
Assessing and Improving the
Mutation Testing Practice of PIT

Thomas Laurent∗†, Mike Papadakis‡, Marinos Kintis‡, Christopher Henard‡, Yves Le Traon‡, Anthony Ventresque∗
∗Lero@UCD, School of Computer Science, University College Dublin, Ireland

†Ecole Centrale de Nantes, France
‡Interdisciplinary Centre for Security, Reliability and Trust, University of Luxembourg, Luxembourg
†thomas.laurent@eleves.ec-nantes.fr, ∗anthony.ventresque@ucd.ie, ‡{firstname.lastname@uni.lu}

Abstract—Mutation testing is extensively used in software
testing studies. However, popular mutation testing tools use
a restrictive set of mutants which does not conform to the
community standards and mutation testing literature. This can be
problematic since the effectiveness of mutation strongly depends
on the used mutants. To investigate this issue we form an extended
set of mutants and implement it on a popular mutation testing
tool named PIT. We then show that in real-world projects the
original mutants of PIT are easier to kill and lead to tests
that score statistically lower than those of the extended set of
mutants for a range of 35% to 70% of the studied classes. These
results raise serious concerns regarding the validity of mutation-
based experiments that use PIT. To further show the strengths
of the extended mutants we also performed an analysis using
a benchmark with mutation-adequate test cases and identified
equivalent mutants. Our results confirmed that the extended
mutants are more effective than a) the original version of PIT and
b) two other popular mutation testing tools (major and muJava).
In particular, our results demonstrate that the extended mutants
are more effective by 23%, 12% and 7% than the mutants of
the original PIT, major and muJava. They also show that the
extended mutants are at least as strong as the mutants of all the
other three tools together. To support future research, we make
the new version of PIT, which is equipped with the extended
mutants, publicly available.

I. INTRODUCTION

Mutation testing is an established criterion [1] that promises
to rigorously examine the programs under test. It operates by
determining whether the candidate test cases can distinguish
the behavior of the original program from the behavior of
some altered program versions, which are called mutants.
Mutants represent program defects and are used to assess test
thoroughness (by computing the ratio of mutants that exhibit a
different behavior from the original program). The technique
is powerful because mutants simulate well the behavior of real
faults [2], [3] and they lead to test cases that subsume almost
all the other test criteria [4], [5], [1].

Because of its remarkable power, mutation testing is widely-
used to support software testing experiments. This widespread
use of the technique is due to the fact that it has “entered
the mainstream” of practice [4] and the existing tool support.
Indeed in recent years several robust mutation testing tools
have been developed [6], [7], integrated with the most popular
build systems and development tools [6], [7], which make
mutation testing application easy and fast.

Unfortunately, modern mutation testing tools employ a
restrictive set of mutants that does not fully conform to the
recommendations made by the mutation testing literature. This
fact indicates potential issues with the effectiveness of the tools
given that mutation is sensitive to its mutants [1]. Since these
tools are extensively used in Software Engineering studies (as
shown by our literature review), it is mandatory to validate the
strength of their mutant sets. Furthermore, previous research
has demonstrated that existing mutation testing tools are
incomparable and provide inconsistent results [7], [8]. This
inconsistency highlights the need for a tool that subsumes the
others and can reliably support experimentation.

This paper presents a thorough study investigating the
above-mentioned issue using PIT [9]. We use PIT because it
is one of the most popular mutation testing tool in the recent
literature. PIT is open source and the most robust and easy
to use tool [6]. A recent study indicates significant limitations
of the mutants supported by PIT [7] and, thus, motivates the
need for a more comprehensive set of mutants that we develop
(referred to as extended mutants) and assess. Overall, our study
shows that the extended mutants are stronger than those in the
original version of PIT and that they provide better results
(statistically significant) for a range of 35% to 70% of the
classes of the projects we study. These results raise concerns
regarding the validity of the studies that use PIT.

To further show the strengths of the extended mutant set, we
also performed an additional analysis using a benchmark set
with hand-analysed data; composed of mutation-adequate test
suites and identified equivalent mutants. Our results demon-
strate that the extended mutants are more effective than a) the
original version of PIT and b) two other popular mutation
testing tools (major and muJava). In particular our results
demonstrate that 23%, 12% and 7% of the killable extended
mutants are respectively not killed by the adequate test suites
that were designed to kill the mutants of the original PIT,
major and muJava mutation testing tools. At the same time
tests killing the extended mutants also kill all the mutants
generated by the other tools. Our results also show that the
extended mutants are stronger even when all the mutants of all
the other three tools are combined, i.e., merging their mutant
sets. Therefore, we equipped PIT with an extended set of
mutant operators.

II. TERMINOLOGY & BACKGROUND

A. Mutation Testing

Mutation analysis operates by injecting defects in the
software under investigation. Thus, given a program, several
variants of this program are produced, each one containing a
defect. These are called mutants and they are made by altering
(mutating) the code, either source code or executable binary
code, of the program under test. The creation of mutants is
based on syntactic rules, called mutant operators, that trans-
form the syntax of the program. For example, an arithmetic
mutant operator changes an instance of an arithmetic operator
such as ’+’ to another one, such as ’−’.

Mutants are used to measure test thoroughness by compar-
ing the runtime behavior of the original, non-mutated, and the
mutated programs. Thus, when some differences are found, we
exhibit behavior discrepancies that are attributed to the ability
of the used tests to project the syntactic changes of the mutants
to its behavior, i.e., to show a semantic difference. When
mutants exhibit differences in their behavior they are called
killed. Those that do not exhibit differences are called live.
Mutants might be live either because the employed test cases
are not capable of killing them or because they are functionally
equivalent to the original program. Mutants belonging to the
latter case are called equivalent [10].

Mutation testing measures the number of mutants that are
killed and calculates the ratio of those over the total number
of mutants. This ratio represents the adequacy metric and is
called mutation score.

B. Mutant Selection

Performing mutation testing using a specific set of operators
was studied with programs written in Fortran [11] and in C
[12]. As a result, Java mutation tools were built based on the
findings of these studies. To address scalability, tool developers
made further reductions. Thus, popular tools, like PIT [9],
support a very small and restrictive set of mutants that does
not follow any previous studies or practical experience.

The mutants supported by the current release of PIT have
several shortcomings. One such example is the relational
operator for which PIT replaces one instance of the operator
by only another one, i.e., it mutates < only to <=, or <=
only to <, or > only to >=, or >= only to >. However, this
practice is not sufficient. Indeed, previous studies have shown
that in this case, three mutants are needed to avoid a reduced
effectiveness of the method [13], [14].

Although practical, mutant selection should not come at the
expense of the method’s effectiveness. Therefore, when using
mutation for research purposes, it is mandatory to make sure
that a representative mutant set is employed.

C. Disjoint Mutants

In literature, mutation testing is extensively used to support
experimentation [15], [16] by quantifying the level of test thor-
oughness achieved by various testing methods. Thus, mutation
score serves as a comparison basis between testing techniques
and hence, to judge the more effective one. While this practice

is quite popular in research [17], there is evidence suggesting
that it can introduce severe problems, which can threaten the
validity of the conducted research [17].

The problem is that not all mutants are of equal power [18],
which means that some are useful and some are not. Indeed,
mutants can be trivial, easy to kill, duplicated, equivalent or
hard to kill. Those of the last category are of particular interest
since they lead to strong tests [3], [18]. Hard to kill, trivial and
easy to kill mutants are defined with respect to the employed
test suite [18]. Thus, mutants killed by a small percentage of
tests that exercise them are hard to kill, while those killed by
a large one are easy to kill.

When using mutation as a basis for comparing testing
methods, a filtering process that sweeps out the duplicated
and equivalent mutants is needed [10]. However, this process
is not adequate since in most cases many mutants tend to be
killed jointly [17], [19]. Thus, they do not contribute to the test
process despite being considered. This has an inflation effect
on the mutation score computation since only a very small
fraction of mutants contribute to the test process1.

This issue was initially raised by Kintis et al. [19] who
introduced the concept of disjoint mutants, i.e., a representative
subset of mutants that is free of redundant ones. Their use is
motivated by the same study which demonstrated that mutant
sets suffer from the inflation problem caused by redundant
mutants. Later Ammann et al. [20] introduced the concept
of “minimum mutants”, which forms the smallest possible
representative subset of mutants, based on the notion of mutant
subsumption and suggested it as a way to bypass the mutation
score inflation problem. Papadakis et al. [17] demonstrated
that there is a very good chance (> 60% for an arbitrary
experiment) to come to a wrong conclusion when using all
mutants (rather than only the disjoint mutants). Along these
lines, Kurtz et al. [21] found that selective mutation performs
well when evaluated with all the mutants but performs poorly
when evaluated with the subsuming ones. These results imply
that we need to take into account mutant redundancy when
using mutation testing.

III. EXPERIMENTAL STUDY

A. Definition of the Experiment and Research Questions

Mutation analysis is typically used as supported by the
existing mutation testing tools. However, a central role in
mutation testing is played by the mutants that are used;
meaning that the effectiveness of the method is sensitive to the
mutants employed. Therefore, it is important to know whether
the mutants used by popular mutation testing tools are suitable
for test assessment.

To this end, we seek to assess the completeness of PIT
mutants. This leads us to our first question:

RQ1 (Effectiveness). Is there any effectiveness difference
between the PIT mutants and the extended ones?

1Kintis et al. [19] report that this is 9% of mutants, for Java programs using
the muJava mutation testing tool, Amman et al. [20] report 10% for the Java
mutants of the muJava tool and 1% for the C mutants of the Proteum tool,
Papadakis et al. [17] report a range from 0.3% to 1.7%, of C mutants.

We perform our experiments on real-world projects using
their developer test suites augmented with automatically gener-
ated ones, using a random test generation tool called Randoop.
To further strengthen our study, we also perform an additional
experiment by repeating our analysis on a benchmark set with
hand-analysed data of the PIT mutants, i.e., mutation-adequate
test cases and identified equivalent mutants.

Mutation score is affected by the number of mutants, the
number of equivalent mutants, the number of trivial and hard
to kill mutants, all of which differ when comparing two sets
of mutants. Thus, we perform an objective comparison, i.e.,
we measure the extent to which test cases selected based on
one set of mutants (using the test selection process that is
detailed in Section III-E) kill the killable mutants of the other
set. Objective comparisons are common practice in software
testing research, e.g., [3], [11], and they can assess the relative
strengths of the two mutant sets by avoiding the influence of
the above factors.

Recent research has shown that mutation score suffers from
an inflation effect caused by trivial mutants [17], [19]. To
circumvent this problem and to make a more robust empirical
study, we measure the ratios of the disjoint mutants that are
killed, [17], [20], [22] and report results based on the objective
comparison scores using them.

Our study has focussed on PIT, however, a natural question
to ask is how extended mutants compare with the mutants
supported by other mutation testing tools. Mutation testing
tools like muJava [23] and major [24] have been developed by
researchers and thus, it is likely that their mutants are much
stronger than those of PIT. Hence, we examine:

RQ2 (Other tools). Is there any effectiveness difference
between the extended mutants and those supported
by the muJava and the major mutation testing tools?

To answer RQ2 we repeat the analysis of RQ1 using a
publicly available benchmark set that contains hand-analysed
mutants of the muJava and major tools, i.e., mutation-adequate
test cases and identified equivalent mutants (of both muJava
and major) [7]. We also constructed a super-set of mutants
based on those generated by all three used mutation testing
tools (the original version of PIT, the muJava and major).

B. Subject Programs

Our experiments involve two program sets. The first set
contains 4 Java projects, presented in Table I. We selected
these programs since they have been used extensively in the
recent mutation testing literature, e.g., [25], [26].

Joda-time is a date and time manipulation library. Jfreechart
is a popular library for creating charts and plots. Jaxen is an
engine for evaluating XPath expressions and Commons-lang
is a set of utility methods for the commons classes of Java.

The second set (benchmark [7]) is composed of selected
methods from 4 real-world programs (Commons-Math, Com-
mons, Pamvotis and XStream) and two small ones (Triangle
and Bisect). The benchmark is accompanied by a set of hand-
analysed mutants of PIT, muJava and major, together with
mutation-adequate test suites. We selected this benchmark

TABLE I
TEST SUBJECTS. THE LINES OF CODE (LOC) AND CLASSES ARE ONLY

THOSE CORRESPONDING TO CLASSES HAVING TEST CASES.

Subjects Version LoC Classes Tests

joda-time 2.8.1 18,611 212 5,440
jfreechart 1.0.19 46,986 346 8,639
jaxen 1.1.6 6,790 160 12,490
commons-lang 3.3.4 16,286 200 10,839

since it provides a realistic playground with (adequate) test
suites specifically developed using each one of the three
mutation testing tools we study. For details regarding the
benchmark, please refer to the study of Kintis et al. [7].

C. Experimental Environment and Used Tools

We use PIT v1.1.5 with its mutants and our implementa-
tion of the extended ones (detailed in the next section). To
answer RQ2, we use major v1.1.8 [24] and muJava v3 [23].
Our experiments were performed on a quad-core Intel Xeon
processor (3.1GHz) with 8GB RAM running Ubuntu 14.04.3
LTS (Trusty Tahr).

D. Employed Mutants

Table II details the studied mutants. PIT mutants (called
‘common’) are described in the upper part of the table
while the extended ones are described in the lower part.
The extended mutants were formed based on our experience,
the discussions made during the Mutation 2014 and 2015
workshops, e.g., [27], and the literature. In particular, we adapt
to Java the set of mutants that was suggested and used in the
following studies [2], [3], [11]. Note that the extended mutants
include all the common ones.

Special care was taken to reduce the duplicated mutant
instances [10] by removing the overlap between the operators.
It is also possible to reduce some redundancy when using
weak mutation analysis. However, using such weak mutation
analysis may degrade the effectiveness of the method in cases
of mutants that cannot be propagated [14]. To avoid such
a risk, we rely on disjoint mutants to remove redundancies
among the mutants. Disjoint mutants were identified using the
procedure proposed by Papadakis et al. [17].

E. Analysis Procedure for Answering the Research Questions

We use both mutation adequate and non-adequate test
suites. In the case of adequate test suites we use a recent
benchmark containing test suites designed (manually) to kill
all the mutants supported by PIT, muJava and major [7]. Thus,
we have three test suites that we merge and make a large
one that we call the ‘universe’ suite. The universe suite was
used to compute the disjoint mutants of the extended set.
This practice results in an under-approximation of the killable
mutants of the extended set with the unfortunate effect of under
estimating their effectiveness. This is not a problem if we
demonstrate that the extended mutants are more effective than
the mutants of the other tools since their actual effectiveness
will be higher. Note that the killable mutants of PIT, muJava

TABLE II
COMMON (PIT MUTANTS) AND EXTENDED MUTANTS.

Name Transformation Example Name Transformation Example

C
om

m
on

Cond. Bound.
Replaces one relational operator instance
with another one (single replacement).

< ≤ Return Values
Transforms the return value of a function
(single replacement).

return 0 return

1

Negate Cond.
Negates one relational operator (single
negation).

== != Void Meth. Call Deletes a call to a void method. void m()

Remove Cond. Replaces a cond. branch with true or false. if (...) if (true) Meth. Call Deletes a call to a non-void method. int m()

Math
Replaces a numerical op. by another one
(single replacement).

+ − Constructor Call Replaces a call to a constructor by null. new C() null

Increments
Replace incr. with decr. and vice versa
(single replacement).

++ −− Member Variable
Replaces an assignment to a variable with
the Java default values.

a = 5 a

Invert Neg. Removes the negative from a variable. −a a Switch
Replaces switch statement labels by the
Java default ones.

Inline Const.
Replaces a constant by another one or
increments it.

1 0, a a + 1

E
xt

en
de

d

ABS Replaces a variable by its negation. a −a OBBN
Replaces the operators & by | and vice
versa.

a&b a|b

AOD
Replaces an arithmetic expression by one of
the operand.

a + b a ROR
Replaces the relational operators with
another one. It applies every replacement.

< ≥, < ≤

AOR
Replaces an artihmetic expression by
another one.

a + b a ∗ b UOI
Replaces a variable with a unary operator or
removes an instance of an unary operator.

a a++

CRCR
Replaces a constant a with its negation, or
with 1, 0, a + 1, a− 1.

a −a, a a − 1. Commons All the common operators as described above.

TABLE III
NUMBER OF MUTANTS, KILLABLE MUTANTS AND MUTATION SCORE (MS) FOR THE COMMON (PIT MUTANTS) AND EXTENDED MUTANTS, PER CLASS.

joda-time jfreechart jaxen commons-lang
Measurement Common Extended Common Extended Common Extended Common Extended

#Mutants

Min. 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Med. 100.00 262.00 98.00 259.00 25.00 46.00 32.00 60.00
Mean 183.77 516.64 219.04 685.33 83.76 203.18 174.96 510.13
Max. 1362.00 4,754 3,436.00 9,742.00 3,912.00 14,524.00 4,826.00 15,578.00

#Test Cases

Min. 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Med. 206.00 206.00 34.00 34.00 215.00 215.00 37.00 37.00
Mean 565.68 565.68 256.06 256.06 1,238.61 1,238.61 267.00 267.00
Max. 4,789.00 4,789.00 8,014.00 8,014.00 9,308.00 9,308.00 5,047.00 5,047.00

MS

Min. 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Med. 0.79 0.72 0.36 0.27 0.8 0.75 0.86 0.78
Mean 0.73 0.67 0.41 0.33 0.67 0.63 0.75 0.69
Max. 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

and major have been manually verified [7]. In the case of
non-adequate test suites, we used the developer test suites
augmented with a state-of-the-art test generation tool called
Randoop [28] and applied our test selection procedure:

Test selection was performed, starting from empty sets,
by incrementally adding random tests (from the whole test
suites) that increase the mutation score. So, if a randomly
selected test failed to kill any additional mutants, i.e., the test
is redundant with respect to the employed mutants, the test was
not included. This process mimics what testers do when they
use mutation to improve their test suites [1], [3] and ensures
that the selected tests are relevant to the mutants we study.
This a typical process followed by many studies [3], [11].

To compare the mutant sets, we use the objective com-
parison score. This is defined as the ratio of (measurement
a) divided by (measurement b), where (measurement a) is
the number of the disjoint mutants of the extended set that
are killed by the tests selected based on PIT mutants and
(measurement b) is the number of the killable disjoint mutants
of the extended set (approximated by using the whole test

suites). The objective comparison score represents the disjoint
mutation score of the PIT mutants’ tests (selected based on
PIT). The distance from value 1 on the objective comparison
scores quantifies the ratio of the (disjoint) extended mutants
that were not killed by the tests selected based on the PIT
mutants. Since the tests were selected at random, this process
was repeated 30 times. As a result, we obtain 30 instances of
(measurement a) for every class of each project.

To answer RQ1 (in the case of large real-world projects),
we record the number of classes for which there is a statistical
and practical significance difference between (measurement a)
and (measurement b) using a Wilcoxon test and the Vargha-
Delaney effect size (Â12). From the statistical test we obtain a
p-value which in essence represents the probability that (mea-
surement b > a). We consider the differences as statistically
significant if they provide p-values lower than 0.05 and report
the size of the differences (Â12 values). We also record and
visualise the objective comparison scores. For the case of the
benchmark programs (with adequate test suites) we record the
ratios of the disjoint mutants (of the extended set) that are

TABLE IV
NUMBER AND PROPORTION OF CLASSES WHERE EXTENDED MUTANTS

ARE STATISTICALLY SUPERIOR TO PIT (RQ1 - EFFECTIVENESS).

Subject #Classes (proportion) Â12 > 0.50 Â12 > 0.75

joda-time 148 (70%) 71% 63%
jfreechart 109 (32%) 35% 29%
jaxen 60 (38%) 39% 30%
commons-lang 92 (46%) 49% 43%

killed by the test suites designed to kill the PIT mutants.
To answer RQ2 we use a benchmark (with adequate test

suites) and measure the disjoint mutation score of the extended
mutants that is achieved by the test suites that were designed
to kill all the mutants of muJava and major (for details refer to
[7]). To further examine the strengths of the extended mutants,
we compared them with a superset of mutants, constructed by
merging the mutants of PIT (original version), muJava and
major. Similarly to the process we used in RQ1 we computed
the disjoint mutants of the superset and the extended set, using
the universe test suite, and selected two test suites (one for the
superset and one for the extended), using our test selection
procedure. Based on these suites and disjoint mutants we
compare the two mutant sets.

IV. RESULTS & ANSWERS TO THE RESEARCH QUESTIONS

A. RQ1 - Effectiveness

Table IV records the number and proportion of the classes
for which there is a statistically significant difference between
(measurement a) and (measurement b). As it can be seen, there
is a significant difference that ranges from 35% to 70% of the
project classes. The differences also have large (Â12) effect
sizes indicating that a significant number of faults introduced
by the extended mutants are not encoded by the PIT mutants.

Figure 1 records the objective comparisons scores for the 4
programs. The objective comparison has been performed 30
times per class (represented on the x-axis), thus, yielding 30
different scores for each class of each program. The 4 colours
of the plot represent the distribution of the 30 ordered scores
according to the quartiles. Thus, from the lightest to the darkest
colour, the first, second, third and fourth 25% of the resulting
scores are represented. For instance, a light gray bar (the first
quartile reaching 0.6) means that the lowest 25% of the 30
scores obtained are below or equal to 0.6. The black area
represents the values above the third quartile, i.e., last 25% of
the 30 scores. In that, if a bar is completely light gray, it means
that most of the mutants killed by the tests are the same on
both sets, while the presence of darker colours on the graph
indicates that there are mutants missed by the tests.

The plots of Figure 1 reveal that there is a significant ratio of
extended mutants that were missed by the tests of the common
mutants. This is evident in all the examined cases. In the worst
case, i.e., joda-time, there were too many mutants missed in
more than half of the project classes. In particular, more than
30% of the extended mutants were missed in the majority of
the classes. This indicates a major difference between the two
sets of mutants.

TABLE V
PIT, MAJOR AND MUJAVA MUTANTS VS EXTENDED MUTANTS WHEN

USING MUTATION ADEQUATE TEST SUITES (RQ1, RQ2).

Subject PIT major muJava

gcd 78% 78% 67%
orthogonal 100% 100% 100%
toMap 50% 67% 83%
subarray 83% 100% 83%
lastIndexOf 76% 94% 94%
capitalize 67% 100% 100%
wrap 75% 84% 92%
addNode 94% 94% 94%
removeNode 71% 86% 100%
classify 62% 88% 100%
decodeName 89% 67% 100%
sqrt 80% 100% 100%

Average 77% 88% 93%

That far in our results we only show results related to large
real-world projects under-approximated by test suites (using
both developer and automatically generated tests). While this
practice is common in the literature, e.g., [26], [2], both
developer and automatically generated test suites tend to give
low mutation scores. This limits the differences between the
examined mutant sets [2]. Therefore, to strengthen our study,
we repeat our analysis on a benchmark set with hand-analysed
data of the PIT mutants, i.e., mutation-adequate test cases and
identified equivalent mutants. Thus, we use the benchmark
test suites that were specifically designed to kill the PIT
mutants and measure the ratio of the extended (disjoint)
mutants that are killed by them. The results are recorded on
the second column (named PIT) of Table V and show that
the effectiveness of PIT ranges from 50% to 100% with an
average value 77%. This indicates that, even when adequate
test suites are used, extended mutants are much stronger (by
23%) than the original mutants.

Our results show that there is a significant difference
between the PIT mutants and the extended ones suggesting
that a large number of (killable) mutants, from the extended
set, is not killed by the tests selected using the PIT mutants.

B. RQ2 - Comparison with major and muJava

This question concerns the comparison with other mutation
testing tools when adequate test suites are used. Our results
are recorded in Table V and show that the effectiveness of all
three examined tools is much lower than the extended mutants.
MuJava scores best with 93%, major follows with 88% and last
is PIT with 77%. It is noted that the tests selected based on the
extended mutants kill all the mutants of the three other tools,
when considered either alone or altogether. When comparing
the union of the mutants produced by all three tools with the
extended ones we find that they are of equal power.

Our results show that the extended mutants are much
stronger than those of PIT, major and muJava and at least
as effective as using all these tools together.

0

0.2

0.4

0.6

0.8

1

0 50 100 150 200

O
bj

ec
tiv

e
co

m
pa

ris
on

 sc
or

e

joda-time (disj.)
min - 1st quartile

1st quartile - median
median - 3rd quartile

3rd quartile - max
0

0.2

0.4

0.6

0.8

1

0 50 100 150 200 250 300 350

O
bj

ec
tiv

e
co

m
pa

ris
on

 sc
or

e

jfreechart (disj.)
min - 1st quartile

1st quartile - median
median - 3rd quartile

3rd quartile - max

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100 120 140 160

O
bj

ec
tiv

e
co

m
pa

ris
on

 sc
or

e

jaxen (disj.)
min - 1st quartile

1st quartile - median
median - 3rd quartile

3rd quartile - max
0

0.2

0.4

0.6

0.8

1

0 50 100 150 200

O
bj

ec
tiv

e
co

m
pa

ris
on

 sc
or

e

commons-lang (disj.)
min - 1st quartile

1st quartile - median
median - 3rd quartile

3rd quartile - max

Fig. 1. Objective comparison results (RQ1 - effectiveness). The plots display the results of the disjoint mutants. The y-axis represents the distribution of the
30 scores per class, i.e., the minimum, first quartile, median, third quartile and maximum, while the x-axis represents the Java classes of the programs.

V. CONCLUSIONS

This paper investigates the validity of mutants used by
popular mutation testing tools. Our study reveals a large
divergence in the effectiveness of the PIT mutants from ours
(called extended mutants). Extended mutants score consid-
erably higher than those supported by the PIT, major and
muJava mutation testing tools in most of the examined cases.
To support future research, we augmented PIT, which is the
most popular mutation testing tool, with the extended mutants.
We make our version of PIT publicly available [9].

ACKNOWLEDGMENT

This work was supported with the financial support of the
Science Foundation Ireland grant 13/RC/2094.

REFERENCES

[1] P. Ammann and J. Offutt, Introduction to software testing. Cambridge
University Press, 2008.

[2] T. C. Thierry, M. Papadakis, Y. L. Traon, and M. Harman, “Empirical
study on mutation, statement and branch coverage fault revelation that
avoids the unreliable clean program assumption,” in ICSE, 2017.

[3] J. H. Andrews, L. C. Briand, Y. Labiche, and A. S. Namin, “Using
Mutation Analysis for Assessing and Comparing Testing Coverage
Criteria,” IEEE Trans. Softw. Eng., vol. 32, no. 8, pp. 608–624, 2006.

[4] J. Offutt, “A mutation carol: Past, present and future,” Information &
Software Technology, vol. 53, no. 10, pp. 1098–1107, 2011.

[5] P. G. Frankl, S. N. Weiss, and C. Hu, “All-uses vs Mutation Testing:
an Experimental Comparison of Effectiveness,” Journal of Systems and
Software, vol. 38, no. 3, pp. 235–253, September 1997.

[6] M. Delahaye and L. du Bousquet, “Selecting a software engineering tool:
lessons learnt from mutation analysis,” Softw., Pract. Exper., vol. 45,
no. 7, pp. 875–891, 2015.

[7] M. Kintis, M. Papadakis, A. Papadopoulos, E. Valvis, and N. Malevris,
“Analysing and comparing the effectiveness of mutation testing tools:
A manual study,” in International Working Conference on Source Code
Analysis and Manipulation, 2016, pp. 147–156.

[8] R. Gopinath, I. Ahmed, M. A. Alipour, C. Jensen, and A. Groce, “Does
choice of mutation tool matter?” Software Quality Journal, pp. 1–50,
2016.

[9] H. Coles, T. Laurent, C. Henard, M. Papadakis, and A. Ventresque, “PIT:
a practical mutation testing tool for java (demo),” in ISSTA, 2016, pp.
449–452.

[10] M. Papadakis, Y. Jia, M. Harman, and Y. L. Traon, “Trivial compiler
equivalence: A large scale empirical study of a simple, fast and effective
equivalent mutant detection technique,” in ICSE, 2015, pp. 936–946.

[11] A. J. Offutt, A. Lee, G. Rothermel, R. H. Untch, and C. Zapf, “An
Experimental Determination of Sufficient Mutant Operators,” ACM T.
Softw. Eng. Meth., vol. 5, no. 2, pp. 99–118, April 1996.

[12] A. M. R. Vincenzi, J. C. Maldonado, E. F. Barbosa, and M. E. Delamaro,
“Unit and integration testing strategies for C programs using mutation,”
Softw. Test., Verif. Reliab., vol. 11, no. 3, pp. 249–268, 2001.

[13] K.-C. Tai, “Theory of Fault-based Predicate Testing for Computer
Programs,” IEEE Trans. Softw. Eng., vol. 22, no. 8, pp. 552–562, 1996.

[14] M. Papadakis and N. Malevris, “Automatic mutation test case generation
via dynamic symbolic execution,” in ISSRE, 2010, pp. 121–130.

[15] J. H. Andrews, L. C. Briand, and Y. Labiche, “Is Mutation an Appro-
priate Tool for Testing Experiments?” in ICSE, 2005, pp. 402 – 411.

[16] Y. Jia and M. Harman, “An analysis and survey of the development of
mutation testing,” IEEE Trans. Softw. Eng., vol. 37, no. 5, pp. 649 –678,
2011.

[17] M. Papadakis, C. Henard, M. Harman, Y. Jia, and Y. L. Traon, “Threats
to the validity of mutation-based test assessment,” in ISSTA, 2016, pp.
354–365.

[18] Y. Jia and M. Harman, “Higher Order Mutation Testing,” Journal of
Information and Software Technology, vol. 51, no. 10, pp. 1379–1393,
October 2009.

[19] M. Kintis, M. Papadakis, and N. Malevris, “Evaluating mutation testing
alternatives: A collateral experiment,” in APSEC, 2010, pp. 300–309.

[20] P. Ammann, M. E. Delamaro, and J. Offutt, “Establishing theoretical
minimal sets of mutants,” in ICST, 2014, pp. 21–30.

[21] B. Kurtz, P. Ammann, J. Offutt, M. E. Delamaro, M. Kurtz, and
N. Gökçe, “Analyzing the validity of selective mutation with dominator
mutants,” in FSE, 2016, pp. 571–582.

[22] C. Henard, M. Papadakis, M. Harman, Y. Jia, and Y. L. Traon, “Com-
paring white-box and black-box test prioritization,” in ICSE, 2016, pp.
523–534.

[23] Y.-S. Ma, J. Offutt, and Y. R. Kwon, “MuJava: an automated class
mutation system,” Software Testing, Verification and Reliability, vol. 15,
no. 2, pp. 97–133, 2005.

[24] R. Just, F. Schweiggert, and G. M. Kapfhammer, “MAJOR: an efficient
and extensible tool for mutation analysis in a java compiler,” in ASE,
2011, pp. 612–615.

[25] L. Inozemtseva and R. Holmes, “Coverage is not strongly correlated
with test suite effectiveness,” in ICSE, 2014, pp. 435–445.

[26] G. Fraser and A. Zeller, “Mutation-driven generation of unit tests and
oracles,” IEEE Trans. Software Eng., vol. 38, no. 2, pp. 278–292, 2012.

[27] P. Amman, “Transforming mutation testing from the technology
of the future into the technology of the present.” [Online].
Available: https://sites.google.com/site/mutationworkshop2015/program/
MutationKeynote.pdf?attredirects=0&d=1

[28] C. Pacheco, S. K. Lahiri, M. D. Ernst, and T. Ball, “Feedback-directed
random test generation,” in ICSE, 2007, pp. 75–84.

