.
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Results

Theorem(E.N, White)

1 If t = n
2k

log n + c n
k

then

||P t
id − πn||T .V . ≤ e−2c

2 If k = n
2
, then tmix(1/n) = 4.

3 If n
2
− k = ω(n), if tn,c = n

4k
log n − c n

4k
, then

lim
c→∞

lim
n→∞

||P tn,c
id − U||T .V . = 1

Theorem(A.Eskenazis, E.N)

If k = o(n2/3) and tn,c = n
4k

log n + c n
k

, then

lim
c→∞

lim
n→∞

||P tn,c
id − πn||T .V . = 0
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The first two eigenvectors and eigenvalues

We know all of the eigenvalues and eigenvectors of P.

The first e-value and e-vector

The first eigenvalue is 1− 2k
n

and the corresponding eigenvector is
f1(x) = 1− 2x

n
.

The second e-value and e-vector

The second eigenvalue is 1− 2k(k−1)(n−k)

n2(n−1)
and the corresponding

eigenvector is f2(x) = 1− 2x(x−1)(n−x)

n2(n−1)
.
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Total variation distance

Coupling

1 We have our process Xt , which is the number of white balls on urn 2
after t steps.

2 X0 = 0.

3 We want to have another process Yt , such that Y0 ∼ πn and
Yt − Yt−1 ∼ P.

4 Choose the joint distribution of Xt and Yt so that

E(|Xt − Yt ||Xt−1,Yt−1) ≤ |Xt−1 − Yt−1|

Coupling inequality

Let T be the first time that Xt = Yt . Then

||P t
id − πn||T .V . ≤ P(T > t)
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The coupling

We start with two pairs of urns, each one containing n balls.

X

Y

t

t
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The coupling

On each pair, enumerate the balls of the left urn with the numbers {1, . . . n},
starting with the red ones.
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The coupling

On each pair, enumerate the balls of the left urn with the numbers {1, . . . n},
starting with the red ones.

X

Y

t

t

Enumerate the balls of the right urns with {n + 1, . . . 2n}, starting with the
red ones. Pick k numbers from {1, . . . n} without replacement and k numbers
from {n + 1, . . . 2n}. On each pair, switch the balls with the corresponding
numbers.
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The coupling is not optimal

The issue

We have that

E(|Xt − Yt ||X0,Y0) ≤ n

(
1− 2k(n − k)

n2

)t

and this gives that

tmix(e−c) ≤ n2

2k(n − k)
log n + c

n2

2k(n − k)
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A more complicated coupling

Bringing Xt and Yt within distance
√
n is easy.

We start with the marking scheme until t = n
4k

log n.

Eigenvector-Eigenvalue equation:

E
(

1− 2Xt

n
|X0

)
=

(
1− 2k

n

)t (
1− 2X0

n

)
Therefore,

E
(
Xt |X0

)
=

n

2
−
(

1− 2k

n

)t(n
2
− X0

)
(1)

and the same holds for Yt .
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A more complicated coupling

Lemma

Let t ≥ n
4k

log n. Then∣∣∣E(Xt |X0

)
− n

2

∣∣∣ ≤ √n and Var
(
Xt |X0

)
≤ n. (2)

and the same holds for Yt .

Xt ,Yt remain close for a while

Doob’s maximal inequality gives that w.h.p. for the next d n
k

steps,
we will have |Xt − Yt | ≤

√
n.
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A more complicated coupling

Hitting time lemma

Keep on running the two chains independently. Let
τ = min{t : |Xt − Yt | ≤

√
k}. Then

P
(
τ > d

n

k

)
≤ 1√

d
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A more complicated coupling

The final step

When
|Xt − Yt | ≤

√
k,

we have that

Figure: At distance
√
k

Figure: After three steps.
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The result

Theorem(A.Eskenazis, E.N)

If k = o(n2/3) and tn,c = n
4k

log n + c n
k

, then

lim
c→∞

lim
n→∞

||P tn,c
id − πn||T .V . = 0
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Open Questions

1 What about more general k?

2 What about multiple urns?
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Thank You!


