
2016 IEEE International Conference on Big Data (Big Data)

978-1-4673-9005-7/16/$31.00 ©2016 IEEE 2580

Digree: A Middleware for a Graph Databases Polystore

Vasilis Spyropoulos, Christina Vasilakopoulou, Yannis Kotidis
Department of Informatics, Athens University of Economics and Business, Athens, Greece

vasspyrop@aueb.gr, cvasilak@aueb.gr, kotidis@aueb.gr

Abstract— In this paper we present Digree, an experimental
middleware system that can execute graph pattern matching
queries over databases hosting voluminous graph datasets.
First, we formally present the employed data model and the
processes of re-writing a query into an equivalent set of
subqueries and subsequently combining the partial results into
the final result set. Our framework guarantees the correctness
and completeness of the produced answers. Then, we present
a prototype implementation of Digree, which is agnostic to the
underlying data processing engines used at the endpoints. As
the experimental results show, in many cases Digree outper-
forms a single node graph database deployment in execution
speed, up to 20 times depending on the query type.
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I. INTRODUCTION

Graph data processing is a notable example of the “one
size does not fit all” paradigm. This is due to both the
inherent heterogeneity of the graph data and the diversity
of the different computations that can be performed on
them. Consequently, existing approaches utilize relational
databases [1], [2], big data systems [3], [4], [5], RDF
triple stores [6], [7], or a combination of the above. In this
fragmented environment, it is quite possible that applications
will have to access graph data lying on different ecosystems,
using different underlying storage representations and offer-
ing different query languages to access this data.

In this work, we present a middleware approach that per-
mits execution of pattern matching queries over distributed
or interlinked big-graph datasets hosted by such a network of
independent data sources called endpoints. The middleware
receives graph pattern matching queries, splits them in a
suitable manner that permits their efficient parallel execution
and then assembles all partial results in order to generate the
final result set. We introduce a solid theoretical framework
that ensures the correctness of this process. This framework
is generic, in the sense that it is not tied to a particular
implementation or query language.

Our prototype system, termed Digree, adopts a flexible
architecture where requests for local data processing on the
endpoints are made by implementing a very basic interface
so as to be able to ask for computation of simple path
expressions. Such interfaces can be implemented for native
graph data management systems [8] but also for relational
or big data deployments as well. The proposed middleware
in our prototype is built around a DBMS that is used

to temporarily store the partial results and perform the
required operations so as to produce the final result set. The
underlying endpoints storing the graph data remain fully
functional and can, at the same time, continue to run as
standalone systems.

In the evaluation of our prototype, we used native graph
databases at the nodes and a PostgreSQL DBMS at the
middleware. We are currently working to extend support to
other types of endpoints, such as relational databases and
big data systems like Spark [9]. The latter can also be used
to implement the functionality of our middleware.

Our contribution can be summarized as follows:
• We study the evaluation of a general graph pattern

matching query in a polystore [10] integrating inter-
linked graph databases. We formalize the process of
decomposing a query into a set of smaller patterns, via
a series of transformations. These subqueries can be
executed in parallel, and their results are used to form
the final result set.

• We present a prototype middleware system termed
Digree that implements the aforementioned ideas in
order to orchestrate the query decomposition and result
set composition tasks. We describe a modular imple-
mentation that enables us to use different graph data
implementations at the distributed endpoints.

• We present a series of experiments running on a proto-
type implementation of Digree. We run a set of pattern
matching queries against three different datasets and
discuss the scalability and capabilities of Digree.

II. OVERVIEW

Our work concerns the process of efficiently querying
a polystore of interlinked graph databases. The graph data
model that we employ is one of the most widely adopted
models, namely the labeled property graph model, which
is made up of nodes, relationships, properties and labels.
Consequently, given a pattern query, i.e. a directed graph
with vertices and edges possibly with labels and properties,
the fundamental task is to find subgraphs of the database that
are isomorphic (structurally and semantically) to the pattern
query. This belongs to the (exact) pattern matching problem,
specifically in terms of subgraph isomorphism [11].

The middleware system that we propose takes as input
a pattern query and essentially divides it into all required
smaller parts that are executed in parallel over all graph
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database partitions [12],[13]. The middleware then appropri-
ately combines the partial results to produce the global result
set. As it will be made clear from the discussion, Digree
can utilize any graph database system or combination of
those hosting the graph partitions. All that is required is the
existence or implementation of the respective basic API calls
for querying path expressions in the underlying systems.

Bellow, we can see the operations that decompose the
input query and re-synthesize the partial results:

Query

��

ResultSet

Path queries

��

Path results

OO

Distributed queries

��

Distributed results

OO

Fragment queries

��

Fragment results

OO

Primary Fragments

parallel partition searches

))
Partitions results

OO

Section III mathematically formalizes the above operations
and illustrates the process via a running example.

III. QUERY REWRITE AND RESULTS COMBINATION

A. Preliminaries

A (finite) directed graph is a pair G = (V,E) where V is
the finite set of vertices and E ⊆ V × V is the finite set of
edges; the first component of an edge pair is the source and
the second is the target. The basic graph theoretic definitions
given below can be found e.g. in [14], [15].

An edge partition {Ei} of G is a set of non-empty disjoint
subsets whose union gives E. If we define {Vi} to be the
set of source and target nodes of edges in {Ei}, every Gi =
(Vi, Ei) is a graph on its own. The family {Gi} of edge-
disjoint subgraphs is a decomposition of G,

G = G1 ∪ ... ∪Gm = (∪iVi,∪iEi).

Notably, {Vi} are not disjoint in principle: if two ad-
jacent edges are located in different partitions, the vertex
in-between is ‘duplicated’ and exists in both respective
subgraphs. Those elements lie in the set

I =

i 6=j⋃
1≤i,j≤m

(Vi ∩ Vj) = (V1∩V2)∪(V1∩V3)∪...∪(Vm-1∩Vm).

(1)
The structure of the distributed graph database is as fol-

lows. Starting with the whole graph G = (V,E), vertices are

typically partitioned via some algorithm, and edges’ location
is determined by their source vertex. For our purposes, we
create a duplicate of the end vertex of the cross-partition
edges, labeled with REF ; the original vertex obtains a label
RFD, so that the graph database is in fact decomposed in
parts G1, ..., Gm that constitute an edge partition.

For example, consider a distributed graph database
with two partitions, G1 ∪ G2 = G, and a subgraph
H ⊆ G with VH = {k, l,m, n, o} and EH =
{(k, l), (l, o), (n,m), (m, l)}. If the partition algorithm sends
{k, n} to G1 and {m, l, o} to G2, then {(k, l), (n,m)} ∈ G1

and {(m, l), (l, o)} ∈ G2. A graphic representation is

G1 n

��

k // lREF mREF

mRFD

��

G2

lRFD // o
(2)

Some basic properties of the above procedure are the
following:
• A source node is always in the same partition as its

edge, whereas its target inside the same partition may
be a REF copy of the RFD vertex placed elsewhere.

• REF vertices necessarily have no outgoing edges.
• The set of all REF nodes, as well as that of all RFD

nodes, equals I; each RFD node may have REF
duplicates in more than one partition.

A path cover is a set of disjoint paths in G which together
contain all vertices; we denote a k-path as P = (x1, ..., xk).
If we don’t allow paths of length 0, namely single vertices, a
path cover {Gi} forms an edge partition of G. The elements
in the intersection I of the Vi’s are now called join vertices.

A weakly connected graph is a graph where there exists
an undirected path between every pair of vertices. In what
follows, our initial pattern query will always be weakly con-
nected, since otherwise we could take its weakly connected
components and perform the transformations separately.

Our basic task is to identify subgraphs of the graph
database which are graph-isomorphic to an input query.
Two graphs G,H are isomorphic when there is an edge-
preserving bijection f : VG

∼= VH , i.e. such that (x, y) ∈
EG ⇔ (f(x), f(y)) ∈ EH (hence also EG

∼= EH ).
As mentioned in the overview, our system is focused on

the labeled property graph data model, elsewhere called di-
rected labeled typed/attributed graph. Vertices can be viewed
as tuples with a unique id, certain labels and properties
(attributes), whereas edges have a source and target vertex,
labels and properties. However, in order to emphasize the
underlying general techniques and ideas, presently we em-
ploy the abstract representation of a plain directed graph.

B. Graph query rewrites

1) Pattern query to path pattern queries: Consider an ar-
bitrary pattern query Q = (V,E). The initial transformation
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decomposes the query into a list of edge-disjoint paths, i.e.
specifies a path cover for Q. Any path covering algorithm
from the literature will do and the choice is orthogonal to
our techniques. We chose to use an all-paths algorithm to
discover all possible paths between outer vertices or join
candidate vertices and then select the largest possible paths
that constitute a path cover of the query. The choice is in
a sense independent of the rest of the method: changing it
only affects the intermediate steps and not the final results.
We thus obtain specific simple paths (in a specific order)

Q1, Q2, ..., Qn :
⋃

1≤i≤n

Vi = V and
⋃

1≤i≤n

Ei = E

Therefore this well-defines a function

F : PQ // PPQn

Q � // (Q1, ..., Qn)

(3)

where PQ is the set of all (weakly connected) pattern
queries and PPQ is the set of path pattern queries. The n-th
cartesian product PPQn = PPQ× ...×PPQ is as usually
defined as the set of n-tuples. Notice that this function, like
all functions that follow, is ‘stable under isomorphism’: for
R ∼= Q, F (R) = (R1, ..., Rn) with Ri ∼= Qi.

As a demonstrating example, consider a pattern query Q
with V = {a, b, c, d, e} and E = {(a, b), (b, c), (e, d), (d, b)}

a // b // c

d

OO

e

OO

(4)

The path decomposition operation produces the simple path
queries Q1 = (e, d, b, c), Q2 = (a, b) and the single join
vertex is I = VQ1 ∩ VQ2 = {b}. For simplicity, we denote
the 4-path (e, d, b, c) as Q1 = (x1, x2, x3, x4) and the 2-path
(a, b) as (y1, y2). Hence the image of Q under the function
F : PQ→ PPQ× PPQ is

F (Q) = (Q1, Q2) = (e→ d→ b→ c, a→ b)

= ((x1, x2, x3, x4), (y1, y2) | x3 ≡ y2)

2) Path to Distributed pattern queries: Suppose we have
a path pattern query P = (x1, ..., xk). The next transforma-
tion determines all the ‘breakpoints’ of the path, in order
to identify all its possible separated sub-parts inside the
partitions of the distributed graph database.

Consider the set VP \{x1, xk} = {x2, ..., xk-1} with size
k-2. This contains precisely the candidate nodes where the
path can be split – with minimal part a single edge – due
to the structure of the distributed graph database: the start
node is necessarily in the same partition as the first edge of
the path, whereas the end node appears inside the last edge’s
partition, even with a REF label. Thus we do not need to

consider {x1, xk} as breakpoints when splitting a path in all
possible non-zero smaller paths.

Since a path can be split up at multiple nodes simultane-
ously, there are as many distributed queries, i.e. our initial
path query together with a specific choice of breakpoints, as
the size of the powerset P(VP \{x1, xk}). This contains all
possible subsets of {x2, ..., xk-1}, and its size is 2k-2. For
simplicity of notation, we denote

{xi1 , xi2 , ..., xiv} ⊆ {x2, ..., xk−1} as
s(i1i2..iv) ∈ P(V \{x1, xk}).

Write s∅ = ∅, which corresponds to the whole path (no
breakpoints). We can now define a function

G : PPQ // DPQ2k-2

P
� // ((P, s∅), (P, s(2)), .., (P, s(23)), .., (P, s(23...k-1)))

(5)
where DPQ is the set of all distributed queries. If we start
with F as in (3), we can compose it with G for each path
Q1, ..., Qn:

G : PPQn G1×..×Gn−−−−−−−→ DPQ2k1 -2
× ...×DPQ2kn -2

(6)

with mapping

(Q1, ..., Qn) 7→
((Q1, s∅), .., (Q

1, s(2..k1-1)), .., (Q
n, s∅), .., (Q

n, s(2..kn-1))).

Explicitly, given an arbitrary pattern query, F first decom-
poses it into simple paths of lengths k1, ..., kn and then
G1 × ... × Gn produces all acceptable combinations of
breakpoints of all path queries.

As an example, we identify the distributed queries
for Q as in (4). For the path Q1 = (x1, x2, x3, x4),
VQ1\{x1, x4} = {x2, x3} so there exist k1-2 = 2
possible breakpoints. Their 22 = 4 combinations are
{∅, {x2}, {x3}, {x2, x3}}, thus the function producing its
distributed queries is

G1 : PPQ // DPQ×DPQ×DPQ×DPQ

Q1 � //
(
(Q1, ∅), (Q1, {x2}), (Q1, {x3}), (Q1, {x2, x3})

)
For the path Q2 = (y1, y2), we have VQ2\{y1, y2} = ∅,
i.e. no possible breakpoints. Hence 20 = 1 and G2 :
PPQ → DPQ with G2(Q2) = (Q2, ∅). In total, we have
the composite function G◦F = PQ→ PPQ2 → DPQ4+1

mapping Q to

G(F (Q)) =
(
(Q1, ∅), (Q1, {x2}), (Q1, {x3}), (Q1, {x2, x3}),

(Q2, ∅) | x3 = y2

)
(7)

These are the two paths with chosen breakpoints:

(x1 → x2 → x3 → x4, x1 → x2 → x3 → x4,

x1 → x2 → x3 → x4, x1 → x2 → x3 → x4, y1 → x3).
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3) Distributed to Fragment pattern queries: The trans-
formation that follows employs the paths’ breakpoints in-
formation to actually split them into smaller paths. Observe
how each element of P(VP \{x1, xk}) uniquely corresponds
to a specific path cover of the simple path P , e.g. {xm} ↔
{(x1, .., xm), (xm, .., xk)}. Hence any distributed query can
equivalently be written as (P1, .., Pr), where all Pi’s are
subpaths such that ∪Pi = P , and the end node of each Pi

concides with the start node of Pi+1.
Based on that, we can describe the fragment pattern

queries (or just fragments) in which every distributed query
divides into. Some general facts are the following.

• # fragment queries= # breakpoints+1.
• # distributed queries with v + 1 fragments=

(
k-2
v

)
, e.g.

–
(
k-2
0

)
= 1 distributed query with 1 fragment, for

choosing 0 breakpoints, i.e. the whole P ;
–
(
k-2
1

)
= k-2 distributed queries with 2 fragments,

for choosing all singletons as breakpoints;
–
(
k-2
k-2

)
= 1 distributed query with k-1 fragments, for

choosing k-2 breakpoints, i.e. decomposing into all
its edges.

• # all distributed queries is recovered to be 2k-2 =(
k-2
0

)
+
(
k-2
1

)
+
(
k-2
2

)
+ ... +

(
k-2
k-2

)
.

We can thus express distributed queries in terms of frag-
ments

H : DPQ // PPQr

(P, s(−))
� // (P(−)1, ..., P(−)r)

(8)

where P(−)i is determined by the chosen breakpoints s(−):

(P, s(i1..iv))↔ (P(i1..iv)1, P(i1..iv)2, .., P(i1..iv)v+1).

Starting with the function G as in (5), we can compose it
with the cartesian product H1 × .. × H2k-2 = H̃ for all
different subsets s(−), namely

DPQ2k-2
→

2k-2︷ ︸︸ ︷
PPQ× PPQ2(k-2

1 ) × PPQ3(k-2
2 ) × ..× PPQk-1

with mapping

((P,s∅),(P,s(2)),..,(P,s(23)),..,(P,s(2..k-1))) 7→

(P,(P(2)1,P(2)2),..,(P(23)1,P(23)2,P(23)3),..,(P(2..k-1)1,..,P(2..k-1)k-1)).

Combining the transformations (3),(5) and (8), we can
compose G1 × ...×Gn as in (6) with H = H̃1 × ...× H̃n

DPQ2k1 -2 × ...×DPQ2kn -2

H��
(PPQ× ...× PPQk1-1)× ...× (PPQ× ...× PPQkn-1)

(9)

with mapping, for some pattern query Q,

((Q1, s∅), .., (Q
1, s(2..k1-1)), .., (Q

n, s∅), .., (Q
n, s(2..kn-1)))_

��
(Q1, .., Q1

(2..k1-1)k1-1, .., Q
n, .., Qn

(2..kn-1)kn-1).

Notice that if T = 1
(
k-2
0

)
+2
(
k-2
1

)
+3
(
k-2
2

)
+ ...+(k-1)

(
k-2
k-2

)
,

PPQ×PPQ2·(k-2)×PPQ3·(k-2)× ...×PPQk-1 ∼= PPQT

hence the image of H is PPQT1 × ..× PPQTn .
Back to the example query (4), having computed its

distributed queries in (7), we can now identify its fragment
queries. For Q1, we have k1 = 4 so there are

(
2
0

)
= 1,(

2
1

)
= 2,

(
2
2

)
= 1 distributed queries with 0 + 1 = 1,

1 + 1 = 2, 2 + 1 = 3 fragment queries respectively. The
function H̃1 : DPQ4 → PPQ×PPQ2×PPQ2×PPQ3

has as image the list of fragment queries

(Q1, (Q1
(2)1, Q

1
(2)2), (Q1

(3)1, Q
1
(3)2), (Q1

(23)1, Q
1
(23)2, Q

1
(23)3)) =(

(x1, x2, x3, x4), (x1, x2), (x2, x3, x4), (x1, x2, x3),

(x3, x4), (x1, x2), (x2, x3), (x3, x4)
)

For Q2 we have k2 = 2 so H̃2 : DPQ→ PPQ with image
the only fragment query Q2 = (y1, y2). The product of those
two functions is composed with G ◦ F to give

PQ
F−→ PPQ2 G−→ DPQ5 H−→ PPQ(1+2+2+3)+1

with mapping the total list of 10 fragment queries(
x1 → x2 → x3 → x4, x1 → x2, x2 → x3 → x4,

x1 → x2 → x3, x3 → x4, x1 → x2, x2 → x3,

x3 → x4, y1 → y2 | y2 ≡ x3

)
(10)

4) Fragment queries to Primary Fragments: In the final
list of all fragments (P, P(2)1, ..., P(2..k-1)k-1) for a path,
some entries turn out to be identical, e.g. P(2)1 = (x1, x2) =
P(23)1. In this section, the described transformation distin-
guishes all the unique elements from that list.

We thus consider the primary fragments of a path, i.e. all
distinct subpaths that are essential to build it up in all ways;
for P = (x1, .., xk) they are the following:
· #(k-1) 2-paths (x1, x2), (x2, x3), . . . , (xk-1, xk);
· #(k-2) 3-paths (x1, x2, x3), . . . , (xk-2, xk-1, xk); (. . .)
· #

(
k-(k-2) = 2

)
[k-1]-paths (x1, .., xk-1), (x2, .., xk);

· #
(
k-(k-1) = 1

)
k-path (x1, .., xk).

In total, we have the above (k-1) + (k-2) + ... + 1 =
(k-1)k

2 subpaths, which in combination make up all fragment
queries.

In order to correspond these to fragments of the previous
general form P(−)i, so as to be able to discriminate the latter
between primary and non-primary, we make the following
choices which focus on their source/target:
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- subpaths of the form (x1, .., xi) or (xi, .., xk) — in-
cluding the start or end path vertex — are P(i)1 or
P(i)2;

- subpaths of the form (xi, .., xj) where 1 < i < j < k
— including only intermediate vertices — are P(ij)2;

- (x1, .., xk) is just P .

Therefore the above collections of primary fragments are
the 2-paths P(2)1, P(23)2, ..., P(k-2 k-1)2, P(k-1)2, the 3-paths
P(3)1, P(24)2, ..., P(k-3 k-1)2, P(k-2)2 and so on. We can now
formulate all fragment queries only using primary fragments,
as claimed: for breakpoints {xm1

, ..., xmv
}, we have

(P(m1..mv)1, P(m1..mv)2, .., P(m1..mv)v+1) ≡
(P(m1)1, P(m1m2)2, P(m2m3)2, .., P(mv)2). (11)

Conclusively, out of the full list of fragments for P , the
primary ones are the path itself, both fragments from choos-
ing any single breakpoint (of the form P(i)1, P(i)2) and the
second fragments from choosing any two breakpoints (of the
form P(ij)2). Hence the set of primary fragments is precisely

PFP = {P, P(i)1, P(i)2, P(ij)2 | 2 ≤ i ≤ k-1, i < j ≤ k-1}.
(12)

We can now define a function

K : PPQT // PF

(P, P(2)1, P(2)2, ..., P(2..k-1)k-1) � // PFP

(13)

where PF is the set {PFQ | any Q ∈ PQ} of all sets of
primary fragments for pattern queries. Combining K with
all the previous transformations, we can compose (9) with

PPQT1+...+Tn
K−−−−−→ PF (14)

which maps all fragments from all path queries Q1, ..., Qn

to the union of their primary fragments:

(Q1, Q1
(2)1, .., Q

1
(2..k1-1)k1-1, .., Q

n, .., Qn
(2...kn-1)kn-1)

_
��

{Qu, Qu
(iu)1, Q

u
(iu)2, Q

u
(iuju)2 | 2≤iu≤ku-1,iu<ju≤ku-1}1≤u≤n.

The image of this final step is PFQ = PFQ1 ∪ ...∪ PFQn .
Notice how, since all Q1, .., Qn are edge-disjoint, the sets
PFQu are all distinct from each other.

Proposition 1: The total number of primary fragments for
an arbitrary pattern query Q is

1≤u≤n∑ ku(ku − 1)

2

where n is the number of simple paths it decomposes into,
and k1, .., kn are the respective path lengths.
We can now compose all defined functions (3,6,9,14) in
order to obtain the transformation M; given an arbitrary

pattern query Q, it produces the set of its primary fragments
M(Q) := PFQ. Graphically,

PQ
F
//

M
,,

PPQn G
// DPQ2k1 -2 × ..×DPQ2kn -2

H
��

PPQT1 × ...× PPQTn

K
��

PF.

This fulfills the purpose of the current section; an operation
which decomposes any pattern query into all fragments
necessary to reconstruct it is established.

For our example pattern query (4), we have

PFQ1 ={Q1, Q1
(2)1, Q

1
(2)2, Q

1
(3)1, Q

1
(3)2, Q

1
(23)2} =

{(x1, x2, x3, x4), (x1, x2), (x2, x3, x4),

(x1, x2, x3), (x3, x4), (x2, x3)}
PFQ2 ={Q2} = {(y1, y2)}

so via PQ
F−→ PPQ2 G−→ DPQ5 H−→ PPQ10 K−→ PF we

have the full set of primary fragments for Q

M(Q) = PFQ =PFQ1 ∪ PFQ2 = {x1 → x2 → x3 → x4,

x1 → x2, x2 → x3 → x4, x1 → x2 → x3,

x3 → x4, x2 → x3, y1 → y2 | y2 ≡ x3}
(15)

with precisely 4(4−1)
2 + 2(2−1)

2 = 6 + 1 = 7 elements;
compare with the list (10) of 10 elements, some of them
unneeded duplicates.

C. Partition results combination

1) Primary fragments to Fragment Result Sets: The next
step is to execute searches in the partitions G1, ..., Gm of
our distributed graph database G, in order to identify paths
isomorphic to the primary fragments, and then appropriately
‘join’ them in order to reconstruct some part of the initial
query. Due to the REF and RFD characteristic discussed
in III-A, we can add further restrictions for the start/end
vertices of the fragment paths — in order to reduce the
candidate vertices — based on whether a fragment located
in some partition is destined to be joined with another of a
different partition.

For some partition Gw ∈ {G1, ..., Gm}, define the sets of
vertices Rw = {x ∈ Vw | x is REF}, Dw = {x ∈ Vw |
x is RFD}. Notably Rw ∩Dw = ∅, since the RFD label
pins the ‘real’ location of the vertex based on the partitioning
algorithm, whereas all REF -labeled vertices are copies in
different partitions. If we consider all such vertices from all
partitions,

RG = R1 ∪ ... ∪Rm = I = D1 ∪ ... ∪Dm = DG

for I the set of all duplicated vertices as in (1).
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Define the following four classes of partition fragment
result sets, corresponding to the four types of primary
fragments for each path Qu as in (12):

FRSGw
(Qu) ={Q̄ ∈ Gw | Q̄ ∼= Qu} (16)

FRSGw
(Qu

(i)1) ={Q̄ ∈ Gw | Q̄ ∼= Qu
(i)1∧eQ̄∈Rw}

FRSGw(Qu
(i)2) ={Q̄ ∈ Gw | Q̄ ∼= Qu

(i)2∧sQ̄∈Dw}
FRSGw

(Qu
(ij)2) ={Q̄ ∈ Gw | Q̄ ∼= Qu

(ij)2∧eQ̄∈Rw∧sQ̄∈Dw}

For each primary fragment of each path of Q, we take the
union of these sets to form the following

∑n
u=1

ku(ku-1)
2

fragment result sets

FRSu
− ≡ FRS(Qu

−) := FRSG1
(Qu
−)∪ ...∪FRSGm

(Qu
−).

(17)
Specifically, we have FRSu = {Q̄ ∈ G | Q̄ ∼= Qu},
FRSu

(i)1 = {Q̄ ∈ Gw | Q̄ ∼= Qu
(i)1∧eQ̄ ∈ Rw for some w},

FRSu
(i)2 = {Q̄ ∈ G | Q̄ ∼= Qu

(i)2 ∧ sQ̄ ∈ DG}
and FRSu

(ij)2 = {Q̄ ∈ Gw | Q̄ ∼= Qu
(ij)2 ∧ eQ̄ ∈

Rw for some w}. These sets contain all isomorphic in-
stances of the primary fragments in the database, all together
in large collections, where the partition from which each of
them originates is forgotten.

In general, it is convenient to think of these sets FRSu
− as

relational tables, with attributes the ‘names’ of the vertices
of Q they refer to, and tuples the graph-isomorphic paths
appearing in the partitions.

We can now define the full set of fragment result sets for
a specific pattern query Q:

FRSQ = {FRSu, FRSu
(i)1, FRSu

(i)2, FRSu
(ij)2}

with 1 ≤ u ≤ n and appropriate ranges for i, j. If FRS =
{FRSQ | any Q} is the set of all sets of fragment result
sets for arbitrary pattern queries, consider the function

F : PF // FRS

PFQ = {Qu
−}

� // FRSQ = {FRSu
−}

(18)

Clearly, the size of FRSQ is also
∑ ku(ku−1)

2 .
For our example pattern query as in (4), the 7 fragment

result sets are of the form

FRS1 := FRS1 ={[x1 → x2 → x3 → x4]}
FRS2 := FRS1

(2)1 ={[x1 → x2] | x2 is REF}
FRS3 := FRS1

(2)2 ={[x2 → x3 → x4] | x2 is RFD}
FRS4 := FRS1

(3)1 ={[x1 → x2 → x3] | x3 is REF}
FRS5 := FRS1

(3)2 ={[x3 → x4] | x3 is RFD}
FRS6 := FRS1

(23)2 ={[x2 → x3] | x2 is RFD ∧ x3 is REF}
FRS7 := FRS2 ={[y1 → y2]}

where [−] denotes all the graph-isomorphic instances of the
path arising in some partition of G. The mapping F(PFQ) =

FRSQ is the set containing all the above sets, with the
condition that y2 = x3.

Remark 1: There may be cases when certain primary
fragments of some pattern query Q are graph-isomorphic.
It is then not required to search the partitions multiple
times; rather it seems optimal to first identify them and only
query once. For the above example, PFQ as in (15) already
includes some isomorphic fragments, e.g. Q1

(2)1
∼= Q1

(3)2
∼=

Q1
(23)2

∼= Q2: these are all (isomorphic) 2-paths. Hence if we
populate the set/table FRS2, we can then obtain FRS1

(2)1,
FRS1

(3)2 and FRS1
(23)2 by selecting the ones with the extra

label restrictions, rather than querying three more times.
2) Fragment Result Sets to Distributed Result Sets: After

querying the database to specify (populate, when viewed as
tables) all the separate FRS(Qu

−)’s in the previous step,
we can form sets of isomorphic instances of the distributed
queries for Q, which will be constructed ‘algebraically’ from
the fragment result sets.

An important advantage of viewing result sets as relational
tables is that we can join them in the usual sense, i.e. employ
extension of natural join ./ of binary relations, as described
in [16]. We can construct various joins of the fragment result
sets of some path P , e.g.

FRS(i)1 ./ FRS(i)2 = {(y1, ..., yk) |
(y1, ..., yi) ∈ FRS(i)1 ∧ (yi, ..., yk) ∈ FRS(i)2}.

The other cases needed for our purposes are FRS(i)1 ./
FRS(ij)2, FRS(ij)2 ./ FRS(jk)2 and FRS(ij)2 ./
FRS(j)2, for all appropriate i, j, k.

For Q decomposed in paths {Q1, ..., Qn}, we define the
distributed result sets

DRSu
1≡DRS(Qu, ∅) = FRSu (19)

DRSu
(i)≡DRS(Qu, s(i)) = FRSu

(i)1 ./ FRSu
(i)2

DRSu
(ij)≡DRS(Qu, s(ij)) = FRSu

(i)1 ./ FRSu
(ij)2 ./ FRSu

(j)2

DRSu
(ijk)≡DRS(Qu, s(ijk)) = FRSu

(i)1 ./ FRSu
(ij)2

./ FRSu
(jk)2 ./ FRSu

(k)2 etc.

where each set is formed following the reconstruction rules
of fragment queries from primary fragments from (11).
Obviously, for any such Q with lengths of paths k1, .., kn,
the total number of the distributed result sets/tables is∑n

u=1 2ku-2.
We can now define the set of all distributed result sets

DRSQ = {DRSu
1 , DRSu

(i), DRSu
(ij), ... | 1 ≤ u ≤ n}

as well as the set of all sets of distributed result sets for
arbitrary pattern queries, DRS = {DRSQ | any Q}. We can
now define a function using the join construction formulas

D : FRS // DRS

FRSQ = {FRSu
−}

� // DRSQ = {DRSu
1 , DRSu

(i), ..}
(20)
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In our example (4), we have the following 22 + 20 = 5
distributed result sets:

DRS1
1={[x1→x2→x3→x4]}

DRS1
(2)={x1→x2→x3→x4|x1→x2∈FRS1

(2)1∧x2→x3→x4∈FRS1
(2)2}

DRS1
(3)={x1→x2→x3→x4|x1→x2→x3∈FRS1

(3)1∧x3→x4∈FRS1
(3)2}

DRS1
(23)={x1→x2→x3→x4|x1→x2∈FRS1

(2)1∧x2→x3∈FRS1
(23)2

∧x3→x4∈FRS1
(4)2}

DRS2
1={[y1→y2]}

Notice that these sets contain multiple graph-isomorphic
paths to Q1 and Q2 obtained in different ways, and the
‘names’ xi are only used as attributes of the tables where the
tuples of these sets are stored in. The image D(F(PFQ)) =
DRSQ contains all these sets, with the condition y2 = x3.

3) Distributed Result Sets to Path Result Sets: Having
specified all isomorphic distributed queries arising in the
database — which are in fact the paths Q1, ..., Qn formed
by joining fragments in different intermediate nodes each
time — we now wish to assemble the whole result table for
each path, ignoring the way they were constructed.

Define the path result set to be the union of those DRSu
(−)

for each path Qu ∈ {Q1, ..., Qn} individually:

PRSu = DRSu
1 ∪DRSu

(2) ∪DRSu
(3) ∪ .. ∪DRSu

(23..k-1)

(21)
Consider the set PRSQ = {PRS1, ..., PRSn} of all path
result sets. If PRS = {PRSQ | any Q} contains all sets
of path result sets for arbitrary pattern queries, we form the
transformation

P : DRS // PRS

DRSQ = {DRSu
(−)}

n
u=1

� // PRSQ = {PRSu}nu=1.

(22)
For our example query (4), we obtain the following path
result sets for Q1 and Q2:

PRS1=DRS1
1∪DRS1

(2)∪DRS1
(3)∪DRS1

(23)={x1→x2→x3→x4|

x1→x2→x3→x4∈FRS1∨
(
x1→x2∈FRS2∧x2→x3→x4∈FRS3

)
∨(

x1→x2→x3∈FRS4∧x3→x4∈FRS5

)
∨(

x1→x2∈FRS2∧x2→x3∈FRS6∧x3→x4∈FRS5)
}

PRS2=DRS2
1={[y1→y2]}.

Hence the image of the composition of the transformations
gives P(D(F(PFQ))) = PRSQ = {PRS1, PRS2 | x3 ≡
y2}.

4) Path Result Sets to Base Result Sets: Now that we
have gathered all paths that are isomorphic to Q1, ..., Qn

inside the distributed graph database, we recall that the join
vertices of the weakly connected pattern query Q constitute
common ‘attributes’ of the path queries results when stored
in tables. Thus we can form the base result set

BRSQ = PRS1 ./ PRS2 ./ ... ./ PRSn (23)

where the natural join is performed over the common (join)
vertices of the paths. Consequently, we can view the set
BRSQ as a table, with attributes the names of the discrete
vertices of Q, and tuples all of its isomorphic subgraphs
inside G. If BRS = {BRSQ | ∀Q ∈ PQ} ⊆ P(PQ) is the
set of all sets of base result sets for arbitrary Q’s, the above
join defines the transformation

B : PRS // BRS
PRSQ = {PRS1, ..., PRSn} � // BRSQ.

(24)

The full process of assembling the results of primary
fragments in the partitions into isomorphic instances of the
initial query is thus given by the composite transformation
of (18,20,22,24)

PF F //

L
--

FRS D // DRS
P��

PRS
B��

BRS

For the example query Q as in (4), we end up with

B(P(D(F(PFQ)))) = PRS1 ./ PRS2 =

{(x1,x2,x3,x4,y1)|(x1,x2,x3,x4)∈PRS1∧(y1,x3)∈PRS2}

where the join is performed over the unique join vertex
in J = {x3}. Notice that this result set BRSQ of all
isomorphic subgraphs to Q would contain also H of the
distributed setting example (2):

(n,mREF ) ∈ FRS1
(2)1 ∧ (mRFD, l, o) ∈ FRS1

(2)2 ⇒
(n,m, l, o) ∈ DRS1

(2) ⊆ PRS1,

(k, l) ∈ FRS2 = DRS2 = PRS2.

We conclude with a result which ensures the validity of
our method (we omit the proof due to space restriction).

Theorem 1: By performing the series of transformations
L ◦M depicted by the dotted line

PPQT1 × ..× PPQTn // PF

��

L

��

DPQ2k1 -2 × ..×DPQ2kn -2

OO

FRS

��
PPQn

OO

DRS
��

PQ

OO

L◦M //

M

88

BRS PRSoo

we obtain all isomorphic instances of the initial query Q in
the distributed graph database.
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IV. EXPERIMENTAL EVALUATION

A. Implementation Details and Setup

The Digree prototype is implemented as a middleware
system that spans over a set of distributed graph databases.
It consists of two separate software units, the master and the
slave. A basic Digree deployment is consisted of one master
node, k slave nodes and an extra database node. Each slave
node is assigned a graph partition that is loaded in a graph
data management system (e.g. graph database, relational
database or other). While in our prototype implementation
we use Neo4j to manage each graph partition, this is not
a restrictive choice. In order to use a different data store
(or a combination of different data stores), all is required
is the interfaces to the respective query languages or APIs.
We deployed our system on a cluster consisting of 18 Linux
virtual machines. Each machine had 4 cpus and 8 GB of
memory. We used one machine to run the master process,
one machine to host a PostgreSQL database server and the
rest 16 machines to host the partitions of the graph database
(one Neo4j database per node) and the slave processes. For
comparison purposes we used a virtual machine of the same
specifications to run the queries on a stand alone Neo4j
instance loaded with the unpartitioned dataset (from now
on refered to as single-node).

B. Datasets

We used three real world datasets for our experiments.
The first two are the amazon product network1 [17] and the
youtube video graph.2 The third dataset that we used is an
anonymized twitter users graph parsed by our team. The
details of the datasets are shown in Table I (size refers to a
single partition Neo4j database size on disk). For partitioning
the smaller datasets (amazon and youtube) we used the
popular METIS [18] algorithm, while for the twitter dataset
we used the online partitioning algorithm LDG [19] since
METIS could not handle that large an input.

Table I
DATASETS OVERVIEW

#nodes #edges #labels size

amazon 548.552 1,788,725 11 99.6 MB
youtube 155,513 2,969,826 14 161.8 MB
twitter 35,648,794 910,526,369 232 30.85 GB

C. Experiments

1) Pattern Queries: For each of the datasets we built a
set of pattern matching queries. Specifically we used seven
pattern queries used in [1] (depicted in Figure 1). For each
of the datasets and for each pattern query we created ten
instances, each with a different random set of node labels.

1https://snap.stanford.edu/data/
2http://netsg.cs.sfu.ca/youtubedata/

We set a time limit of 1000 seconds for the queries to finish
execution, in order to reduce the effect of strangling queries
in the average computation for either system. In Figure 2(a)
we provide the average execution time of the finished queries
run in single-node and Digree, while in Figure 3(a) we
present the percentage of the queries that returned their result
set within the time limit. We can see that for the smaller
datasets (amazon and youtube) the differences between the
two implementation are not significant. Nevertheless, Digree
manages to produce reduced query times because of the
effect of parallel execution. For the larger dataset (twitter),
where the graph cannot fit in the main memory of the
single-node instance, the results are more interesting. Not
only execution time is more than halfway down, but Digree
also manages to answer more queries than the single-node
(96% against 89%) within the time limit. For the rest of the
experiments we present results only for the larger dataset
(twitter) since Digree is aimed for big datasets that don’t
easily fit on main memory of a single node.

2) Mutated Pattern Queries: We continued by using the
pattern queries from the previous experiment and creating
a number of mutations for each of those. These mutations
have been created by randomly choosing a vertex from the
graph query and attaching a new vertex to it, randomly
incoming or outgoing. We refer to the number of vertices
added as the mutation degree. For each pattern query we
created mutations with degree from 1 to 5 and for each one
we created 10 query instances, each with a different random
set of labels. We applied the same time limit as before and
the results are shown in Figures 2(b) and 3(b). For this more
challenging set of queries Digree reduces execution time
to less than one third of the time required for single-node
execution. Moreover, it manages in answering more queries
within the time limit than the single-node.

3) Path Queries: Digree utilizes path queries as its basic
tool of decomposing a complex graph pattern. In the final ex-
periment we demonstrate the effect of parallel processing of
path queries that result in the reduced query times observed
in the previous experiments. We used path queries varying in
length from 3 to 8 vertices. For each path length we created
100 query instances, each with a different random set of
labels and we used the same time limit as before. The results
are presented in Figures 2(c) and 3(c). Digree manages to
execute the queries in a small fraction of the time requirered
by single-node, showing a small increase in execution time
as the length of the path increases. Digree is between 9 and
20 times faster that the single-node deployment.

V. RELATED WORK

There exists a number of distributed graph databases.
Trinity [20] is an in-memory distributed graph database
used for online query processing and offline analytics on
large graphs as well as for subgraph matching [21]. Titan
is an open source graph database layered upon a distributed
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Figure 1. The pattern queries used in the experiments

(a) pattern queries (b) mutated pattern queries (c) path queries

Figure 2. Average execution time

(a) pattern queries (b) mutated pattern queries (c) path queries

Figure 3. Percentage of queries answered within time limit of 1000 seconds

NoSQL database like HBase. ThingSpan [22] is a commer-
cial graph analytics platform that handles very large graphs
by utilizing a number of open source big data tools. Digree
can act as a middleware so as to utilize any such system or
combination of systems deployed at the graph partitions.

A number of systems were developed for distributed graph
processing such as Google Pregel [4], it’s open source
alternative Apache Giraph [23] and GraphX [3]. These
systems are not specialized in graph pattern matching but
are frameworks that provide a programming model for the
user to develop and deploy graph algorithms.

A work that concentrates on distributed pattern matching
can be found in [1] where the authors use relational data
storage and their work is closely related to traditional
database system query optimization. Digree can easily oper-
ate over relational graph management solutions, by building
the required API calls. In [24] the authors propose algo-
rithms that use the message passing model and apply their
ideas for graph simulation [25], while in [26] the authors

propose a distributed solution for graph mining. In [27] the
authors present GraphMat, a framework for writing high
performance parallel graph algorithms taking advantage of
multicore architectures in a single-node deployment. In [28]
the authors present PSgL, a distributed solution for subgraph
listing, which is a special case of matching when all vertices
have the same label. A large amount of related work exists
in the context of semantic web. In [6] the authors propose an
approach where a SPARQL query is executed at all partitions
and partial RDF matches of it are then assembled so as to
build the cross-partition results, while in [29] the authors
focus on data partitioning and propose a mapreduce based
join solution for inter-partition query answering. In [30] the
authors propose a partitioning of the RDF data that adopts
to workload changes in order to better support queries.
The authors in [7] focus on graph partitioning and how it
affects their mapreduce based system performance. In [31]
the authors examine how caching of SPARQL query results
can favor execution of queries over large RDF graphs.
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VI. CONCLUSION

In this paper we presented Digree, a middleware to handle
graph pattern matching queries over a distributed graph
database or inter-linked graph databases. We developed a
solid theoretical base to rewrite a graph query so as to
be executed in a distributed setting in parallel, but also to
combine back the partial results into the final result set.
We presented a prototype implementation of Digree and
demonstrated its capacity in reducing execution times of
complex pattern matching queries, especially for datasets
that do not fit in main memory of a single node. As future
work, we plan to compare with other systems such as
GraphX [3] and to use a variety of systems to manage the
graph partitions or the central processing engine of Digree.
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