
2016 IEEE International Conference on Big Data (Big Data)

978-1-4673-9005-7/16/$31.00 ©2016 IEEE 410

Real Time Processing of Streaming and Static Information

Christoforos Svingos1,∗, Theofilos Mailis1, Herald Kllapi1,2, Lefteris Stamatogiannakis1, Yannis Kotidis3, Yannis Ioannidis1

{csvingos, tmailis, herald, estama, yannis}@di.uoa.gr, kotidis@aueb.gr
1Dept. of Informatics and Telecomunications, University of Athens, Greece. 2currently at Google.

3Dept. of Informatics, Athens University of Economics and Business, Greece.

Abstract—Big Data applications require real-time processing
of complex computations on streaming and static information.
Applications such as the diagnosis of power generating turbines
require the integration of high velocity streaming and large
volume of static data from multiple sources. In this paper we
study various optimisations related to efficiently processing of
streaming and static information. We introduce novel indexing
structures for stream processing, a query-planner component
that decides when their creation is beneficial, and we examine
precomputed summarisations on archived measurements to
accelerate streaming and static information processing. To put
our ideas into practise, we have developed EXASTREAM, a data
stream management system that is scalable, has declarative
semantics, supports user defined functions, and allows efficient
execution of complex analytical queries on streaming and static
data. Our work is accompanied by an empirical evaluation of
our optimisation techniques.

Keywords-Stream Processing, SQL, Static Data, Performance

I. INTRODUCTION

Emerging Big Data applications require real-time pro-
cessing of complex computations on streaming and static
information. The latter is a challenging task since it involves
the integration of high velocity streaming and large volume
of static data from multiple sources, on many concurrent
continuous queries that need to be executed.

A typical scenario described in [1] requires monitoring
and diagnosing of power-generating turbines. In the de-
scribed scenario, several service centres are dedicated to
diagnosing by utilizing data from more than 100, 000 ther-
mocouple sensors installed in 950 power generating turbines
located across the globe. One typical task of such a centre is
to detect in real-time potential faults of a turbine caused by,
e.g., an undesirable pattern in temperature’s behaviour within
various components of the turbine. This task requires to
extract, aggregate, and correlate (i) streaming data produced
by up to 2, 000 sensors installed in different parts of the
turbine, (ii) static data about the turbine’s structure, (iii) and
historical operational data of each sensor stored in multiple
datasources.

This need has triggered the design of scalable approaches
that provide low latency answering to queries on high-

∗ This research has been partially supported by the EU project Optique
(FP7-IP-318338).

velocity live streams and high-volume static data sources.
In this paper we study several novel optimisation techniques
for efficiently processing analytical queries on streaming
& static information. In particular: (i) we introduce novel
in-memory indexing structures and algorithms dedicated to
accelerating stream-processing; (ii) we propose the adaptive
stream indexing technique that is responsible for creating on
the fly the appropriate indexing structures that will accelerate
execution of live-stream operations.

To put our ideas into practice, we have developed the
EXASTREAM Data Stream Management Systems (DSMS),
an experimental DSMS that fuses streaming operators to
the SQLite database engine. EXASTREAM has several sig-
nificant features such as: (i) scalability: the ability to run our
system in a distributed environment and its capacity to easily
add and remove queries without disrupting existing query
execution; (ii) declarative semantics: our system provides
for a declarative language, extending the SQL syntax and
semantics for querying live streams and relations; (iii) user
defined functions: our system natively supports user defined
functions with arbitrary user code; (iv) stream and static
data integration: based on its architecture and implementa-
tion, our system natively supports streaming and static data
integration. It should be noted that the optimisations we have
proposed are general optimisations that can be adopted by
other stream processing systems as well.

In our experimental evaluation we study the effect of
the proposed optimisations in a cloud deployment of EX-
ASTREAM on up to 128 nodes using real sensor data
from power generating turbines. Our findings demonstrate
the effectiveness of our techniques in processing up to 1
thousand live stream queries and performing correlation
analysis between live and archived stream measurements in
real time.

II. SYSTEM OVERVIEW

The EXASTREAM Data Stream Management System
(DSMS) has been designed for efficiently processing on
both static and streaming information. It is embedded in
EXAREME (https://www.exareme.org), a system for elastic
large-scale dataflow processing on the cloud [2], [3] that
has been publicly available as an open source project under
the MIT License. EXASTREAM was implemented as a key

411

Source

Reads from

Source &

Adds Wid

Attribute

Computes

AVG value

per Wid

CREATE STREAM read_from_source AS
SELECT *
FROM (timeslidingwindow timewindow:3 frequency:3
 SELECT *
 FROM (http 'http://ip:port/stream1'));

CREATE STREAM avg_value AS
SELECT wid, AVG(value)
FROM read_from_source
GROUP BY wid;

SELECT * FROM avg_value;

Figure 1: A simple (a) EXASTREAM topology and (b) its
syntactical representation

component of the OPTIQUE project. This section introduces
some key aspects of EXASTREAM before presenting the
optimisations that we have built upon it.

Data Model: A topology describes the flow of stream-
ing and static records between computational nodes. Com-
putational nodes are logical processing units that have one or
more live-stream or static-data inputs and one output. They
execute a set of operations on their input to produce the
corresponding output. Computational nodes can be classified
as either having exclusively live-stream inputs, exclusively
static-data inputs, and hybrid inputs. Similarly, they can be
classified to being streaming or static, based on the form
of their output. A special type of computational nodes are
those responsible for communicating external sources to our
topology, similar to Storm’s spouts.

Declarative Semantics for Computations: EXAS-
TREAM takes advantage of existing Database Management
technologies and optimisations by providing a declarative
language, namely SQL�, extending the SQL syntax and
semantics for querying live streams and relations. In contrast
to most DSMSs, the user does not need to consider low-
level details of query execution. Instead, the system’s query
planner is responsible for choosing an optimal plan depend-
ing on the query, the available stream/static data sources, and
the execution environment.

In order to incorporate the algorithmic logic for trans-
forming SQL into SQL� several operators and statements
have been implemented: (i) The Create Stream statement
allows to add a new computational node to our topology that
outputs a live stream. (ii) The TimeSlidingWindow groups
tuples from the same time window and associates them
with a unique window identifier corresponding to the Wid
attribute. (iii) The WCache creates the indexing structures
for answering efficiently equality constraints on the Wid and
Time attributes when processing infinite streams.

Example 1. Fig. 1a shows a simple topology. The input
node receives information from a stream of temperature
measurements acquired from a single sensor on some power
generating turbine. The initial data contain the tempera-

ture measurement in Celcium degrees and the time that
this measurement was acquired. The input node processes
the records arriving from the source, acknowledges the
temporal identifier indicated by the source, and relates
each measurement to a time-sliding window mechanism that
assumes a window of size 3 sec is produced every 3 sec.
Then a second computational node calculates the average
temperature value grouped by windows.

In Fig. 1b we see the EXASTREAM query, corresponding
to the Fig. 1a topology. The create stream statement cre-
ates the two different computational nodes responsible for
reading from the data source (read_from_source) and
computing the average value per window (avg_value). As
we see the read_from_source computational node uses
two user defined functions: http reads the stream data that
are pushed from an HTTP server; and timeslidingwindow is
responsible for creating the windows based on the window-
ing mechanism expressed by the timewindow and frequency
parameters. The frequency attribute defines that a window
will be created every 3 secs and the timewindow defines
that the length of the window is 3 secs. The avg_value
computational node has read_from_source as its input
and outputs a new stream that contains the average value
per window. Final the select query is the one that shows the
results of the avg_value stream.

For the OPTIQUE project, EXASTREAM has been ex-
tended in order to support statements expressed in the
STARQL language [4].

Architecture & Implementation: EXASTREAM supports
parallelism by allocating processing across different workers
in a distributed environment. Queries are registered through
the Gateway Server. Each registered query passes through
the EXASTREAM parser and then is fed to the Scheduler
module. The Scheduler places data and compute operators
(including UDFs and relational plans) on workers nodes
based on each worker’s load. These operators are executed
by an SQLite (https://www.sqlite.org) database engine in-
stance running on each worker.

EXASTREAM offers different types of parallelism depend-
ing on the type of operations performed within a query.
Inter-query parallelism is supported for queries with an ex-
clusively streaming input. This means that all the operations
of a single query are executed on the same worker, while par-
allelism is achieved by distributing queries across workers.
For computational nodes with a static input, EXASTREAM
provides intra-query parallelism, i.e. each operation of a
query is distributed on multiple workers.

Local node operations are handled by the stream query
planner. EXASTREAM’s query planner extends the one
provided by SQLite in order to efficiently execute queries in
a declarative language, such as SQL, without any concern
for low-level execution details.

412

III. QUERY OPTIMISATIONS ON LIVE & ARCHIVED
STREAMS

EXASTREAM queries access information from both live
streams and static data sources. A special form of static data
are archived-streams that, though static in nature, accommo-
date temporal information that represents the evolution of a
stream in time. Therefore, our analytical operations can be
classified as: (i) live-stream operations that refer to analyt-
ical tasks involving exclusively live streams; (ii) static-data
operations that refer to analytical tasks involving exclusively
static information; (iii) hybrid operations that refer to analyt-
ical tasks involving live-streams and static data that usually
originate from archived stream measurements.

For static-data operations we rely on standard database
optimisation techniques. This section focuses on the live-
stream optimisations we have developed:

A. Indexing Structures

Considering the particularities of live-streams with infinite
records we have developed hybrid in-memory indexing
structures and algorithms dedicated to accelerating stream-
processing. For visualisation purposes, we will assume a
3D space describing each stream and corresponding to the
attributes (Wid, Time, Measurement). The corresponding
structures can be applied for higher dimensional spaces.

Our technique considers two levels of indexing: (i) the first
level, namely WCacheL1, is for performing fast equality op-
erations on the Wid attribute based on an hybrid merge/hash-
join algorithm (ii) the second level, namely WCacheL2, is
for accelerating operations on the rest of the attributes, i.e.
Time and Measurement for our description.

1) WCacheL1: The WCacheL1 index related to a stream
is used for efficiently answering equality constraints on
its Wid attribute. In particular, we use the WCacheL1 in-
memory hash-index with Wid as key and the list of tuples
that belongs to that specific Wid as values. Each bucket on
WCacheL1 stores Wids in a sorted order, while records on
the live stream also appear sorted on the Wid attribute –this
property of live streams is credited to the timeslidingWindow
operator–.

Because a stream is infinite, we need a mechanism to
ensure that our hash-structure moves forward in time. This
mechanism adds wids to the WCacheL1 index, as soon as
they appear in the stream. Since live streams arrive sorted
on the Wid attribute, the WCacheL1 related to it can be
easily updated by inserting each new wid to the bottom of
its corresponding hash-bucket.

Example 2. The left hand side of Figure 2 shows the
WCacheL1 level of indexing. Bucket 0 contains in sorted
order all the wids that have appeared till now and are
mapped to the value of 0, as we can see both wids in buckets
and in the actual stream, are sorted on the Wid attribute.

WCacheL1

17

B
u
ck

et
 0

18

B
u
ck

et
 1

7
10
13
16B

u
ck

et
 2

5
8

14

6
9
12
15

Wid

Measurement

Time

WCacheL2

11

Figure 2: The WCacheL1 and WCacheL2 index structures

In Figure 2 the wids 17 and 18 are added to the 0 and 1
buckets, as soon as they appear as records into our stream.

We will demonstrate how our algorithm exploits the
WCacheL1 structure for a simple equi-join on two streams.
The outer stream of the join operation makes a scan to
its data and visits the WCacheL1 of the inner one. If the
outer stream scans the wid w and WCacheL1 contains the
finite set of wids denoted with W the following cases may
occur: (i) w ≤ max(W) and w 6∈ W: In that case w
does not appear as a value in the WCacheL1-index and
consequently in the Wid attribute of Streaminner. Since
values in Streaminner are ordered in Wid, we can safely
assume that the window w will never appear as part of the
inner stream and therefore the joining condition will never
be satisfied for the w window. (ii) w ∈ W: In that case we
search the corresponding bucket of WCacheL1 that contains
the value of w. Since windows are stored in a sorted order
per bucket, the algorithm searches for w using a merge-join
algorithm. When w is found, our algorithm will return all the
tuples in Streaminner that belong to the specific window.
(iii) max(W) < w: In that case our algorithm will pull
more tuples from the inner stream until we get a wid that
is greater than the outer tuple’s wid and then operate as in
one of the previous cases. It should be noted that the joining
algorithm on window identifiers is hybrid hash/merge-join
since it takes advantage of a hash-index and the ordering of
elements per hash-bucket.

2) WCacheL2: The second level of indexing ensures the
acceleration of data retrieval operations for attributes other
than Wid. This index is nested on each window and we
have adopted a KD-tree structure [5] for indexing in the
rest of the dimensions that participate in a join between two
streams. Each level of a KD-tree partitions the space into
two subspaces. The partitioning is done along one dimension
at the node at the top level of the tree, along another
dimension in nodes at the next level, and so on, cycling
through the dimensions. The partitioning proceeds in such a
way that, at each node, approximately one-half of the points
stored in the subtree fall on one side and one-half fall on the
other. Partitioning stops when a node has less than a given

413

maximum number of points.

Example 3. The right part of Figure 2 shows how a two
level KD-tree partitions the (Time,Measurement) space.
The red line performs a data partitioning on the Time-
axis, each partition containing 6 records. Then the blue lines
perform data partitioning on the Measurement-axis, each
partition containing exactly 3 records.

B. Adaptive Stream Indexing

The Adaptive Stream Indexing technique is responsible
for creating on the fly the appropriate WCacheL2 structures
that will accelerate execution of live-stream operations. This
means that a KD-tree structure will only be created if
the system’s optimiser decides it beneficial for the query
execution on the specific window of a stream. Formally, let’s
assume a set of stream-join operations that all have stream
s as the inner relation of the join computation:

ν⋃
i=1

{si ./θi s}.

Moreover each join condition θi contains the conjunct
Widsi = Wids Our problem constitutes in finding whether
it is beneficial for the query execution speed to build a
secondary level of KD-tree index on the attributes of s that
appear in all θi conditions.

The adaptive indexing algorithm operates in two steps:
Step 1: With each new window w appearing in stream

s, our algorithm first estimates the number of records that
have a Wid of value w for all streams under consideration.
The function recs(t, w) that makes the estimation takes as
input a stream t and the wid w. If all the records of stream
t with a wid of w have already appeared, i.e. a record with
a wid w+1 exists, our algorithm returns the actual number
of records in window w. Otherwise, the number of records
during the wth window is estimated based on what happened
during the last n windows (where n has a default value of
10 but can be altered depending on the use case).

Step 2: The second step of the algorithm estimates
whether it is beneficial to build a KD-tree index on the
new window of stream s. If we assume that (i) the cost
of computing the join operation between si and s on the
wth window without any KD-tree index is denoted with
cost(si ./θi s), (ii) the cost of performing the join operation
on the wth window when having a KD-tree structure is
denoted with costKD(si ./θi s), (iii) and the cost of building
the actual KD-tree on the wth window of stream s is
denoted with costKD(s), then the algorithm decides that
creating a KD-tree index is beneficial whenever:
ν∑
i=1

cost(si ./θi s) >

ν∑
i=1

costKD(si ./θi s) + costKD(s).

Details on KD-trees and their corresponding cost functions
can be found in [5].

C. Query Optimisations on Hybrid Operations

Regarding optimisations involving the fusion of static and
streaming information, we have already presented in [6]:
(i) the relational schema used to efficiently archive streaming
information; (ii) the materialised window signature tech-
nique that permits precomputation of frequently requested
aggregates on archived-stream measurements.

The idea underlying Materialised Window Signatures
(MWS) is to facilitate preoccupation of frequently requested
aggregates on each archived window of a stream. The
latter helps accelerate analytical tasks that include hybrid
operations over archived streams. These MWSs are stored in
the backend and are later utilised while performing complex
calculations between archived windows and a live stream.
The summarisation values are determined by the analytics
under consideration, e.g., for the computation of the Pearson
correlation, we precompute the avg value and standard
deviation on each archived window measurements.

In order to further expedite computation of similarity
expressions that are common in the described scenario of di-
agnosing power-generating turbines, we utilize the locality-
sensitive hashing (LSH) technique and the embedding of
LSH information into MWSs. The premise of the LSH
technique [7], [8] is that in many cases it is not neces-
sary to insist on the exact answer; instead, determining an
approximate answer with strong accuracy bounds should
suffice. The above argument relies on the assumption that
approximate similarity search can be performed much faster
than the exact one. Detailed studies of applying LSH on live
streams can be found in the literature [9], [10].

IV. EXPERIMENTAL EVALUATION

The aim of our evaluation is to study how our op-
timisation techniques and query distribution to multiple
workers accelerate the overall execution time of different
analytic queries. We deployed our system to the Okeanos
Cloud Infrastructure (www.okeanos.grnet.gr/) and used up
to 128 virtual machines (VMs) each having a 2.100GHz
processor with two cores and 4GB of main memory. We
used streaming and static data with measurements produced
by 100, 000 thermocouple sensors installed in 950 Siemens
power generating turbines.

For the experimental evaluation, the following queries
were adopted: Query I: The first query computes an equal-
ity join on the Wid and Time attributes between two
live-streams. Query II: This query computes the Pearson
correlation, above a threshold, of a live stream with a
varying number of archived streams. Queries III & IV:
These two queries are variations of Query II but, instead
of the Pearson correlation, they compute similarity based
on either the average or the minimum values within a
window, e.g. |avg(~w)− avg(~v)| < 10◦C. Queries V: This
query calculates the Pearson correlation between two live

414

T
im

e
(s

ec
)

0

1

2

3

4

Velocity (tuples/sec)

0 8 15 23 30

with index without index

T
im

e
(s

ec
)

0

40

80

120

160

Type of similarity (+MSW)

Pears. Min. Avg. (MSW)

Join Aggregate

T
im

e
(s

ec
)

0

40

80

120

160

Nodes

1 2 4 8 16

with LSH without LSH

T
h
ro

u
gh

p
u
t

(t
u
p
le

s/
se

c)

0

1250000

2500000

3750000

5000000

Number of Concurrent Queries

0 300 600 900 1200

Figure 3: Effect of (a) adaptive indexing, (b) MWS optimisation, (c) intra-query parallelism and the LSH technique, (d) inter-
query parallelism on live-streams

streams. We provide experimental evaluation for each of the
techniques:

1) Adaptive Indexing Optimisation: We show how the
adaptive indexing optimisation and the related indexing
structures affect query-response times. We execute Query I:
(i) on a single VM-worker; (ii) processing is performed on
windows of 100 secs; (iii) the evaluation is performed on
the live streams A and B (A being the inner relation of the
join operation), building an index on stream A whenever
appropriate ; (iv) stream A has a velocity of 10 tuples/sec, while
we vary the velocity of stream B from 1 tuple/sec to 28 tuples/sec.
We measured the processing time for computing the join
between a pair of windows of stream A and B with and
without enabling the adaptive indexing technique that creates
the necessary WCacheL2 structures. In Fig. 3a, we observe
that adaptive indexing helps accelerate the join computation
and its benefits increase by increasing the velocity of the
stream.

2) MWS Optimisation: We show how the MWS
optimisation affects the query’s response time. We executed
test Queries II, III, and IV: (i) on a single VM-worker;
(ii) for a fixed live-stream velocity of 1 tuple/min; (iii) for a
fixed window size of 1 hour which corresponds to 60 tuples
of measurements per window; (iv) and the current live stream
window was measured against 100, 000 archived ones. In
Fig. 3b we present the results of measuring the window
processing time with and without the MWS optimization.
The horizontal axis displays the three test queries with
and without the MWS optimisation, while the vertical axis
measures the time it takes to process 1 live-stream window
against all the archived ones. This time is divided to the time
it takes to join the live stream and the Measurements
relation and the time it takes to perform the actual
computations. Observe that the MWS optimisation reduces
the time for the Pearson query only by 8.18%. This is
attributed to the fact that the join operation between the live
stream and the archived information takes 69.58% of the
overall query execution time and cannot be avoided. For the
other two queries, we not only reduce the CPU overhead
of the query, but the optimiser further prunes this join from
the query plan as it is no longer necessary. Thus, for these

queries, the benefits of the MWS technique are substantial.
3) Parallelism between live & archived streams: For

complex analytics such as the Pearson correlation that
necessitates access to the archived windows, EXASTREAM
permits us to accelerate queries by distributing the load
among multiple worker nodes. We use the same setting
as before for the Pearson computation without the MWS
technique, but we vary this time the number of available
workers from 1 to 16. In Fig. 3c, one can observe a
significant decrease in the overall query execution time
as the number of VM-workers increases. EXASTREAM
distributes the archived-stream measurements between
different worker nodes. Each node computes the Pearson
coefficient between its subset of archived measurements
and the live stream. As the number of archived windows
is much greater than the number of available workers,
intra-query parallelism results in significant decrease of the
time required to perform the join operation.

4) Parallelism between live streams: This experiment
focuses on the effect of accelerating live-stream operations
by distributing the load to multiple worker nodes via inter-
query parallelism. We executed Query V (Pearson correla-
tion) (i) for a varying number of 1 to 1024 of concurrent
queries between different pairs of live streams; (ii) for a fixed
window size of 60 tuples; (iii) on non-overlapping windows;
(iv) using 128 EXASTREAM worker nodes. We measured the
window throughput, as the number of stream tuples that are
processed per sec. Recall that each node is equipped with a
two-core processor. We can see from Fig. 3d that initially,
the overall throughput of the system increases linearly with
the number of queries. This is because EXASTREAM utilizes
the available workers and distributes the load evenly among
them. When the number of queries reaches the number of
cores available (256) we observe the maximum through-
put of 4, 250, 226 tuples/sec. From that point onward, the
additional queries injected in EXAREME result in multiple
queries sharing the same core and, as a result, the cumulative
throughput decreases.

5) LSH Optimisation: Our final experiment focuses on
the LSH technique and how the intermix of MWSs, LSH
buckets, and parallelism accelerates the computation of com-

415

plex similarity measures between live and archived streams.
We perform the same experiment as in Section IV-3 for
parallelism between live & archived streams, only this time
we employ the LSH variation of MWSs. For the interested
reader in the LSH parameterisation we used a combination
of 7 AND-constructors and 6 OR-constructors. The results
of this experiment are also displayed in Fig. 3 that compares
performance with and without the optimisation. We observe
a significant decrease in the overall query execution time
when we adopt the combination of the MWS and LSH
techniques. The price we have to pay for this increase in
performance is 3% of false negative results for finding all
Pearson correlations with an equality degree above 0.7.

V. RELATED WORK

Query planning techniques for stream processing have
already been proposed in the literature. For example, in [11]
a query processing mechanism is proposed that continuously
reorders operators in a query plan as it runs. In this context,
we have introduced in-memory general purpose indexes for
stream processing and their dynamic creation based on the
adaptive indexing technique.

One of the leading edges in database management systems
is to extend the relational model to support for continuous
queries based on declarative languages analogous to SQL.
Following this approach, systems such as TelegraphCQ [12],
STREAM [13], and Aurora [14] take advantage of ex-
isting Database Management technologies, optimisations,
and implementations. In the era of big data and cloud
computing, a different class of DSMS has emerged. Systems
such as Storm [15], Millwheel [16], and Apache Flink
(https://flink.apache.org) offer an API that allows the user to
submit data-flows of user defined operators. EXASTREAM
combines characteristics of both approaches by allowing
to describe in a declarative way complex data-flows of
(possibly user-defined) operators.

VI. CONCLUSIONS

In this paper, we have studied various optimisations
related to efficiently processing of streaming information,
specifically: we have introduced novel indexing structures
for stream processing and a query-planner component that
decides when their creation is beneficial; we have suggested
optimisations for efficient CPU and memory handling; we
have proposed the appropriate structures to archive stream-
ing information; and we have suggested some precomputed
summarisations on the archived part of the stream, i.e. mate-
rialised window signatures. To put our ideas into practise, we
have developed EXASTREAM, a data stream management
system that is scalable, has declarative semantics, supports
user defined functions, and allows for the stream and static
data integration. Our work is accompanied by an empirical
evaluation of our optimisation techniques.

REFERENCES

[1] E. Kharlamov, S. Brandt, E. Jiménez-Ruiz, Y. Kotidis,
S. Lamparter, T. Mailis, C. Neuenstadt, Ö. L. Özçep,
C. Pinkel, C. Svingos, D. Zheleznyakov, I. Horrocks, Y. E.
Ioannidis, and R. Möller, “Ontology-based integration of
streaming and static relational data with optique,” in SIG-
MOD, 2016.

[2] M. M. Tsangaris, G. Kakaletris, H. Kllapi, G. Papanikos,
F. Pentaris, P. Polydoras, E. Sitaridi, V. Stoumpos, and Y. E.
Ioannidis, “Dataflow processing and optimization on grid and
cloud infrastructures.” IEEE Data Eng. Bull., 2009.

[3] H. Kllapi, P. Sakkos, A. Delis, D. Gunopulos, and Y. Ioanni-
dis, “Elastic processing of analytical query workloads on iaas
clouds,” arXiv preprint arXiv:1501.01070, 2015.

[4] Ö. L. Özçep, R. Möller, and C. Neuenstadt, “A stream-
temporal query language for ontology based data access,” in
KI, 2014.

[5] J. L. Bentley, “Multidimensional binary search trees used for
associative searching,” Communications of the ACM, 1975.

[6] E. Kharlamov, Y. Kotidis, T. Mailis, C. Neuenstadt, C. Niko-
laou, Ö. L. Özçep, C. Svingos, D. Zheleznyakov, S. Brandt,
I. Horrocks, Y. E. Ioannidis, S. Lamparter, and R. Möller,
“Towards analytics aware ontology based access to static and
streaming data,” in ISWC, 2016.

[7] P. Indyk and R. Motwani, “Approximate nearest neighbors:
towards removing the curse of dimensionality,” in Proceed-
ings of the thirtieth annual ACM symposium on Theory of
computing. ACM, 1998, pp. 604–613.

[8] A. Gionis, P. Indyk, R. Motwani et al., “Similarity search in
high dimensions via hashing,” in VLDB, 1999.

[9] K. Georgoulas and Y. Kotidis, “Distributed similarity
estimation using derived dimensions,” VLDB J., vol. 21,
no. 1, pp. 25–50, 2012. [Online]. Available: http://dx.doi.
org/10.1007/s00778-011-0233-y

[10] N. Giatrakos, Y. Kotidis, A. Deligiannakis, V. Vassalos,
and Y. Theodoridis, “In-network approximate computation of
outliers with quality guarantees,” Information Systems, 2013.

[11] R. Avnur and J. M. Hellerstein, “Eddies: Continuously adap-
tive query processing,” in SIGMOD Record, 2000.

[12] S. Chandrasekaran, O. Cooper, A. Deshpande, M. J. Franklin,
J. M. Hellerstein, W. Hong, S. Krishnamurthy, S. R. Mad-
den, F. Reiss, and M. A. Shah, “TelegraphCQ: Continuous
Dataflow Processing,” in SIGMOD, 2003.

[13] A. Arasu, B. Babcock, S. Babu, M. Datar, K. Ito,
I. Nishizawa, J. Rosenstein, and J. Widom, “STREAM: the
stanford stream data manager,” in SIGMOD, 2003.

[14] D. Abadi, D. Carney, U. Cetintemel, M. Cherniack, C. Con-
vey, C. Erwin, E. Galvez, M. Hatoun, A. Maskey, A. Rasin
et al., “Aurora: A Data Stream Management System,” in
SIGMOD, 2003.

[15] A. Toshniwal, S. Taneja, A. Shukla, K. Ramasamy, J. M.
Patel, S. Kulkarni, J. Jackson, K. Gade, M. Fu, J. Donham
et al., “Storm@ twitter,” in SIGMOD, 2014.

[16] T. Akidau, A. Balikov, K. Bekiroğlu, S. Chernyak, J. Haber-
man, R. Lax, S. McVeety, D. Mills, P. Nordstrom, and
S. Whittle, “Millwheel: fault-tolerant stream processing at
internet scale,” VLDB Endowment, 2013.

