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Abstract—
The graph augmentation problem seeks to suggest new edges

that, when added to an input graph, improve the overall
connectivity of the nodes. For social network applications,
the latter is typically computed as the average shortest path
length in the network. In this work we first introduce one
interesting variation of the problem that focuses on improving
the connectivity between nodes belonging to a specific sub-
graph (for instance nodes of the same class or users that
share interests). Key to our method for solving the original
graph augmentation problem and its suggested variation is
an intuitive algorithm we propose. The algorithm operates
by first constructing a summary graph that retains important
structural properties of the input graph. Using this summary
our algorithm computes an effective list of suggested short-
cuts. Unlike existing techniques, the proposed algorithm does
not require complex computations over the whole graph (such
as the computation of all-pair shortest paths). This makes it
applicable for larger graphs where existing proposals fail to
operate. Our experimental results demonstrate the efficiency
and effectiveness of our techniques on graphs of various sizes
and characteristics.

I. INTRODUCTION

In this paper, we propose an algorithm that increases the
connectivity of an input graph by considering the topology
of the network itself. To do so we use a graph augmentation
technique, where a small set of non-existing edges (often
referred to as short-cuts) are selected and added to the graph
in order to increase its connectivity and further improve
its capacity to carry on various information propagation
processes.

As is common in the literature, we evaluate network
connectivity by the average shortest path distance of the
nodes in the graph. The minimization of the average shortest
path of a network is a desired property since it improves dy-
namic processes that are crucial to today’s big and evolving
networks. A well connected network is of value to both the
users and the owners of the networked data and, thus, it is
in their best interest to maintain and enhance this property.
Network owners can benefit from small average shortest
paths, since this is one of the key properties that helps viral
marketing and information diffusion [17].

Beside the graph augmentation problem, in this work we
also define one variation of the general problem termed as
sub-graph augmentation policy. In this variation we seek to

increase the connectivity between nodes of a specific group
by adding short-cuts to the whole graph. These short-cuts,
can significantly reduce the average shortest path between
nodes of the sub-graph while at the same time improve the
connectivity of the whole graph. The sub-graph variation
of our algorithm can be used in cases where we need to
improve the connectivity of specific nodes that have loose
connections, or to bring closer nodes that belong to a specific
group or have similar properties. For instance, users that
belong to the same professional group in a social network
want to be close to each other in order to be fast informed
about topics of their profession.

For solving the general graph augmentation problem
and the suggested sub-graph variation we use the same
underlying algorithm proposed in this work, with minor
modifications. The algorithm is based on the idea of creating
a small summary of the graph, which retains some specific
properties that help us make accurate short-cut suggestions.
All the necessary calculations for the short-cut addition
problem are performed solely on the formed summary. Our
algorithm suggests short-cuts that have significant impact in
the minimization of the average shortest path distance of
the whole graph or the selected sub-graph, depending on
the variant of the problem. Moreover, because it operates
over a much smaller summary of the input graph, it can be
used efficiently to augment graphs of realistic sizes, as our
experiments demonstrate.

Although there has been some previous work on selecting
edges to add to a graph so that specific criteria are met, such
as minimizing the average all-pair shortest path distances,
our work is the first to consider one important variation of
the problem but also to suggest an algorithm that makes such
calculations feasible, even in large graphs. Our contributions
can be summarized as follows:
• We revisit the graph augmentation problem and intro-

duce an interesting variation of it that seeks to increase
the connectivity between nodes that form a sub-graph.
As it is shown in our experiments, improving the con-
nectivity of the sub-graph often has significant impact
on the connectivity of the whole graph.

• We propose an intuitive algorithm that is based on
building a small summary of the graph and doesn’t
require any computations of shortest path distances
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over the whole graph structure. This property of the
algorithm enables it to perform efficiently even in large
graphs.

• We evaluate the accuracy and efficiency of our method
using real and synthetic graphs of various sizes. Our
results demonstrate that our techniques outperform
existing algorithms by suggesting short-cuts that bet-
ter improve the connectivity of the network for both
variations of the augmentation problem considered. At
the same time, our algorithm manages to compute the
suggested set of short-cuts within seconds, even on
graphs of larger sizes.

II. PROBLEM DEFINITION

In this section we first introduce some basic notation
from graph theory that is used throughout the paper and
then formally state our problems. A graph G = (V,E) is a
connected undirected simple graph where V is the set of ver-
tices and E the set of edges. The length of the shortest path
between two nodes u, v is denoted as d(u, v). The sum of all
pairs shortest path lengths is L =

∑
(u,v)∈V×V ,u 6=v d(u, v).

The average shortest path length over all pairs of nodes in
the graph is defined as L = L/

(
n
2

)
. L is a basic measurement

of how close the nodes of the graph are.
Graph Augmentation Problem: The graph augmentation

problem described in this work can be seen as the selection
of k edges (short-cuts) to add in a graph G in order to
maximize a utility function g(). We define as ASC the set of
all candidate short-cut edges (i, j) between any non-adjacent
nodes i, j ∈ V . Consider SC ⊆ ASC with |SC|=k be a
selection of k short-cut edges from ASC. We denote the
resulted graph that is created by the addition of the short-
cut edges in SC to G as the augmented graph Gaug =
(V,E∪SC). In order to quantify the improved connectivity
in the augmented graph Gaug , resulted from the addition of
the short-cut edges in SC, we use the average shortest path
length and we define g(SC) as a function that computes the
difference of the average all pairs shortest path length L in
G and Gaug:

g(SC) = L(G)− L(Gaug) ≥ 0 (1)

Sub-graph Augmentation Problem: The sub-graph aug-
mentation problem is defined as the selection of k edges
(short-cuts) to add in a graph G in order to minimize the
average shortest path length between a subset Vm of the
nodes in V . Given Vm, we derive a sub-graph GS of G
that contains these selected nodes as well as all nodes and
edges that belong to the shortest paths between all pairs of
nodes in Vm, when these shortest paths are computed over
the initial graph G. The average shortest path length in the
sub-graph is defined as LS = LS/

(
m
2

)
where LS is the sum

of all pairs shortest path lengths between nodes of Vm.
Intuitively, the sub-graph augmentation problem is a vari-

ation of the graph augmentation problem where we only

focus on the connectivity between a certain subset of nodes
from the graph. We define gs(SC) as a function that maps
a given subset of short-cut edges SC ⊆ ASC to a non-
negative number that represents the difference of the average
all pairs shortest path length LS in G and Gaug:

gs(SC) = LS(G)− LS(Gaug) ≥ 0 (2)

In this work we consider the general graph augmentation
problem where new short-cuts can be added anywhere in the
network. An integer k, that is provided as input specifies the
total number of short-cuts to be added in the graph. In the
same way in the sub-graph augmentation problem k edges
can be added between any nodes of the graph and not only
between nodes of the sub-graph.

III. GRAPH AUGMENTATION ALGORITHM

The proposed algorithm for both variations of the graph
augmentation problem discussed in this work is based on
building a small summary from the graph, on which we
will perform all necessary calculations for the edge addition
problem. The algorithm can be divided into two concrete
phases that when combined will suggest the requested set
of short-cuts to be added to the graph. We will fist describe
these phases for the general graph augmentation policy and
we will then discuss the necessary modifications for the sub-
graph augmentation policy.

The first phase of the algorithm is the coarsening phase,
where we iterate through the elements of the graph in order
to construct a summary containing a small number of super-
nodes formed by grouping together multiple graph nodes.
Finding groups of nodes that are closely related but in the
same time have loose external connections is the main goal
of the coarsening phase. The proposed coarsening algorithm
has low complexity as it mainly requires shorting the graph
nodes in decreasing order by their degree.

The coarsening phase of the algorithm proceeds until
a summary with a predefined number of super-nodes is
returned. This number is denoted by an input parameter
numNodes. At the beginning of the coarsening phase,
the nodes of the provided graph G are sorted based on
their degree in descending order. Then, the numNodes-
highest degree nodes are removed from the list of the graph
nodes and are added in the summary graph as leader nodes.
These leader nodes constitute the initial set of super-nodes.
Until all remaining nodes of the graph are assigned into
one of the selected super-nodes, we repeat the following
coarsening step. Beginning from the highest degree node in
the summary graph (the list of super-nodes is ordered in
decreasing order of the leaders’ degrees), we include all its
neighbours to the super-node and adjust the weight of the
super-node with the number of added nodes. Beside that
we also inform the super-node adjacency list, each time a
new node from the graph is coarsened by a super-node. The
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Figure 1. Coarsening of sample graph and selected short-cut

coarsening procedure continues with the remaining super-
nodes, until the initial list of nodes is empty and, thus,
all nodes have been assigned to super-nodes. At the end
a summary of the graph is returned with the predefined
number of numNodes super-nodes. In Figure 1 we depict
the result of the coarsening algorithm for numNodes=3
super-nodes. The resulting super-nodes are depicted with
dotted circles and their weights are shown in the figure.

The second phase in our algorithm is the short-cut ad-
dition phase. It is executed after the coarsening procedure
and seeks to locate which super-nodes we should con-
nect with short-cuts in order to maximize the gain in the
connectivity of the whole graph. At the beginning of the
short-cut addition phase, we compute the distances of all
pairs shortest paths of the summary graph returned by the
coarsening phase. Next, the algorithm computes scores for
every possible short-cut between the super-nodes of the
summary graph. Let x, y be two super-nodes in the summary
graph and let a, b be their leader nodes in the input graph,
respectively. A short-cut (x, y) in the summary graph implies
the addition of edge (a, b) in the input graph. The score of
(x, y) is calculated by the following function:

score[x, y] = x.weight× distance[x, y]× y.weight (3)

From the calculated scores we select the highest gain
short-cut between two super-nodes that are not connected
in the original graph and add the corresponding edges to
the summary as well as the input graph. This procedure is
repeated from the beginning until the required number of
short-cuts have been created.

Continuing with the example of Figure 1, there are three
super-nodes resulting in three candidate short-cuts among
them in the summary graph (dotted nodes): (x, y), (x, z)
and (y, z). The figure depicts the computed scores for these
short-cuts. The final top-1 selection is the short-cut that
connects super-nodes x and z. This short-cut is instantiated
at the input graph as a new edge between leader nodes a
and c.

Sub-graph Augmentation Policy: The only modification
that is required in the algorithm for this policy is on how

Name V E Avg. Degree Av.Shortest Path Diameter
dolphins 62 159 2.57 3.36 8
netscience 379 914 2.41 6.04 17
facebook 4, 039 88, 234 21.85 3.69 8
power 4, 941 6, 594 1.34 18.99 46
wingNodal 10, 937 75, 488 6.90 11.54 26
4elt 15, 606 45, 878 2.94 44.77 102
amazon0302 262, 111 899, 792 3.43 8.83 30
web− Stanford 255, 265 1, 941, 926 7.61 6.78 75
web−NotreDame 325, 729 1, 090, 108 3.35 7.17 46
auto 448, 695 3, 314, 611 7.39 36.42 73
web−BerkStan 654, 782 6, 581, 871 10.05 7.11 97
roadNet− CA 1, 957, 027 2, 760, 388 1.41 312.13 796

Table I
SUMMARY OF THE EVALUATION DATASETS

the weights of the super-nodes are computed. In particular,
weights of nodes that are not part of the sub-graph are set to
zero and the weights of the sub-graph nodes are set to 1. This
way each formed super-node has a total weight indicating
the number of nodes from the sub-graph that it includes.

IV. EXPERIMENTS

A. Experimental Setup

For our evaluation we use a diverse collection of synthetic
and real-world graphs with various sizes and different edge
distributions selected from [7], [8], [12], [13], [19]. Table I
summarizes the basic statistics about each graph used in our
experiments. In cases where a graph is not connected, we
extract its largest connected component and operate on it.

To assess the accuracy of the various methods we define
a gain metric, which expresses the percentage change on the
average shortest path length L, in the graph G and in the
augmented graph Gaug given by:

Gain =
L(G)− L(Gaug)

L(G)
× 100

For the sub-graph version of our algorithm the gain metric
expresses the percentage change on the average shortest path
length between the nodes in Vm. Finally, we also report the
time required in order to compute the short-cuts.

In the experiments on the smaller graphs in our datasets
(the first six graphs of Table I) we use a default maximum
value of 500 for the number of super-nodes that will be
created in the coarsening phase of our algorithm and the
number of added short-cuts used is k=16. For the larger
datasets, the number of created super-nodes is 1000 and the
number of short-cuts increases to k=100.

All algorithms have been implemented in JAVA, and all
experiments were performed in a single machine equipped
with an Intel Core i7-4700MQ CPU and 8GB of main
memory.

B. Graph Augmentation Algorithm Evaluation

For the evaluation of our graph augmentation method we
use two alternative algorithms newly suggested for the short-
cut addition problem, the Path Screening Method [14] and
the random method. The Path Screening Method works by
decomposing the computation of the sum of the shortest path
lengths into sub-problems. The method uses a modification
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of Johnson’s Algorithm [10] that not only computes the
lengths of the all-pairs shortest paths but also reconstructs
and stores them in a set P . Then, for each shortest path
p ∈ P it determines what are the (x, y) short-cuts that could
shorten the current path p by sliding a variable size window
of size δ over the paths nodes. Variable δ takes values that
range from δ = 2 (denoting short-cuts between non-adjacent
nodes), up to δ = l, where l is the length of the current path
p. Each time a short-cut (x, y) is considered in a path p, an
increment equal to (δ− 1) is contributed to its utility score.
The procedure continues over all paths p ∈ P and for each
candidate short-cut (x, y) its total utility score is computed.
At the end from the computed utility scores the algorithm
suggests the top k short-cuts to be added to the graph. Even
though the algorithm performs computations of all-pairs
shortest paths over the whole graph, the gains in accuracy
may be negatively affected from the suggestion of short-cuts
in the latter step, since the insertion of a single short-cut in
the graph may significantly alter the utility scores of all other
computed short-cuts. Finally, the random method used as a
baseline in the experiments, selects k short-cuts uniformly
at random to add in the graph G.

In Figure 2 we present comparative results for the gain
that each algorithm achieves on the set of small graphs. We
notice that in all cases our coarsening algorithm performs
much better than its competitors and manages to reduce the
average shortest path length up to 40% with the addition of
only 16 short-cuts to the corresponding graph.

Next, in Figure 3 we present comparative results for the
gain of using the graph augmentation policy in large graphs.
In this experiment we compare our solution only to the
random algorithm due to performance limitations, since the
alternative path screening method requires all pairs shortest
path to be calculated and screened in order to operate. In
contrast, our algorithm performs all the required computa-
tions in the summary graph produced by its coarsening step
and can, thus, operate on graphs of much larger sizes.

In order to be able to evaluate the output of the graph
augmentation algorithm in large graphs we perform sam-
pling in the calculations of the all pair shortest paths, as
has been suggested in the literature [14]. Since sampling
at random a few shortest paths from the set of all available
ones is rarely feasible [11], we sample uniformly at random
a set Q = {q1, . . . , qq} of nodes from the graph. Then, for
every node qi, we compute the single source shortest path
tree (using Breadth First Search) from qi to all other nodes
of the graph. Based only on the single source shortest paths
of the sample nodes Q, we then calculate an estimate of the
average shortest path of the graph.

We notice that in all the selected graphs our coarsening
algorithm increases significantly the connectivity of the
graph independently of the graph type and size. In most of
the cases, it significantly outperforms the random method,
which often can not produce measurable gains from the

short-cuts it selects.
In Table II we present results for the small graph datasets

of the time required (in seconds) for each algorithm to com-
pute the proposed short-cuts. We notice that our algorithm
outperforms the path screening method in all graphs and the
difference increases significantly as the graph size increases.
From this experiment it is evident that the path screening
method is impractical for large graphs as it requires that
all-pair shortest paths are computed (O(n(logn +m)) and
then screened (O(n2L(G)L(G))). Moreover, the space re-
quirements for the path screening method are significant,
since it requires that all shortest paths of the graph and all
candidate short-cuts are held in main memory during the
screening process.

Data set Coarsening Method P.Screening Method
dolphins 0.009 0.061

netscience 0.082 0.205
facebook 0.183 14.850

power 0.138 18.403
wingNodal 0.168 88.390

4elt 0.174 781.015

Table II
GRAPH AUGMENTATION METHODS PERFORMANCE (IN SEC) FOR

SMALL GRAPHS

In table III, we present results of the time required (in
seconds) for our algorithm to calculate the proposed short-
cuts, for the larger graphs in our collection. The presented
times include both the coarsening and the short-cut addition
phase of our algorithm for k=100 short-cuts (instead of 16
used in the smaller graphs). We notice that even in bigger
datasets our algorithm manages to suggest short-cuts that
significantly increase the connectivity of the whole graph
(Figure 3), in just a few seconds.

Data set Coarsening Method
amazon0302 3.037
web-Stanford 9.675

web-NotreDame 6.809
auto 3.347

web-BerkStan 30.198
roadNet-CA 4.647

Table III
GRAPH AUGMENTATION METHODS PERFORMANCE (IN SEC) FOR

LARGE GRAPHS

C. Sub-graph Augmentation Algorithm Evaluation

For the experiment in Figure 4 we have selected uniformly
at random 100 nodes and we present results on the connec-
tivity gain on the average shortest paths between the nodes of
the sub-graph. At the same time we measure the connectivity
gain the sub-graph augmentation algorithm achieves in the
whole graph. In this experiment we have altered the random
algorithm in order to select short-cuts only between nodes
of the sub-graph, and measure the resulting sub-graph and
graph connectivity gains. We notice that our algorithm not
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Figure 2. Graph augmentation policy gains in small graphs
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Figure 3. Graph augmentation policy gains in large graphs
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Figure 4. Sub-graph augmentation policy gains in large graphs

only manages to achieve significant gains to the connectivity
of the targeted sub-graph nodes but, at the same time, it helps
increase the connectivity of the whole graph.

D. Algorithm Sensitivity Evaluation

In the experiment depicted in Figure 5, we use the web-
Stanford graph and measure the gain that our algorithm
achieves by altering the number of super-nodes that the
summary graph will contain. The number of short-cuts added
in all measurements are 100. We observe that the gain
returned by the selected short-cuts is about the same, even
when a small number of super-nodes are used. Making the
summary graph a lot larger has a small impact on the quality
of the short-cuts. This is because of the greedy nature of the
short-cut selection process when a lot of super-nodes (of
smaller size) are created. Keeping the summary small seems
to prevent bad decisions during the short-cut addition phase.
Furthermore, it has a positive impact on the overall execution
time as depicted in Figure 6, where we measure separately
the required time for the two phases of our algorithm, as the
number of super-nodes increases. We notice that the second
phase of our method runs significantly faster using smaller
summary graphs.

In Figure 7, we measure the gain of our algorithm for
different number of added short-cuts. Again we use the web-
Stanford graph as an example, running the coarsening phase
for 1000 super-nodes. In this experiment we notice that by

 0

 5

 10

 15

 20

 25

 30

500
1000

2000
3000

4000
5000

A
v.

 S
ho

rt
es

t 
Pa

th
 G

ai
n 

%

Number of Supernodes

Coarsening
Random

Figure 5. Sensitivity to the number of Super-nodes (web-Stanford graph)

just adding a few short-cuts to the graph (in the range 100-
200) we manage to increase the connectivity of the 255K
nodes in the graph significantly, up to 24%. The small drop
in the gains depicted in the figure is due to the sampling
process that we use to compute the average shortest path
length in the large graphs.

V. RELATED WORK

The graph augmentation problem seeks the minimum
cost set of edges to add to a graph in order to improve a
specific property, such as bi-connectivity or strong connec-
tivity. These problems have been shown to be NP-complete
in the case of connected graphs [6], while a number of
approximation algorithms have been suggested. In a recent
work [3], the authors studied the problem of minimizing
the diameter of a graph by adding k short-cut edges and
they developed constant-factor approximation algorithms for
different variations of the problem. The problem of interest
in this paper, is not the same as those in the aforementioned
graph theoretical research, where connectivity of an undi-
rected graph refers to the minimum number of disjoint paths
that can be found between any pair of vertices. Shortcut
selection is also strudied in the context of RDF data graphs
in order to help reduce the cost of a selected set of user
queries [4], [5].

The problem of minimizing the average all-pairs shortest
path distance of the whole graph via edge addition was
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previously studied in [14], [15]. In [16], a variation of the
problem where the set of candidate edges is given as an
input is considered, and the goal is to select a subset of k of
them. The problem is also related to the average closeness
centrality of nodes in the graph. In [9], the problem of
finding the k edges whose addition to the graph maximizes
the centrality of a specific node is studied. The same problem
was considered in [2], where they show that the greedy
algorithm provides a tight (1− 1/ε) approximation factor.

Our problem is also related link prediction and recom-
mendation, in which the objective is to predict which new
interactions among members of a social network are likely
to occur in the near future. In [1], the authors address
this problem in social networks by performing supervised
random walks on the graph. In a similar context, the work
of [18] studies the link revival problem, where the objective
is to turn already existing edges with a few interactions to
be more active so that the resulted connections will improve
the social network connectivity.

VI. CONCLUSIONS

In this paper we first defined one variation of the general
graph augmentation problem: the sub-graph augmentation
policy and then introduced an intuitive algorithm that can
perform in both variations of the suggested problem. The
algorithm at its first step coarsens the whole graph in a
way that the created summary preserves information that
are important for the short-cut suggestion process. Subse-
quently, all the necessary calculations are performed using
this summary. Our experimental evaluation demonstrated
that our algorithm suggests more effective short-cuts than
prior techniques to both variations of the problem. At the
same time, the proposed algorithm has low time and space
complexity and can process graphs with millions of nodes
and edges.
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