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Variance reduction in MCMC

Antonietta Mira* Paolo Tenconi f, Dario Bressaninit
Universita dell’Insubria, Varese, Italy.

Abstract

We propose a general purpose variance reduction technique for MCMC estimators. The
idea is obtained by combining standard variance reduction principles known for regular
Monte Carlo simulations (Ripley, 1987) and the Zero-Variance principle introduced in
the physics literature (Assaraf and Caffarel, 1999). The potential of the new idea is
illustrated with some toy examples and an application to Bayesian estimation.
Keywords: Markov chain Monte Carlo, Metropolis-Hastings algorithm, Variance re-
duction, Zero-Variance principle.

1 Main idea

We are interested in estimating the expected value of a function f with respect to a, possibly
unnormalized, probability distribution 7:

_ [ f@)n(z)de
Hf= [7(z)dz : (1)

Markov chain Monte Carlo methods (MCMC, Metropolis et al. 1953, Hastings 1970, Tierney,
1994) estimate integrals using a large but finite set of sample points, 2°,i = 1,---, N collected
along the path of an ergodic Markov chain, P, having 7 (normalized) as its unique stationary
and limiting distribution:

1 X .
= — . 2
b= g 2@ 2)
We have that
py = fif + Ay

where Ay is the statistical error associated with the fact that N is finite. For large enough
N, standard statistical arguments lead to the following expression of the error:

of
Apr=K—
7 \/N

*Dip. di Economia Universita dell’Insubria, Via Ravasi 2, 21100 Varese, Italy.
Email: antonietta.mira@uninsubria.it
tstituto di Finanza, Universita della Svizzera Italiana, Via Buffi 1, 6900 Lugano, Svizzera.
Email: paolo.tenconi@lu.unisi.ch
iDip. di Sc. Chimiche Fisiche e Matematiche, Universita dell’Insubria, Via Lucini 3, 22100 Como, Ttaly.
Email: dario.bressanini@uninsubria.it




where the constant K is proportional to the amount of correlation along the sampled chain
and oy is the standard deviation of f under 7 (assumed to be finite).

Recent literature (Peskun, 1973; Liu, 1996; Tierney, 1998; Tierney and Mira, 1999; Mira
and Geyer, 2000; Green and Mira, 2001) aimed to reduce the statistical MCMC error, Apuy,
by reducing the correlation along the Markov chain, that is, by reducing K.

In this paper we suggest instead to reduce the error by replacing f with a different
function, f, obtained by properly renormalizing f. The function f is constructed so that its
expectation under 7 equals p (this is a standard variance reduction technique used in Monte
Carlo simulation, see Ripley, 1987). To define f an operator, H, and a trial function ¢ are
introduced. We require that H is Hermitian (symmetric for finite state spaces, and real in

all practical applications) and
[ i@,y /rw)y = 0. (3)

The trial function ¢(z) is a rather arbitrary function which is only required to be integrable.
We define the renormalized function to be

F@) = flz)+ 2 H(%y)d@’ = f(2) + Af(a). 4)

As a consequence of (1) and (3) we have that
Bp = Hf (5)

that is, both functions f and f can be used to estimate the desired quantity. However, the
statistical error of the resulting MCMC estimator can be very different. The optimal choice
for (H, ¢) can be obtained by imposing that f is constant and equal to its average that is
by requiring

o;=0
which is equivalent to require that 5

f=ny
The latter, together with (4), leads to the fundamental equation:

[ H@,)ow)dy = —\/m@)f (@) - . (6)

In most practical applications equation (6) cannot be solved exactly still, we propose to find
an approximate solution in the following way. First choose H verifying (3) (in the sequel
we will suggest two general recipe to construct H). Second, parametrize ¢ and optimally
choose the parameters by minimizing o over a finite set of points generated according to
P. Finally, a much longer MCMC simulation is performed using fi; instead of fiy as the
estimator.

2 Choice of H

2.1 Discrete case

Denote with P(x,y) a transition kernel reversible with respect to 7:

m(x)P(z,y) = 7(y)P(y, ) YV, y.
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The following choice of H

H(z,y) = W—[P(x,y) —6(z —y)]

satisfies the requirements, where §(z — y) is the Dirac delta function: §(z —y) =1ifz =y
and zero otherwise. B
With this choice of H, letting ¢ = %, equation (4) becomes:

- [ P.9)ld(x) - 5u)dy. (")

The main difficulty with (7) is the evaluation of the integral.

2.2 Continuous case

If x € R? we can also consider the operator:
d

— 0
where V' (z) is constructed to fulfill equation (3):

d52\/ () )
2/ zl or?

2

l\Dl?—‘

In this setting we have that

(10)

This is the function we will use in the examples considered in Section 5. To obtain the first
and second order derivatives we used the R function “fdHess” from the library “nlme” which
evaluates an approximate Hessian and gradient of a scalar function using finite differences.

3 Choice of ¢

The optimal choice of ¢ is the exact solution of the fundamental equation. In real applica-
tions typically only approzimate solutions, obtained by minimizing o, are available. The
particular form of ¢ is very dependent on the problem at hand, on f and on H. However
an important point to notice is that if we parametrize ¢ in terms of ¢ = [ ¢(z)dz and then
minimize 0§ with respect to ¢, the optimal choice of cis

__[Ex(f(@)Af ()]
Er(Af(2))?

and, for this value of the parameter, from (4) we obtain

oo B @AF@)P
A RN ) e
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Since the correction factor in (11) that leads from szc to 0% is always negative, regardless
of the choice of ¢, a variance reduction in the MCMC estimator is obtained by replacing f
with f in (2).

The R function “optim” is used to estimate the parameters of ¢ minimizing o

4 Variance reduction in Bayesian inference

Bayesian inference is based on the posterior distribution, that is the distribution of the
parameters of interest, # € R¢, given the data, y. A model is postulated for the data, I(y|6)
and a prior distribution is assumed for the parameters, h(f). Applying Bayes theorem we
obtain that the posterior distribution, 7(f|y), is proportional to the product of the prior
times the likelihood:

m(0ly) o< h(0)1(y|0).

The normalizing constant of this distribution is a possibly complicated integral over a d-
dimentional state space. Depending on the loss function adopted, different ways of synthe-
sizing the posterior distribution are available. In particular we will focus on the square error
loss function which leads to estimating a parameter of interest, say ¢;, via its posterior mean:

b;=Elg;ly), j=1--.d

In the notation of Section 1 we have that the role of w(x) is payed, in the Bayesian
setting, by 7(f|y) and, when adopting a square error loss function, we are mainly interested
in evaluating the expected value with respect to 7 of the family of functions defined as

fiOly) =05 j=1,---,d.

The advantage is that these are typically one dimentional functions.

5 Examples

In this section we present a few toy examples to demonstrate the power of the proposed
technique. In particular we first consider as target distributions, 7, a univariate and bivariate
Gaussian and a Student-T distribution. Finally a simple Bayesian model with conjugate prior
is studied. The functions of interest, f, are either the mean, the variance or the covariance of
the distributions of interest. Since all the target distributions considered in the examples are
standard there is no need for MCMC simulation and we can resort to simple Monte Carlo.
In the results presented we sample 7" = 100 values from 7 and minimize the fluctuations
of f over this set of points finding the optimal values of the parameters entering ¢. We
then estimate the mean of the target, via fi; over a new Monte Carlo simulation of length
N = 1000. In Table 11 the estiamted parameters for each of the ¢ functions used are
reported. An empty cell means that the corresponding parameter was not present in the
analytic form of that specific function. A value of zero in a cell mean that the corresponding
parameter has been estimated to be less than 0.0001.



5.1 Gaussian distribution

Consider, as a toy example, the case where 7(x) = exp(’Tﬂ), a standard normal distribution
(d = 1). Let the functions of interest be fi(x) = x, fo(z) = 22, that is we are interested in
evaluating the first and second moment of the distribution. Let

¢1(x) = k1 + ka(z — ks) exp {ka(z — ks5)*}

and
¢2(.’L‘) = kl + k2($ - k3)2 exp {k4(.’l? — k5)2}

The functional form for ¢ is derived by obtaining the exact solution of (6) which, in this
case is available, and considering the leading term of it. In Figure 1 and 2 we present the
kernel density estimation of the empirical distribution functions obtained by Monte Carlo
simulation of fi, f; and f, f> respectively. Note that, in both cases, the distribution of f
is much more concentrated (almost point-mass) around the actual value of the parameter
we are estimating. This is confirmed by Tables 1 and 2 where the mean and the variance of
the empirical distribution of fi, fi and f, f» are reported: both functions lead to unbiased
estimators but f presentes a much smaller variance and thus a smaller asymptotic mean
square error. In Figure 3 and 4 we represent the functions f,¢, Af and f for the case
f(z) = z and f(x) = z? respectively. Notice that the goal of turning f into an almost

constant function, f, having the same mean is achieved.

Table 1: Normal target, fi(z) = x, almost optimal ¢.

fi f
mean 0.0065 | 0.0005
variance | 0.94 0.008

Table 2: Normal target, fo(z) = 22, almost optimal @.

fo fo
mean 0.9018 | 1.0000
variance | 1.66 | 2.80e-11

5.2 Student-T distribution

In this section we proceed as in the previous one but taking the Student-T distribution
with df degrees of freedom, T'(df), as the target distribution. Again we take fi(z) = z and
fo(x) = 2? and consider the same auxiliary functions ¢; and ¢, as before (here we did not
try to solve equation (6)). Figures 5, 6 and the Tables 3, 4, treat to the case of 5 degrees
of freedom and refer to f; and f, respectively. Again the variance reduction obtained by
substituting f with f is apparent, even if here the reduction is not as dramatic as in the
Gaussian case where the optimal ¢ function was derived analytically.



Table 3: Student-T(5), fi(z) = =.

i fi
mean 0.0084 | 0.0174
variance | 1.6910 | 0.7620

Table 4: Student-T(5), fo(z) = 22

fa f
mean | 1.7570 | 1.6182

variance | 11.7556 | 0.1146

In this setting we also performed a random walk Metropolis-Hastings algorithm (let P be
the corresponding transition kernel) to check that the substitution of f with f would not in-
crease the integrated autocorrelation time 7 = 332 _  pr where p, = Covp[f(X?), f(X*)]/07.
To estimate 7 we used Sokal’s adaptive truncated periodogram estimator (Sokal, 1989),
T = Yik<m Pr with the window width M chosen adaptively as the minimum integer with
M > 37.

We used different the random walk proposals, namely normal distributions centered at the
current position and with standard deviations, ogw, equal to 0.1; 0.2; 0.5; and 1 respectively.
The results, obtained averaging 10 Monte Carlo simulations (we report mean and standard
deviations in parenthesis) are presented in Table 5 and 6 for f; and f; respectively.

Table 5: Estimated 7 for Student-T(5), fi(z) = x.

~

T O'RW:O.l O'RW:O.2 URW:0-5 O'RW:1
f1 [100.16 (33.2) | 80.39 (34.1) | 45.23 (23.1) | 13.32 (7.2)
fi | 79.73 (19.8) | 35.45 (21.6) | 18.48 (18.1) | 9.23 (7.3)

It is clear, from this Monte Carlo study, that, at least in this setting (the same is true for
all the examples presented in the sequel, simulation results not reported here), substituting f
with f leads to a substantial gain in terms of asymptotic variance reduction of the resulting
MCMC estimator.

5.3 Bivariate Gaussian distribution

We consider here a two dimentional vector, z = (1, x2), having a bivariate normal distribu-
tion where both marginals are standard normal and the correlation is 0.5. As functions of
interest we take fi(z) = 1, fo(x) = 27 and f3(x) = z179. As for the ¢ function we take

¢1(z) = ki(x1 — k2) exp {ks(z1 — k4)*} + ks ¢o(x) = ki(x1 — k2)” exp {ks(z1 — ka)*} + k5
and

¢3($) = kl -+ [kg.’L‘l =+ k3$2 -+ k4($1.’1)2)] exp[k5(:1:1 — k8)2 =+ ks(ﬂ?g — k9)2 + ]€7($1$2)]

6



Table 6: Estimated 7 for Student-T(5), fo(z) = 2.

T O'RWZO.l O'RWZO.2 O'RWZO.5 URW:1
fo | 79.14 (20.8) | 63.66 (32.5) | 23.84 (11.5) | 14.18 (14.5)
fo| 1.86(2.3) | 817 (20.7) | 1.30 (0.36) | 2.58 (2.3)

respectively.

In Figures 7, 8, 9 and Tables 7, 8, 9 we report the kernel density estimates of the
distributions of f and f and the relative means and variances. Again, in all cases, the
distribution function estimated from the Monte Carlo simulation is more concentrated around
the true value when f is substituted with f.

Figures 10 and 11, where the 99 % confidence interval of the target distribution and the
contour plots of f and f are presented, show how f is more flat than f in the relevant region
of the state space.

Table 7: Bivariate normal, fi(z) = ;.

i f
mean -0.0376 | 0.0002
variance | 0.9483 | 0.0072

Table 8: Bivariate normal, fo(1) = 2.

Jo Jo
mean 1.0161 | 0.9824
variance | 2.1313 | 1.6956

5.4 Bayesian model

Consider the following model for s iid observations y;:

i=1,--,s

[(y:|0) ~ N (0, 0,)

where 05 is the known variance and # is the parameter of interest. We assume a conjugate

Normal prior:
h(0) ~ N(uo, 75)

where py and 77 are known hyperparameters. It is well known that posterior distribution of
the parameter of interest is

7r(9|y17"'ay5) N(ﬂmai)

where ) .
_ Mgoy t STy

/’Lﬂ' 2 2
0, + 8T)
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Table 9: Bivariate normal, f3(z) = z1z,.

f3 f3
mean 0.504 | 0.502
variance | 1.324 | 0.249

and 5 9
2 — Uy Ty

™ 2 2
0y + 8T

here 7 is the sample mean. In this setting we considered f(#) = 6 and:

¢(0) = ¢:1(0).

As a concrete example we used o, = 3, 4y = 0,79 = 3 and generated the actual sample of
size s = 10 from a Gaussian distribution with mean equal to one and standard deviation
equal to 3. The posterior distribution has p, = 1.7487 and o, = 0.904. In Figure 12 we
report the empirical distribution function of f and f. The mean and standard deviations
of these distributions are presented in Table 10. Again, the advantage in terms of variance
reduction of the method proposed is clear. Notice that, from Table 11, the estimated values
of the parameters k; and ks are different from zero, while, in a similar setting (same f and
¢), for the standard gaussian distribution these location parameters where estimated to be

approximately equal to zero.

Table 10: Bayesian model, f(#) =6, N = 500.

f f
mean | 1.7736 | 1.7399

variance | 0.8838 | 0.0362

Table 11: Estimated parameters for ¢ functions

model functions k1 ko ks ky ks ke kr kg kg
N(0,1) fa) =z 0 | -1.99 | -0.01 | 050 | 0
NO,1) | f@ =22 ] 0 |-009] 0 |02 0
() F(@)=x |-0.036 | -1.162 | -0.105 | -0.176 | 0.012
T(5) Flz) =2° | -2.621 | -0.107 | 0.017 | -0.033 | -0.019
biv. normal | f(z) =, 0 -1.498 | -1.693 | -0.333 0
biv. normal | f(z) = z? 0 -0.750 0 -0.333 0
biv. normal | f(z 0.375 | 0.049 | -0.013

122 | -0.080 | 0.073 | 0.011 | -0.920 | -0.326 | -0.325
=z 0.262 | 1.831 | -4.037 | -0.309 | 1.197

Bayesian f(zx)




6 Rao-Blackwellization

Rao-Blackwellization (Casella and Robert, 1996) can be seen as a special case of the variance
reduction technique proposed in this paper. The idea is to replace f(z*) in i by a conditional
expectation, E,[f(x')|h(x")], for some function h or to condition on the previous value of
the chain thus using E[f(z?)|z*~! = x| instead. Changing an expectation with a conditional
expectation naturally reduces the variance of the resulting MCMC estimator. The functions
E.[f(z)|h(z?)] and E[f(a")|z* ' = z] can be considered as special instances of f which do
not minimize o ¢ but certainly reduce it. This suggests general guidelines that can be adopted

to construct ¢ based on which we obtain f. In real applications, typically E.[f(z")|h(z*)]
or E[f(z")|z"~" = x| are not available in closed form, still, the researcher may have some
intuition on the parametric form of such functions (or estimate them via pilot runs of the
Markov chain). This intuition might aid the design of ¢.

7 Conclusions

We have presented a general purpose variance reduction technique which has been originally
suggested in the physics literature (Assaraf and Caffarel, 1999). The extent by which the
variance of MCMC estimators can be reduced is illustrated by some toy examples. Connec-
tions with the Rao-Blackwellization principle known in the MCMC literature are explored
and exploited to better apply the zero-variance technique in a Bayesian setting.
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Figure 1: Normal target: kernel density estimation of the distribution of f; and f;.
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Figure 2: Normal target: kernel density estimation of the distribution of f; and fg.
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Figure 4: Normal target: f(z) = z?
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Figure 5: Student-T(5): kernel density estimation of the distribution of f; and f;.
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Figure 6: Student-T(5): Kernel density estimation of the distribution of f, and f.
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Figure 7: Bivariate normal: kernel density estimation of the distribution of f; and f;.
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Figure 8: Bivariate normal: kernel density estimation of the distribution of f, and fs.
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Figure 9: Bivariate normal: kernel density estimation of the distribution of f; and fs.

Figure 10: Bivariate normal 99.9 % confidence region and f3 contour plot.
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Figure 11: Bivariate normal 99.9 % confidence region and f3 contour plot.
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Figure 12: Bayesian example: kernel density estimation of the distribution of f and f.
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