
Business Intelligence on Complex Graph Data∗

Dritan Bleco
Athens University of Economics and Business

76 Patission Street
Athens, Greece

dritanbleco@aueb.gr

Yannis Kotidis
Athens University of Economics and Business

76 Patission Street
Athens, Greece

kotidis@aueb.gr

ABSTRACT
Advances in the Internet of Things will provide massive amounts
of context-aware information that would need to be ingested and
understood by supporting IT infrastructures, influencing running
processes that trigger actions. As a result, future Business Intelli-
gence (BI) platforms would need to be able to process and analyze
complex data. In this paper, we adapt a generic graph model that
may be used to represent data in many applications of interest. We
then show how analytical queries over these data can be naturally
expressed via an OLAP-like aggregation framework we introduce.
We describe how ad-hoc aggregations can be easily decomposed
into smaller independent computations via a proper query rewriting
mechanism. Our techniques provide the basis for selecting materi-
alized views in order to expedite computation of frequent analytical
queries in large datasets, enabling data warehousing of collections
consisting of millions of graphs. Our experiments demonstrate the
benefits of our methods.

1. INTRODUCTION
The vision behind the Internet of Things (where “things” refer

to the general idea of arbitrary data acquisition infrastructures) is
to provide management, scalability and heterogeneity of devices
(sensors, RFID enabled objects, actuators) and users (humans but
also machines). All these “things” will provide massive amounts of
context-aware information that would need to be ingested and un-
derstood by supporting IT infrastructures, influencing running pro-
cesses that trigger actions. Real-Time Enterprise (RTE) promises
to leverage this type of data gathering technology to reduce the gap
between when data is recorded in an organization and when it is
available for information processing and decision-making. Never-
theless, adapting the RTE paradigm requires significant commit-
ments, not only in deploying low-level sensing and data gathering
infrastructures, but also in overhauling existing Business Intelli-
gence (BI) platforms so that they can cope with complex data of
disparate formats [1].

∗This work was partially supported by the Basic Research Funding
Program, Athens University of Economics and Business.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$10.00.

Complexity in the data may be structural or contextual. Struc-
tural complexity refers to multiple linked pieces of data (as in web
logs), while contextual complexity arises from interdependencies
of the data stream to its environment whether the later is real (e.g.
in a supply-chain environment, context is provided by the spatio-
temporal coordinates of the data), or virtual (e.g. the business pro-
cess, in a service provisioning application). Thus, unlike retail in-
dustries, which mainly deal with flat transactional “basket-type”
data, the future will call for decision making on data with complex
internal structure. Recent IT platforms, such as Workflow Man-
agement Systems (WMS) and Customer Relationship Management
(CRM) software already face the need to handle data that does not
conform to the basket paradigm, primarily used in data warehous-
ing. Instead, every “record” in these applications describes a se-
quence of events that captures the interaction between a customer’s
activity and various components of the organization. Such records
are better described using a graph model that captures state tran-
sitions and related cost information or other business- or process-
specific attributes.

Another application example includes sophisticated Supply Chain
Management (SCM) that poses complex decisions for companies
in competitive industries. Difficulty increases because of the need
to draw on multiple information sources, especially when those
sources provide asynchronous updates. RFID readers, placed at
warehouses, trucks and distribution hubs capture the list of RFID
tags sensed in their vicinity and, at the same time, record context
information such as time of observation, location, environmental
conditions (temperature, humidity) etc. In this example, the dis-
tribution network can be abstracted as a graph, while article distri-
bution records (composed by multiple RFID observations obtained
at different times and locations) are annotated sub-graphs of the
network streamed by the monitoring infrastructure. Additional ex-
amples of applications that need to handle complex (structurally or
contextually) data include Enterprise Asset Management (EAM)
(where heterogeneous sensor-nets are used in monitoring critical
infrastructures), factory automation, data analysis of web logs etc.

A common challenge in all aforementioned applications is how
we model data that carries complex structural or contextual infor-
mation and, subsequently, how we analyze massive volumes of
such data in an effective manner? In order to address shortcom-
ings of existing BI platforms, in this work we adapt graph models
as a generic tool for describing complex datasets. We then examine
the necessary primitives that can help decision makes analyze large
volumes of graph data. Past work has demonstrated that conven-
tional data warehouse implementations are incapable of providing
flexible analysis of graph datasets [2, 3]. In the popular multidi-
mensional approach proposed for the basket-data paradigm, data
are projected and aggregated using a set of dimensions (e.g. prod-

ucts and customers). In a graph database the structural properties
of the graph are also dimensions of interest.

In this paper we consider the problem of enabling BI analy-
ses over large-scale graph datasets. We describe a comprehen-
sive framework for modeling analytical queries that range over the
structure of the graph. For example, queries like “find the short-
est delivery path” in a SCM application are easily captured by our
framework by first specifying a structural condition that limits the
scope of the examined records (i.e. the subgraph of interest) and
then describing a pair of aggregate functions that will be used to
consolidate the collected measures (timing information in this ex-
ample). The first aggregate function, termed intra-path, aggregates
selected measures over a path (for instance the SUM() function
is used to compose the length of each path in the aforementioned
query). The second function termed inter-path aggregates data over
multiple paths given the structural conditions specified. In this
query, MIN() will be used for inter-path aggregation in order to
compute the shortest path.

As will be explained, in our framework we can decompose com-
plex, ad-hoc aggregations on graph data into smaller, independent
computations via proper query rewriting. In the context of a large-
scale data warehouse, our framework allows re-use of precomputed
materialized query views during query evaluation and, thus, en-
ables view selection decisions that are of immense value in opti-
mizing heavy BI workloads [4, 5]. The contributions of our work
are:

• We present a comprehensive framework for modeling and
analyzing graph databases. We demonstrate that our frame-
work allows the composition of complex aggregations on se-
lected parts of the graph, allowing us to accommodate many
interesting analytical tasks in real-life applications.

• We discuss how complex queries can be rewritten via a de-
composition of the graph model. These rewritings enable
graph-aware optimization of user queries through the use of
precomputed materialized views.

• We provide an evaluation of our techniques using graph databases
of realistic sizes. Our results demonstrate that expensive
queries can be rewritten so as to re-use precomputed results
selected by a view selection algorithm. Per these rewritings,
the cost of a user query is reduced to a fraction of the cost of
the original query that is oblivious to the existing material-
ized views in the system.

The rest of this paper is organized as follows. In Section 2 we
present a motivational example, including analytical tasks that can
benefit from our techniques. In Section 3 we discuss related work.
In Section 4 we introduce our graph model, while in Section 5 we
discuss analytical queries over the graph data, query rewriting and
view selection. Section 6 presents our experiments and Section 7
contains concluding remarks.

2. MOTIVATION
As a motivational example we will describe a SCM application.

This application tracks the different routes that a customer order
follows from production lines to the consumer hands. A customer
order is formed from products that may be produced at different
product lines. Products follow different paths until they are deliv-
ered to the customer. Multiple warehouses are located among the
production lines and the shipping points and can stage the prod-
ucts while the order is being assembled. At every location, RFID
readers are used to keep track of the location of the articles. These

RFID readers are part of our application and the data they produced
is streamed to a central location for further analysis.

As we mentioned an order follows one or more paths so our web
supply chain application produces graph data. Consider the graph
depicted in Figure 1. The graph consists of a set of nodes and
edges among them. The two nodes at the left (A and B) are prod-
uct lines, while the right-most nodes (L, O and M) depict customer
end-points (or pick-up locations, stores, etc.). All other nodes de-
pict warehouse locations where the products are stored temporar-
ily until they are delivered to the customer. The nodes may have
several attributes such as location, storing capacity, etc. Similarly,
customers have additional attributes such as customer name, cus-
tomer category, etc. A decision maker would like to analyze data
according to all these attributes over different parts of the graph.

Figure 2 captures information related to a particular customer’s
order that we will refer to as a record henceforth. For this order, dif-
ferent products depart production lines A and B and traverse ware-
houses that are in various regions (D . . . K). The order completes
when all articles have arrived at the customer end points L, M . In
this example, we record as a single measure in each edge the num-
ber of days for transportation from the starting node of the edge to
the ending node. As an example, in this record, articles produced
at node A took 21 days to arrive at C. On the other hand, when
products arrive to a warehouse location, they can be stored/delayed
for several days. This wait-time is depicted as a measure within
the node. For example, warehouse D induces a wait-time of 5 days
for every product that arrives for this order (as will be apparent our
framework can also describe the internal processing of products at
node D in more detail, if this is required by the application).

In this setting, the sum of measures (including measures on nodes)
along a single path computes the total time for products that follow
this route, to arrive at the customer location. As an example the
products that traverse locations along path [ADIM] have a aggre-
gate time cost of 61 days.

Assume that each node (based on other attributes we maintain in
the data warehouse) is located in some region. The nodes in the
dark area of Figure 2 are located in Athens. An analyst may want
to abstract all nodes inside Athens and see them as a single node.
This operation is analogous to a roll-up based on location attributes
in the data cube terminology. This abstract node (lets call it U)
has six input edges (edges that emanate from a node outside this
region) and five output edges. Inside the abstract node there are
internal paths (for instance [DGK]) and time costs associated with
these internal paths.

Given these data there are a few basic queries that one would like
to pose like:

• Q1: What is the total order completion time?

• Q2: What is the total processing time for parts that are shipped
through warehouses located in Athens?

• Q3: Which are the fastest and the slowest routes that connect
a location where articles arrive in the Athens region and a
location from where articles depart the Athens region?

Query Q1 in this example requires us to compute the longest
path between nodes A,B and L, O, M . This longest path compu-
tation will be performed in the graph instances of all orders stored
in the data warehouse. Obviously this computation will require
substantial processing, for an SCM application that keeps track of
thousands of orders. For the sample data record on Figure 2 the
longest path is [BNM] with a delay of 122 days.

Query Q2 is similar, however, this time the longest path compu-
tation needs to be restricted to consider only paths that transverse

A

32

11

B

E

D

C

I
M

K

L J
G

F H

N

R

O

P

U

Pr Sr
Figure 1: Example of a schema graph: Pr (A,B) are the produc-
tion lines;Sr (P,L,O,M) are the customer end points, the rest of
the nodes depict warehouses. The dark area represents loca-
tions within the Athens region

A

32

21

11

B

E

D:5

C

I:12

M

K:9

L J
G

F:6 H
13

9

11

18

3

6

19

9 7

2

9

8

16

32

9 23

15

34

N 51 71

U Pr
Sr

Figure 2: A subgraph (record) with associated measures

at least one location in Athens. The result of the Q2 query for this
record is path [ADIKM] with an aggregated cost of 96 days.

Query Q3 calculates the longest and shortest paths among routes
with a starting and ending location at the borders of the Athens
region. As an example, warehouse F depicts a route ([FF]) with
an aggregate time of 6 days. In this record, the longest route is
[DIK] with a value of 53 and the shortest one is [FF] with 6.

Our framework allows us to model such queries in an intuitive
manner via a decomposition of a record into edges, paths and sets
of paths (termed composite paths). We also provide for flexible ag-
gregation of nodes in the graph that enables composition of nodes
into aggregated ones (e.g. use U as an aggregate node that includes
all Athens’ locations). This way, we can express computations such
as the longest path in a natural OLAP manner. We note that our ab-
straction is orthogonal to the way data records are actually stored
and queried. For instance, in our implementation used in our exper-
imental evaluation, we utilize a relational back-end in order to store
and query graph records, however this choice does not influence
our model. As will be explained, by allowing us to express inter-
esting OLAP aggregations over graphs, our formalization provides
a framework that we use to expedite costly queries via query rewrit-
ing and available precomputations in the data warehouse. For in-
stance, assume aggregated (longest path) information on the move-
ment of articles within the Athens region is pre-computed at a per-
order basis and stored in the data warehouse as a materialized view
(details will be given in the following Sections). Then, this view
can be used to expedite processing of all queries we discussed, by
reusing precomputed path aggregations and reducing the run-time
calculations to locations outside Athens (when necessary, depend-

ing on the query)1. Thus, in the presence of millions of records in
the data warehouse, the use of this view may have a profound effect
in boosting query performance.

In order to effectively utilize precomputations via materialized
views two important questions are raised:

• Given a large dataset with millions of graph records how do
we select the proper set of views in order to expedite frequent
computations?

• Given an ad-hoc user query and a set of materialized views
in the data warehouse, how does one automatically derive the
best rewriting of the user query that minimizes query execu-
tion time?

In what follows, we provide a systematic answer to both ques-
tions. We provide a methodology for rewriting a user query in a
comprehensive manner and for a variety of interesting functions.
Our framework enables selection of views for inclusion in the data
warehouse and automated rewriting of a user query using these
views.

3. RELATED WORK
Because of the size of the data and the (often) ad-hoc group-

ing and aggregation required, data warehouses rely on extensive
pre-computation in the form of materialized views containing fre-
quently asked aggregates. Engineering questions, such as how many
and which views to materialize under a space and/or update time
constraint and an expected query workload have led to several view
selection algorithms [5, 6, 7].

In this paper we present an OLAP-oriented framework for an-
alyzing data that contains both structural as well as measure in-
formation, in addition to other existing dimensions in the data. In
database literature there is substantial work on recursive queries
(e.g. [8, 9, 10]), which have motivated our work. The work of [11]
first discussed measure aggregation over simple path expressions
in a graph. In this work, we present a novel decomposition of the
graph via the use of composite paths that naturally captures many
interesting analytical tasks that are not addressed in [3, 11]. Re-
cent work on materializing shortcuts [12] in RDF databases also
assumes an underlying graph model for representing the data, how-
ever the particular query mechanisms involved are substantially dif-
ferent.

OLAP processing in graph data has been recently discussed in [13].
A key difference is that, in our work, we assume that (in addition
to other recorded information), graph data is also recorded as facts
in the data warehouse schema. Thus, there can be thousands or
millions of such graphs that need to be analyzed. In contrast, the
framework of [13] assumes a linked set of tuples that are described
via a graph model (i.e. a single graph). Additional graph summa-
rization operators are discussed in [14, 15]. Such techniques are
complimentary and they may be used in conjunction to our frame-
work.

4. GRAPH DATA MODEL

4.1 Preliminaries
In our work, we assume that the data records are graphs anno-

tated with measure information related to the analysis we would
like to perform. In order to provide a “schema” for these records,
1Whether this run-time computation is done in SQL or by execut-
ing an efficient graph algorithm after the records have been loaded
in memory is orthogonal to our scheme.

in(v) out(v)

v

Figure 3: Abstraction of a node with an (unknown/hidden) to
the application internal structure, depicted as an internal edge

we assume that there is an underlying directed schema graph Gschema(V, E)
that describes the set of possible nodes and edges. For example in
the SCM application discussed in the previous section, the nodes
in set V may describe locations where RFID readers are placed
(production lines, warehouses, stores). Then, the edges in set E,
describe possible routes for articles in the supply chain. For ease
of exposition, we initially assume that the schema graph is acyclic.
We will later remove this restriction. We also note that in addition
to provide the schema for the data records, the schema graph may
also be used in order to clean spurious incoming data, as RFIDs
frequently generate erroneous observations [16].

In a typical data warehouse it is common that dimensions exhibit
hierarchies that allow us to model and analyze records at different
levels of granularity. Hierarchies are also evident in graph data. For
instance multiple nodes of the schema graph that describe stores
located within the same city may be aggregated in a “super node”.
Nodes may also be aggregated using ad-hoc conditions based on
other dimension attributes (for instance the type of the store). In
order to enable dynamic grouping of graph elements in an ad-hoc
fashion, we introduce in our framework the concept of aggregate
nodes. An aggregate node u is a connected subgraph Gu of the
schema graph. For instance, in Figure 1 the dark area depicts an
aggregate node for all warehouses located in Athens.

Given an aggregate node u, we use in(u) to describe the set
of nodes of Gu that have at least one incoming edge from nodes in
Gschema that do not belong to Gu. Similarly, let out(u) denote the
nodes in Gu that have at least one outgoing edge towards a node
in Gschema. In the example of Figure 1, in(U)={D, E, F, J} and
out(U)={F, I, J, K}. The set of nodes in in(u) and out(u) help
us capture the connectivity of the aggregate node with the rest of
the schema graph. Depending on the aggregation performed, it is
possible that a node belongs in both sets, as is the case of nodes F ,
J in this example.

For completeness, we also let functions in() and out() range
over regular schema nodes as well. In particular, for node v, in(v)
denotes the locations (within the scope of the node) where incom-
ing edges arrive and, similarly, out(v) denotes the locations where
outgoing edges depart from v. Since Gschema determines the most
fine-grained level at which information is depicted, the details of
in(v) and out(v) are not known, as shown in Figure 3. However,
this abstraction is also beneficial for two reasons. First, if the ana-
lyst decides at a later point to model the internals of node v in more
detail, then she can simply replace v with a subgraph that will be
added to the schema graph, without necessitating other changes to
the schema. In addition, even if the internal structure of node v is
not revealed to the decision makers, we can use an internal edge
from in(u) to out(u), denoted as (in(u), out(u)) to capture mea-

sure information generated from processing within the node.
For instance, in the SCM record of Figure 2, node D may in-

dicate a warehouse location with multiple platforms where articles
arrive and depart, equipped with RFID readers. Additional read-
ers may record the presence of articles at different areas inside the
warehouse. The SCM application may decide that the details of the
internal movement of articles in the warehouse is of no interest for
the analysis. Thus, the warehouse is abstracted as a single node D,
and the internal edge (in(D), out(D)) is used to capture the fact
that articles for this record remain within its premises for a period
of time (6 days in this example).

4.2 Path Types and Operations on them
In our analysis we would like to compute interesting aggrega-

tions over parts of the data graph, with respect to measurements
collected at individual records. Our model uses an extended no-
tion of a path in order to restrict attention to a particular part of
the schema. A path in a graph application is simply a sequence
of nodes resulting from the concatenation of adjacent edges. For
instance [A, D, G, K, M] (or [ADGKM] for brevity) is a path
whose constituent edges are (A, D), (D, G), (G, K), and (K, M).
When a path is uniquely identified by its endpoints, for brevity, we
omit the internal nodes. For example path [A, C, F, H] is depicted
as [A, H].

In our setting, where nodes have internal (known or hidden)
structure as well, additional formalism is needed. For example as-
sume we would like to concentrate in the movement of articles after
they depart warehouse F , up to the time they enter warehouse lo-
cation K. Thus, internal measurements on nodes F and K should
be left out of the analysis. In our terminology, this path is defined
as starting from out(F) and ending in in(K). Borrowing nota-
tion from mathematics, we denote this "open-ended” path similarly
to an interval whose endpoints are excluded: (F, K). When two
nodes are connected via an edge, as in the case of A and C, the
open ended path (A, C) is naturally mapped to edge (A, C).

Similarly, a path can be opened in only one of its side nodes. For
instance path [F, K) indicates a path that describes movement of
articles from the time they enter warehouse F up to the point they
enter warehouse K. Thus, internal measurements at F are also
included, unlike the previous example.

Quite often, analytical tasks involve multiple paths from the schema
graph that have the same starting and ending nodes. For instance
an analyst may want to analyze the movement of articles from lo-
cation A to location L. We observe that the schema graph contains
multiple paths that connect these nodes. For brevity we will use the
notation [A, L]∗ to denote the set of all these paths and will refer
to it as a composite path. Composite paths may also be open ended
for example [D, K)∗. In what follows, we sometimes omit the as-
terisk when referring to a composite path and it is obvious from the
context.

Notation is naturally extended to aggregate nodes. For instance
recall that U is an aggregate node denoting all existing warehouse
locations in Athens (Figure 1). Then, [A, in(U))∗ denotes all paths
starting from node A and ending at a node in set in(U). Thus,
[A, in(U))∗= {[A, C, D), [A, C, F), [A, D), [A, E)}. Similarly,
composite path [in(U), out(U)]∗ can be used to trace articles from
the time they first enter a warehouse location in Athens up to the
time they depart towards a customer location. The use of in() and
out() function is also applicable to regular nodes. E.g. [in(D), out(D)]
denotes the node’s internal edge. For brevity we omit the in() and
out() functions i.e [D, D]=[in(D), out(D)]. Path [D, D] is used
to indicate interest in measurements collected internally at node D.

In order to allow composition of paths we further introduce the

path-join operator (./) that concatenates two paths p1 and p2 when
the ending node of p1 is the same as the starting node of p2 and
one of the two paths is open-ended at the common end-point. For
example [A, C, F) ./ [F, H)=[A, C, F] ./ (F, H)=[A, C, F, H).
On the contrary, path [A, C, F] does not “join” with [F, H] since
they both include node F and the resulting composition is not a
path (the internal edge [F, F] would be repeated otherwise). The
operator is applied to composite paths as well by considering path-
joins among all pairs of paths in them.

The path-join operator allows us to express queries over the schema
graph. For instance, if we are only interested in articles that pass
through warehouses in Athens, we can indicate all relevant paths
using expression [Pr, in(U)) ./ [in(U), out(U)] ./ (out(U), Sr].
Informally, this decomposition states that articles departing from
Pr reach a warehouse in in(U), then there is some internal pro-
cessing within U and finally they are shipped to Sr via a ware-
house in set out(U). We node, that the aforementioned expression
does not include path [B, N, M] as the latter does not contain any
location in Athens.

This decomposition of path expressions, made possible by our
formulation, will be the key in optimizing complex aggregations
over the schema graph, as will be explained.

4.3 Data Records and Operators on them
In our framework we do not restrict ourselves to a particular

physical implementation of the database. For instance, the rela-
tional schemas for graph datasets discussed in [3] are applicable to
our setting. We will thus describe our data in an abstract model
that is independent of the storage implementation. A data record
is a subgraph of the schema graph where edges (including inter-
nal edges) are annotated with measures we would like to analyze.
For ease of exposition, we will only refer to examples that contain a
single measure per edge, however, our framework is still applicable
when multiple measures are recorded. Figure 2 presents an exam-
ple of a record in the SCM application. We can see that the record
contains measurements at instances of the schema edges and, addi-
tionally at internal edges, i.e. (F, F), (D, D), (I, I), and (K, K).

In order to decompose a data record into its constituent paths
we define the path-projection operator πp that projects the record
on the edges defined in path p, while retaining their measures.
For instance, if we would like to analyze the shipment of arti-
cles (described in the record r of our running example) from lo-
cation A to C and then until they leave warehouse F , we use
π[A,C,F)(r)={(A, C) : 21, (C, F) : 9, (F, F) : 6}. We implicitly
use (e) : m to indicate that measure m is associated with edge e.

The projection of a record on a composite path is computed as a
set containing the projections into the constituent paths. Obviously,
some of these projections may return an empty set, for records that
do not contain all constituent paths. As an example:

π[AD)∗(r) = {π[A,D)(r), π[A,C,D)(r), π[A,R,C,D)(r)}

= {{(A, D) : 9}, {(A, C) : 21, (C, D) : 13}}

5. BUSINESS INTELLIGENCE ON GRAPH
DATA

5.1 Foundational Computations
The framework we introduced in the previous section allows us

to perform ad-hoc selection of paths and associated measures in a
data graph. We now discuss how we can perform analysis on the
selected data. Computations based on additional dimensions that

are stored in the data warehouse (e.g. selection of a subset of graph
records based on the type of order, the date etc) are orthogonal and
may complement our techniques.

As explained, the projection of a record on a path p returns the set
of edges belonging to that path along with their measures. We can,
then, use an intra-path aggregation function in order to compute
interesting statistics on these measures. Formally, an Intra-Path
Aggregation function Fp(r) takes as input a path p and a record
r. The function F is applied on the measures resulting from the
projection of record r on path p. The function returns the path p
along with the computed aggregate.

As an example, in the record of Figure 2, assuming the SUM()
function is selected, SUM[A,C,F](r) returns path [A, C, F] and its
duration (length), i.e. 36.2

Intra-path aggregation is also performed on composite paths. Re-
call that a composite path is a set of simple paths. In the case of
composite paths the function is computed over the (existing) indi-
vidual paths and returned along with the path. For instance,

SUM[AI]∗(r) = {SUM[A,D,I](r), SUM[A,E,I](r), SUM[A,C,D,I]} =

{[A, D, I] : 45, [A, E, I] : 36, [A, C, D, I] : 70}

Similar to the notation used for edges, we use p:v to indicate that
the aggregation on path p returns value v.

Inter-path aggregation may be used in a subsequent step in order
to further consolidate the results obtained via intra-path aggrega-
tion. As an example, function MAX(SUM[Pr,Sr](r)) computes
the order completion time for the order depicted in record r. The
intra-path function computes the length of every path from a pro-
duction line node in set Pr to a customer location node in set Sr.
The inter-path aggregation function MAX returns the maximum of
these values, which denotes the order completion time. For func-
tions like MAX , MIN the function may also return the path with
the maximum (respectively minimum value). Thus, query Q1 is
expressed as (R is the set of all records in the data warehouse):

Q1 = {r, MAX(SUM[Pr,Sr](r)), ∀r ∈ R}

Query Q2 is more demanding. Recall that we can enumerate all
paths via a warehouse in Athens using expression [Pr, in(U)) ./
[in(U), out(U)] ./ (out(U), Sr]. The first path-join operator con-
catenates “external” paths towards a node in in(U) with paths that
are internal in aggregate node U . Similarly, the second path-join
extends the resulting paths with routes towards a customer location
in Sr. Thus, we can write query Q2 as:

Q2 = {r, MAX(SUM[Pr,in(U))./[in(U),out(U)]./(out(U),Sr](r)),

∀r ∈ R}

5.2 Query Rewrite
In the previous subsection we explained how queries of interests

can be modeled in our framework. While, the details of how these
queries will be expressed in the underlying implementation (for in-
stance their SQL equivalent in a relational back-end) is orthogonal
to our work, our abstraction is beneficial in that in facilitates rewrit-
ing of these queries. Thus, it can provide the basis for optimization
decisions, including use of materialized views, as will be explained.

As an example, query Q2 that computes the order completion
time for articles that are shipped through warehouses in Athens is
2In a relational implementation a unique path-id pid may be used
to identify the path.

written using three composite paths [Pr, in(U)), [in(U), out(U)]
and (out(U), Sr], as shown above. The aggregate function over
a concatenation among these composite paths can be written also
as a concatenation among the aggregate function results of these
composite paths. Thus, we have

Q = MAX(SUM[Pr,in(U))./[in(U),out(U)]./(out(U),Sr](r)) =

MAX(SUM[Pr,in(U))(r) ./SUM SUM[in(U),out(U)](r) ./SUM

SUM(out(U),Sr](r))

Recall that the result of intra-path aggregation is a path associated
with an aggregate measure. In this case, the path-join operator con-
catenates paths with common ending and starting nodes and, addi-
tionally consolidates their measures. In this example, we need to
add (via function SUM) their measures, and this is indicated in the
formula underneath the operator.

In our example we have SUM[Pr,in(U))(r) = {[ACD) : 34, [AD) :
9, [AE) : 18, [BE) : 11, [ACF) : 30}, SUM[in(U),out(U)](r) =
{[DGK] : 26, [DIK] : 53, [DI] : 36, [EI] : 18, [EIK] :
35, [FF] : 6, [FJ] : 15, [FHJ] : 36, [FGK] : 26} and
SUM(out(U),Sr](r) = {(JL] : 15, (JM] : 32, (KM] : 34, (IM] :
16}

Thus, Q = MAX({[ACD) : 34, [AD) : 9, [AE) : 18, [BE) :
11, [ACF) : 30} ./SUM {[DGK] : 26, [DIK] : 53, [DI] :
36, [EI] : 18, [EIK] : 35, [FF] : 6, [FJ] : 15, [FHJ] : 36, [FGK] :
26} ./SUM {(JL] : 15, (JM] : 32, (KM] : 34, (IM] : 16})
=MAX({[ACDKGKM] : 94, [ACDIKM] : 121, [ACDIM] :
86, [ADKGKM] : 69, [ADIKM] : 96, [ADIM] : 61, [AEIM] :
52, [AEIKM] : 87, [BEIM] : 45, [BEIKM] : 80, [ACFJL] :
60, [ACFJM] : 77, [ACFHJL] : 81, [ACFHJM] : 98,
[ACFGKM] : 90}) = {[ACDIKM] : 121}.

In general, the rewrite for pushing intra-path aggregation on a
path is of the form

G(Fp=p1./p2(r)) = G(Fp1(r) ./H Fp2(r))

where F ,G,H are appropriate aggregate functions. This expres-
sion can be easily extended for the case of aggregate functions like
AV G that are computed via simpler calculations (e.g. SUM ,COUNT).

In the case of functions like MAX and MIN that return to the
user one of their input paths, an additional rewrite is possible by
pushing inter-path aggregation inside path-joins. When pushed in-
side a join, the function is calculated over paths with common start-
ing and ending nodes. We use the duplicate elimination operator δ
to indicate this behavior.

Thus, MAX(SUM[Pr,in(U))(r) ./ SUM[in(U),out(U)](r) ./
SUM(out(U),Sr](r)) can be written also as
MAX(MAXδ(SUM[Pr,in(U))(r)) ./SUM

MAXδ(SUM[in(U),out(U)](r)) ./SUM

MAXδ(SUM(out(U),Sr](r))).
Intra-path aggregation with duplicate elimination selects one path

per combination of starting and ending nodes, i.e. MAXδ({[ACD) :
34, [AD) : 9}) = {[ACD) : 34}.

Continuing the calculation we get MAX({[ACD) : 34, [AE) :
18, [BE) : 11, [ACF) : 30} ./SUM {[DIK] : 53, [FF] : 6, [EI] :
18, [EIK] : 35, [DI] : 36, [FHJ] : 36, [FGK] : 26} ./SUM

{(JL] : 15, (JM] : 32, (KM] : 34, (IM] : 16} =
MAX({[ACDIKM] : 121, [ACDIM] : 86, [AEIM] : 52,
[AEIKM] : 87, [BEIM] : 45, [BEIKM] : 80, [ACFHJL] :
81, [ACFHJM] : 98, [ACFGKM] : 90})= {[ACDIKM] :
121}.

Obviously the result of Q2 is the same in both cases. The rewrite

formula when pushing intra-path aggregate functions is:

F (Gp=p1./p2(r)) = F (Fδ(Gp1(r)) ./H Fδ(Gp2(r)))

5.3 Materialization of Frequent Calculations
A direct benefit of the rewrite rules we discussed in the previ-

ous section, is that we can use them to instruct the query opti-
mizer of the underlying storage backend to consider pushing ag-
gregate calculations under path-joins. Alternatively, this logic can
be implemented at the OLAP front-end that is used to analyze
the records. Rewrite rules can also help us boost query perfor-
mance by exploiting materialization (pre-computation) of common
(sub)queries. For instance, in our running queries, the database
administrator may decide to materialize shared computations in
queries Q1 and Q2 such as MAXδ(SUM[in(U),our(U)](r)), which
consolidates paths within aggregate node U . If these calculations
are stored in a materialized view (e.g. in the form of (record-
id,path-id,measure) in a relational implementation), then at query
time we can use the aforementioned rewrite rules to speed-up com-
putation of both queries. Thus, we can revisit the view selection
problem, in the case of aggregate computations over graph records
in a data warehouse.

5.4 Discussion
In our discussion so far, we have assumed that the records we

manipulate contain no cycles. This limitation is not inherent to
our work. Consider for example Figure 1 and assume a back-edge
(F, A) is added to the graph. In the SCM example this may in-
dicate that violation of certain conditions (e.g. improper/unknown
customer shipping address) results in returning the product back to
node A. Consider now the following record.

{(A, C) : 21, (C, F) : 9, (F, A) : 2, (A, C) : 20, (C, F) : 10, (F, F) : 6, . . . }

Note that the record contains a cycle, specifically A → C →
F → A. Given this data, what is the intended meaning of an inter-
path aggregation such as SUM[ACF)? Assuming the recorded
measure relates cost information, we can define the aggregation
to include the summation of all instances of path [ACF) in this
record, i.e. (21+9)+(20+10)=60 or even include the measure of
edge (F, A) in this calculation. Of course there may be other in-
terpretations depending on the context. For instance, assuming the
recorded measure captures the time it takes to transport an article
and that we would like to find the time it takes for an item to first
reach warehouse F , after it departs from A, then we can define a
SUMfirst_occurrence function to perform the calculations in the
intended manner and return 30 in this example. Thus, in the pres-
ence of digraphs one needs to derive the proper aggregate functions,
depending on the application.

Another extension to our framework is to consider micro-edges
(and similarly micro-paths) within a record in order to facilitate
analysis of multigraphs. A straightforward workaround is to con-
sider the record as the union of multiple digraphs and use subse-
quent aggregation of micro-paths in the results of intra-path queries.

6. EXPERIMENTS
Our framework allows efficient execution of complex aggregate

queries over graph data records, via the use to materialized views
that contain pre-computed results of frequent computations. In
what follows, we provide an brief experimental evaluation using
the PBS (Pick By Size) algorithm discussed in [6]. This algorithm
has been shown to perform well for traditional OLAP data. We also
note that in the literature there are numerous view selection tech-
niques that can be also adapted to our setting (for instance [5, 6]).

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

N
o

rm
al

iz
e

d
 Q

u
e

ry
 C

o
st

Space Budget (%)

PBS-1

PBS-2

PBS

Figure 4: PBS, Bay Data Set, Uniform 100 Queries

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

N
o

rm
al

iz
e

d
 Q

u
e

ry
 C

o
st

Space Budget (%)

PBS-1

PBS-2

PBS

Figure 5: PBS, Bay Data Set, Zipf 100 Queries

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

N
o

rm
al

iz
e

d
 Q

u
e

ry
 C

o
st

Space Budget (%)

PBS-1

PBS-2

PBS

Figure 6: PBS, Gnutella Data Set, Uniform 100 Queries

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

N
o

rm
al

iz
e

d
 Q

u
e

ry
 C

o
st

Space Budget (%)

PBS-1

PBS-2

PBS

Figure 7: PBS, Gnutella Data Set, Zipf100 Queries

While these variations can also be considered (given our formula-
tion of queries and rewrite rules), they are beyond the scope of this
paper.

For our experiments we used the following two real Schema
Graphs.

• BAY: This dataset depicts San Francisco Bay Area roads and
was downloaded from:
http://www.dis.uniroma1.it/∼challenge9/download.shtml.
We selected a subset of this data that contains 9648 distinct
nodes and 12000 distinct edges

• Gnutella: The second real schema graph describes connec-
tions among Gnutella hosts from August 2002. We used the
full dataset which has 8846 distinct nodes and 31839 distinct
edges.
(For further information about this graph visit:
http://snap.stanford.edu/data/p2p-Gnutella05.html.)

For each dataset we synthesized 120 million records and as-
signed random real values to the labels of each record. A record
is a subgraph of the corresponding full schema graph. Our se-
lection of datasets is justified as follows. The first dataset may be
used to describe a distribution network within the city. Then, each
record may depict the routes of one or more trucks for delivering
a certain load. The second dataset depicts network traffic in the

P2P network. A network administrator may use the recorded link
usage information in order to calculate network utilization among
different routes.

In our experiments we used queries that are chosen (either with
uniform or with Zipf distribution) from the superset of all paths
traversed by the records. Unless noted otherwise, half of them are
intra-path and half inter-path aggregate queries. We used function
SUM() for intra-path aggregation, while MAX() was used for
inter-path aggregation. In all experiments we utilize a simple rela-
tional representation of the records as edge sets (each graph record
is stored in multiple tuples, one per associated edge containing also
the numerical measure). Aggregated measures for the materialized
views are stored in separate tables. Of course, many different rela-
tional implementations of the records and the views are also pos-
sible and we expect their selection to influence quantitatively (but
not qualitatively) the results we present in this section.

In order to obtain a platform independent evaluation, we calcu-
late the cost of a query via the total number of tuples that need to
be retrieved (having indexes on the record and edge-ids). The PBS
algorithm takes as input the query workload and a space budget B
that, in our experiments, depicts the maximum number of records
that could be stored in the precomputed materialized views. We
used three variations of the algorithm. The first algorithm consid-
ers only intra-path materialized aggregates and is denoted as PBS-1
in the graphs, the second (termed PBS-2) considers only inter-path

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

N
o

rm
al

iz
e

d
 Q

u
e

ry
 C

o
st

% of Intra- Path Queries

PBS-1

PBS-2

PBS

Figure 8: Varying Query Mix, BAY Data Set, Uniform Queries

aggregates, while the last (termed PBS) selects and materializes
both types of views depending on the query workload.

Figures 4-7 depict the cost of query answering for 50 random
queries (where selection of paths in the queries are generated ac-
cording to the uniform and Zipf distribution, respectively) for both
datasets. The y-axis depicts the normalized query cost, i.e the cost
of executing the queries using the materialized views, over the cost
of running the same queries without any rewriting. The x-axis
shows the space budget as a percentage of the space that would
be required if all queries were materialized in the system. Clearly
all algorithms provide substantial benefits. For instance, with just
5% of the space required for materializing all queries, the query
cost is reduced by a factor of up to 13. Comparing the full-fledged
algorithm with the variants that restrict view selection to only inter-
/intra-path types, we observe that it provides more benefits indepen-
dently of the space budget used.

In the next experiment, shown in Figures 8-9, we vary the mix
of intra-/inter-path queries in the BAY dataset for a fixed budget
of 20%. Figures for the Gnutella dataset are similar and are omit-
ted due to lack of space. When all queries are inter-paths (leftmost
bars in the graphs) PBS and PBS-2 have the same performance,
while performance for PBS-1 degrades. This is because, PBS-1
only considers intra-paths views that are of limited use for an inter-
path query that needs to aggregate a large composite path. At the
other end of the spectrum, when only intra-path queries are consid-
ered, PBS-2 cannot provide any benefits. Overall, PBS that consid-
ers both types of views provides consistently the largest reduction
in query cost.

7. CONCLUSIONS
We have described a framework for modeling analytical queries

in a graph database that is independent of the underlying storage
representation of the records and the query language used. Our
framework permits rewriting of complex aggregations into smaller
computational units, enabling cost-based query optimization and
pre-computation of frequently used calculations. Our experimental
results validate our intuition that proper selection of materialized
views can provide substantial gains in a large data warehouse con-
taining millions of graph records.

8. REFERENCES
[1] M. Castellanos, U. Dayal, S. Wang, and C. Gupta,

“Information Extraction, Real-Time Processing and DW2.0

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

N
o

rm
al

iz
e

d
 Q

u
e

ry
 C

o
st

% of Intra- Path Queries

PBS-1

PBS-2

PBS

Figure 9: Varying Query Mix, BAY Data Set, Zipf Queries

in Operational Business Intelligence,” in DNIS, 2010.
[2] J. Eder, “Extending SQL with General Transitive Closure

and Extreme Value Selections,” IEEE Trans. Knowl. Data
Eng., vol. 2, no. 4, 1990.

[3] Y. Kotidis, “Extending the Data Warehouse for Service
Provisioning,” Data & Knowledge Engineering, vol. 59,
no. 3, December 2006.

[4] V. Harinarayan, A. Rajaraman, and J. D. Ullman,
“Implementing Data Cubes Efficiently,” in SIGMOD
Conference, 1996, pp. 205–216.

[5] Y. Kotidis and N. Roussopoulos, “A Case for Dynamic View
Management,” ACM Transactions on Database Systems,
vol. 26, no. 4, 2001.

[6] A. Shukla, P. Deshpande, and J. F. Naughton, “Materialized
View Selection for Multidimensional Datasets,” in VLDB,
1998, pp. 488–499.

[7] D. Theodoratos, S. Ligoudistianos, and T. K. Sellis, “View
Selection for Designing the Global Data Warehouse,” DKE,
vol. 39, no. 3, 2001.

[8] P. Larson and V. Deshpande, “A File Structure Supporting
Traversal Recursion,” in SIGMOD Conference, 1989.

[9] I. S. Mumick, H. Pirahesh, and R. Ramakrishnan, “The
Magic of Duplicates and Aggregates,” in VLDB, 1990.

[10] A. Rosenthal, S. Heiler, U. Dayal, and F. Manola, “Traversal
Recursion: A Practical Approach to Supporting Recursive
Applications,” in SIGMOD Conference, 1986, pp. 166–176.

[11] Y. Kotidis, “A Data Warehousing Architecture for Enabling
Service Provisioning Process,” in VLDB, 2001, pp. 481–490.

[12] V. Dritsou, P. Constantopoulos, A. Deligiannakis, and
Y. Kotidis, “Optimizing Query Shortcuts in RDF Databases,”
in ESWC (2), 2011, pp. 77–92.

[13] C. Chen, X. Yan, F. Zhu, J. Han, and P. S. Yu, “Graph OLAP:
Towards Online Analytical Processing on Graphs,” in ICDM,
2008, pp. 103–112.

[14] Y. Tian, R. A. Hankins, and J. M. Patel, “Efficient
Aggregation for Graph Summarization,” in SIGMOD
Conference, 2008, pp. 567–580.

[15] P. Zhao, X. Li, D. Xin, and J. Han, “Graph Cube: On
Warehousing and OLAP Multidimensional Networks,” in
SIGMOD Conference, 2011, pp. 853–864.

[16] S. Jeffery, M. Garofalakis, and M. Franklin, “Adaptive
Cleaning for RFID Data Streams,” in VLDB, 2006.

