
Data & Knowledge Engineering 59 (2006) 700–724

www.elsevier.com/locate/datak
Extending the data warehouse for service provisioning data

Yannis Kotidis *

AT&T Labs-Research, 180 Park Ave., Florham Park, NJ 07932, United States

Received 1 December 2004; received in revised form 14 November 2005; accepted 15 November 2005
Available online 15 December 2005
Abstract

The last few years, there has been an extensive body of literature in data warehousing applications that primarily focuses
on basket-type (transactional) data, common in retail industries. In this paper we focus on service provisioning data, that is
data that is recorded internally in an organization for provisioning certain business related tasks. Coupling the recorded
data with the underlying process and business-practice(s) that generate them is crucial for end-to-end analysis. Our frame-
work is based on a graph description of the process (called a sketch) that is generating this data. Using this sketch, we for-
malize a new class of aggregate queries that consolidate data from a part of the process, based on a user defined path
expression. We then show how to build a compact, non-redundant collection of summary (aggregate) tables and indices
for this new type of queries. We first explore how to select a minimum set of views to answer queries with path-expressions
over the given sketch. For queries that also include aggregation, we define two partial orders among the views. The first is
used to pick the minimum set of aggregate views to answer any query with no false dismissals, while the second describes an
augmented set that allows fewer false positives. Computing a non-materialized aggregate is done through appropriate
rewriting of the user query. We describe two indexing schemes that use phantom (non-materialized) aggregate values to expe-
dite query processing. Experimental results show these schemes to perform well on synthetic and real datasets.
� 2005 Elsevier B.V. All rights reserved.

Keywords: Data warehouse; Workflow; Materialized views
1. Introduction

The astonishing success of information technology has resulted in an explosive growth in the amount of
data that is being recorded in daily basis on various domains. This abundance of data has in-turn driven
the data warehousing sector into a major segment of the information technology market and, subsequently,
has attracted a lot of interest from the academic community. The data warehouse is an integrated informa-
tional store that provides stable, point-in-time data for decision support applications. Data-rich industries,
like retail and financial services, have been the most typical users of data warehousing technology for the obvi-
ous reason that they have large quantities of good quality internal and external data available, to which they
need to add value.
0169-023X/$ - see front matter � 2005 Elsevier B.V. All rights reserved.

doi:10.1016/j.datak.2005.11.003

* Tel.: +1 9733608347.
E-mail addresses: kotidis@research.att.com, kotidis@cs.umd.edu

mailto:kotidis@research.att.com
mailto:kotidis@cs.umd.edu

Y. Kotidis / Data & Knowledge Engineering 59 (2006) 700–724 701
Often data is recorded internally in an organization for provisioning certain business related tasks. During
the last few decades there has been an increasing trend to computerize every possible business process and
eliminate manual hand-offs. Workflow management and Customer Relationship Management (CRM) soft-
ware are being used to help manage customer relationships in an efficient and organized manner. For example,
in the telecom sector, accepting a new customer for long distance service involves several steps from entry and
verification of personal data to third party verification (a process in which a designated third party confirms
the customer’s intention to change service), and finally placing a new entry in the company’s billing database.
A process known as revenue assurance verifies the beginning-to-end completeness, accuracy, and integrity of
the capture, recording, billing, and reporting of all revenue-producing events from customer order entry
through collection.

The type of data generated from these processes does not conform to the basket paradigm, regularly used in
data warehousing. Informally, a service provisioning database contains a large collection of customer records.
Each record describes a sequence of events that captures the interaction between a customer’s order and var-
ious components of the organization. Presumably, there is a well defined workflow that describes the flow of
events for incorporating a customer’s order [43]. Each customer record is an instance of some part of this
workflow process annotated with timing information and other business related attributes. Each order is then
treated as an ‘‘entity’’, which flows through the service’s workflow. Network traffic is another example in
which the recorded data conforms to an underlying structure: the network topology. Any end-to-end commu-
nication of network elements uses a collection of network paths directed by the routing protocols and the
physical interconnect among them.

When trying to apply conventional data warehousing techniques for a service provisioning database, we are
faced with the problem of mapping the recorded data into a relational schema in a way that allows complex
analytical queries over the recorded information with respect to the structural properties of the process that
generates these records. In our framework, the user expresses his intention to analyze the data at a particular
resolution for some portion of the process by providing what we call a sketch of the process. The sketch is a
graph representation of the underlying process, containing nodes representing ‘‘states’’ and edges representing
‘‘transitions’’. Given a sketch, we explore how to build a compact, non-redundant collection of summary
tables and indices to facilitate flexible decision support analysis.

As we will demonstrate, conventional relational implementations are incapable of providing flexible ana-
lysis of the recorded data with respect to a given sketch [16]. In the basket-data paradigm a multi-dimensional
approach is used, in which data, representing transactions, is projected and aggregated using a set of dimen-
sions (like products and customers). In a service provisioning database the structural properties of the sketch
are the dimensions of interest. In this paper we introduce pair-wise aggregate queries as a means to describe
the scope of an interesting aggregation. Such a query consists of a path expression over the graph (sketch) that
collects relevant recorded information from parts of the underlying process and a user defined aggregate func-
tion F that consolidates this data. We first formally define pair-wise aggregate queries and then show how to
express more complex expressions and evaluate them as a series of pair-wise queries. In addition, we explore
operations that allow us to zoom in and out of certain states of the process, or exclude parts we are not inter-
esting in. As will be explained these operations are naturally mapped into pair-wise queries that consolidate
the underlying records.

For large datasets, evaluating pair-wise aggregate queries on the fly can be prohibitively expensive. Often
there is no efficient way to simultaneously evaluate path and aggregate expressions over the data. Materialized
views can be used to speed up query processing and also shield the user from the details of mapping a complex
aggregate expression to the underlying relational schema. We first show how to optimize execution of queries
with path expressions using a non-redundant collection of views materialized as bitmapped indexes [10,42,50].
For queries that also contain aggregations we propose the use of pair-wise aggregate views that contain pre-
computed results of pair-wise queries and discuss different materialization policies. These views can be used to
answer arbitrary pair-wise aggregate queries without imposing any false negatives (i.e. omit records that
should have been in the answer) and with provably less cost than a regular index scan. We then show how
to rewrite queries to use these views based on a partial order that we define among them. This rewriting works
efficiently using an indexing scheme that partitions the records of a view on non-materialized phantom aggre-

gates, in a way that allows efficient evaluation of subsequent queries against these aggregates.

702 Y. Kotidis / Data & Knowledge Engineering 59 (2006) 700–724
1.1. Map

The rest of the paper is organized as follows: Section 2 motivates the problem from two practical applica-
tions. Section 3 discusses related work. In Section 4 we introduce our framework, define pair-wise queries and
materialized pair-wise views and discuss the shortcomings of various relational models for the service provi-
sioning data. In Sections 5 and 6 we show how to choose from, index and query these aggregate views for
answering user queries. Finally Section 7 contains the experiments and in Section 8 we draw the conclusions.

2. Motivation

We here present two examples of service provisioning that will help us better motivate the discussion.

2.1. Telephone service provisioning

Telephone service provisioning includes several steps, starting with the reception of customer’s order and
ending with the establishment (or modification) of service. The workflows related to this process are typically
very complicated because orders require processing by many departments. Fig. 1 provides a simplified high
level view of this workflow for long distance orders. There are five major states modeled in this example. Cre-

ate involves all actions related to the reception and creation of a new order. TPV stands for third-party ver-
ification and LEC stands for Local Exchange Carrier. The latter state includes all communications with the
LEC to establish the caller as a new customer. State Billing involves all actions related to creation or modi-
fication of a customer’s billing record. Finally, state Complete denotes the successful completion of the whole
process. A customer’s order is modeled as an entity that flows through this process. States TPV and LEC are
only used for orders that involve creation of a new long distance service. Orders of customers that call to mod-
ify their plans (e.g. sign to a new promotion) skip these states. Each of the five main states can be expanded
and modeled in more details. Depending on the application, we might want to ‘‘drill-down’’ on a state and
analyze the flow of records at a finer granularity.

The user expresses his intention to analyze the data at a particular resolution for some portion of this pro-
cess by providing what we call a sketch. A sketch is a directed acyclic graph (DAG) describing states and tran-
sitions that he is interested in (later on we extend our discussion for sketches with cycles). For example if the
user is interested in the five depicted states of the workflow of Fig. 1, the sketch is simply a DAG represen-
tation of the process in which each state is mapped to a node and each transition is mapped to an edge. In
this example the process at this particular level happens to be acyclic too but this is not required in general.

A sketch is an abstraction of the whole process and is used to filter those events that flow through the spec-
ified nodes and edges of the DAG. For example if there were a Failed state in the process that is not included in
the sketch then the analysis will only target records of orders that have successfully completed. Analysis will be
based on data attributes collected by the recording mechanisms as well as the structural properties of the given
sketch. Examples of such queries include:

1. Retrieve all orders that passed through states TPV and LEC (e.g. new long distance customers).
2. Find all orders for which an intermediate transition from state Create to state Complete took more than 8 h,

while the order was completed in less than a day (e.g. trace ‘‘hidden delays’’).
3. Find all orders that were modified (possibly due to initial data entry errors) more than once between states

TPV and Billing.
Create

TPV LEC

Billing Complete

Fig. 1. Telephone service provisioning example.

SS H1 H2 H3 TT

H0

Fig. 2. Delivery service provisioning example.

Y. Kotidis / Data & Knowledge Engineering 59 (2006) 700–724 703
Query (1) is an example of a path-query, discussed in Section 5. Query (2) inquires timing information
recorded as the order flows through the process. This is critical for most service ordering systems as user sat-
isfaction is primarily based on timely processing of his orders [6,17]. Surprisingly, the area of handling time-
related issues and detecting potential problems has not received adequate attention in the workflow literature
[17]. For query (3) we exploit a version attribute attached to each record that counts all modifications to the
order.

2.2. Delivery service provisioning

Fig. 2 depicts a number of ‘‘hubs’’ Hi that are used to interconnect two sites S and T. Examples of such a
scenario can be found in different domains. In a network service provisioning system, S and T can be two sub-
networks and hubs Hi will be the network elements (e.g. routers) that provide the interconnect among these
two networks. In a packet delivery service (like FedEx) the picture of Fig. 2 may describe the network of com-
pany’s locations and the connectivity among them. Connecting paths may have different capacities, band-
width, latencies etc. Some connections are bi-directional while others not, as shown in the figure. Assuming
that we want to provision delivery of services from site S to site T, our sketch is obtained by making all
bi-directional edges in the figure be pointing from left to right. Given this sketch, the queries that we are inter-
ested in include:

4. Find all flows from S to T that utilized hub H0.
5. Find all flows from S to T that stopped at least at 3 hubs.
6. Find all flows from H1 to H3 for which each transition required at least 1 day.

Query (4) is a simplified path-query on a single node. In query (5) we ‘‘aggregate’’ multiple paths from S to
T by counting the number of intermediate hubs in a flow from S to T. An equivalent, but more cumbersome,
way to state the query is to ask for all flows of the form S! H1! H2! H3! T, S! H0! H1!
H2! H3! T or S! H0! H1! H3! T. Finally query (6) requests a specific path from the sketch along
with additional timing constraints.

3. Related work

Within the past decade we have witnessed renewed excitement in decision support tools and applications.
Advances in information technology and globalization of businesses created the right combination of ‘‘sup-
ply’’ and ‘‘demand’’ to fuel the data warehousing field.

The primal goal of a data warehouse is to provide an integrated data store for the execution of complex
analytical queries. Such queries often involve aggregation. Because of the size of the data at-hand and the
plethora of choices for ad hoc grouping and aggregation, data warehouses rely on pre-computation and exten-
sive indexing of the data. Bitmapped indexes and their variations [41,10,42,50] have found their way into most
industrial solutions. Another form of pre-computation is the use of materialized views containing frequently
asked aggregates. Engineering questions, such as how many and which views to materialize under a space and/
or update time constraint and an expected query workload have led to several view selection algorithms
[28,47,48,27,4] as well as alternative dynamic organizations [34,45,46]. In this paper, we too rely on pre-com-
putation for speeding up aggregate queries that arise in the process of analyzing service provisioning data. Our
definition of pair-wise queries has been motivated from related literature on recursive queries (e.g.

704 Y. Kotidis / Data & Knowledge Engineering 59 (2006) 700–724
[35,31,44,49]). As will be explained, we use the structural properties of the underlying process that generates
the data to define a partial order among the views. Our primary focus is on selecting the minimum number of
views that can answer any query of interest without false dismissals. If additional resources are available, using
the partial order we define among the views, one can easily modify the algorithms of e.g. [28] for selecting
additional views in the materialized set. Implementation of the aggregate views we discuss in this paper can
be done using bitmapped indexes and other standard relational tools like B-trees. We further exploit the
dependencies among the views (that have been discovered from analyzing the process) to extend traditional
indexing schemes and achieve even better query performance.

Dimensional modeling is a specialization of the traditional ER modeling [12,40]. It distinguishes facts (like
credit-card transactions), from dimensions that provide a context for the facts (like time, product, location).
Most common examples of dimensional modeling include the stars schema, the snowflake schema and their
extensions like the federated star schemas [33,11]. In the service provision example, the underlying process
provides the context within which data is modeled and analyzed. In this paper, we assume that the underlying
process is given. When the process is unknown, one can infer it using mining techniques such as the ones
described in [1,14].

Workflow management systems are extensively used for process simulation, in order to identify bottlenecks
and analyze execution durations of business tasks [17,38,30]. They are also used in office automation for
assignment of tasks and execution monitoring (triggering alarms when deadlines are missed, exemption
handling etc.) [32]. In the database community there has been extensive work on extending transactions for
workflow applications [13,39,9,5,21,7,3]. In this paper we focus on modeling and organizing the data for
post-processing and analysis. Our work aims on utilizing existing data warehousing techniques for the process-
ing and analysis of data generated from real business processes. This is an area that has received little attention
in the literature. Grigori et al. in [26] discuss a set of Business Process Intelligence tools for cleaning and aggre-
gating workflow logs into a warehouse for analysis, prediction and optimization of business processes. In [18]
the authors make a case for using data On-Line Analytical Processing (OLAP) tools in analyzing workflow
logs and present a generic data warehouse design. In [8] the authors identify some major challenges in design-
ing data warehouses for managing workflow data such as the presence of multiple related facts that lead to
complicated schemas, the complexity of aggregations required due to this fact and the volatility of workflow
models that may require frequent substantial changes in the warehouse design. The authors of [36] follow an
object-oriented approach driven by use case and object models for modeling business requirements for the
data warehouse.

4. A framework for service provisioning data

4.1. Data model

We first provide a formal definition of a sketch. Given a process that is being provisioned, a sketch is a
directed acyclic graph G(V,E) with the following properties: each node v in V corresponds to a particular state
of the process (seen at the desirable resolution). An edge e = (v1,v2) represents a valid transition between cor-
responding states v1 and v2 in the process that we are observing. There is a set S 2 V of starting nodes in the
sketch i.e. nodes that have no incoming edges in G(V,E). Similarly all nodes with no outgoing edges form a set
of terminal nodes T. In Section 5.3 we extend the definition to graphs that include cycles.

A record r is called relevant to a sketch G(V,E) if it describes a transition from some starting node s 2 S to a
terminal node t 2 T through nodes of V � S � T using edges in E. For this model we assume that information
is being recorded at every edge traversed in r and stored in attributes called measures. For simplicity in the
notation we will only refer to examples with a single numeric measure denoted as x. In that case, a record
r is an ordered set of pairs:
r ¼ fðe1; x1Þ; . . . ; ðekr ; xkrÞg ð1Þ

R denotes the whole collection of records that are relevant to the sketch. Sometimes, specific nodes may have
measure data recorded too. This is useful in order to trace intra-node processing. In these cases, we replace
such a node v with a linked pair v1, v2. Edge (v1,v2) is then used to store the intra-node measure.

A B C E

F

D

Fig. 3. Simple sketch.

Table 1
Examples of valid records for the sketch of Fig. 3

Original representation Dual representation

r1 = {(e(A,B), 5), (e(B,C), 7), (e(C,D), 8), (e(D,E), 2)} rd
1 ¼ fðvA; 5Þ; ðvB; 7Þ; ðvC ; 8Þ; ðvD; 2Þ; ðvE ;aÞg

r2 = {(e(A,B), 6), (e(B,D), 4), (e(D,E), 3)} rd
2 ¼ fðvA; 6Þ; ðvB; 8Þ; ðvD; 3Þ; ðvE;aÞg

r3 = {(e(A,B), 4), (e(B,F), 1)} rd
3 ¼ fðvA; 4Þ; ðvB; 1Þ; ðvF ;aÞg

Y. Kotidis / Data & Knowledge Engineering 59 (2006) 700–724 705
A dual representation of a record, denoted as rd is derived by using state information 1:
1 a d
be om
rd ¼ fðve1
1 ; x1Þ; ðve2

1 ; x2Þ; . . . ; ðvekr
1 ; xkrÞ; ðv

ekr
2 ;aÞg ð2Þ
As a running example we will be using the sketch of Fig. 3. Node A is a starting node and nodes F, E

are terminal nodes. Table 1 shows examples of relevant records for that sketch in their original and dual
representation.

When information is only recorded at the nodes, we use notation (1) on the dual graph of the sketch (e.g. by
switching nodes and edges).

4.2. Pair-wise queries

In OLAP, a multi-dimensional approach to analysis is used to align the data content with the analyst’s
mental model. In the basket-data paradigm such dimensions are the products and customers involved in a
transaction [24]. The measures are then projected and evaluated over the selected dimensions. In a service pro-
visioning database the structural properties of the sketch are the dimensions of interest.

In order to analyze the data we need to specify parts of the sketch as the scope of our analysis and then
compute interesting aggregates on the relevant measures. Since G is acyclic, any two distinct nodes u and v

for which there is a path u! v = (u = v1,v2, . . . ,vk = v) from u to v in G define a selection filter over the stored
records.

Definition 4.1. A pair-wise selection filter Su!vðRÞ returns all records that contain a transition from u to v.
For each qualifying record r ¼ fðe1; x1Þ; . . . ; ðekr ; xkrÞg there exist i, j such that 1 6 i 6 j 6 kr and ei = (u, ?),
ej = (?, v), where ? denotes a ‘‘don’t care’’ value.

We further define Su!uðRÞ to return the records that contain node u.
An additional operator is required to gain access to the measures collected along the path u! v for each

qualifying record in Su!vðRÞ:

Definition 4.2. The projection operator Pu!v(r), when applied on record r ¼ fðe1; x1Þ; . . . ; ðekr ; xkrÞg returns
the set of recorded measure data along the path u! v: Pu!v(r) = {xi, . . . ,xj} with 1 6 i 6 j 6 kr, ei = (u, ?) and
ej = (?, v).
enotes a sentinel ‘‘end-of-record’’ value. It is necessary when a node is linked to more than one terminal nodes (e.g. the last pair can
itted in this example).

706 Y. Kotidis / Data & Knowledge Engineering 59 (2006) 700–724
By utilizing the projection operator, we can then apply any interesting aggregate function like sum(),
count(), min(), max(), median() etc. over the (set of) selected measures. We use FðP u!vðrÞÞ to denote the result
of aggregate function F when applied to measures xi, . . . ,xj collected along a path u! v for record r. In what
follows we also use the binary function exist(), which simply evaluates to 1 (true) when its input is not empty,
i.e. exist(Pu!v(r)) = 1 when r is in Su!vðRÞ.

Definition 4.3. A pair-wise aggregation query l 6Fu!v 6 h when applied on a set of records R, retrieves all
records r 2 Su!vðRÞ that satisfy the condition l 6FðP u!vðrÞÞ 6 h.

The definition is also extended to strictly greater-than/less-than operators and single-sided queries. For
brevity, the set of records R is omitted when we discuss a query l 6Fu!v 6 h.

Example 4.4. Queries 1–6 of Section 2 are written as

1. existTPV!LEC = 1
2. maxCreate!Complete > 8 hours AND sumCreate!Complete < 1 day

3. sumTPV!Billing > 1
4. existH0!H0 = 1
5. countS!T P 3
6. minH1!H3 P 1 day
4.3. Process navigation

In a service provisioning database, the underlying process provides the schema context within which data is
modeled and analyzed. We here define three operations that allow us to zoom in and out of particular states of
the process, or eliminate (hide) parts we are not directly interested at. The first two operations, Zoom and
UnZoom allow a user to examine a business process at different resolutions. The Zoom operation replaces a node
in the sketch with a sub-process that describes the internal processing happening on the node. Zoom is roughly
related to a drill-down operation in OLAP, where data is examined at a progressively finer granularity. UnZoom
provides the reverse functionality. The last operation, namely Hide, is used to hide details on pieces of the pro-
cess. Hide relates to Zoom/UnZoom in that is allows us to abstract the process, but, unlike Zoom/UnZoom, we
can freely manipulate the sketch without adhering to a predefined hierarchical decomposition. This is useful for
ad hoc type of analysis or when data is presented to a third party and we want to conceal certain details.

Bellow we discuss these operations in more details and give examples.
Zoom/UnZoom: The Zoom operation is used to examine a node in the sketch in more details. In particular,

Zoom replaces a node u with a sketch Gu describing the ‘‘internals’’ of node u in more details. In addition to Gu,
Zoom requires two mapping functions Min and Mout. Function Min maps an incoming edge to u in the original
sketch to a starting node in Gu. Function Mout maps every terminal node in Gu to a node in G. In Fig. 4 we
Zoom(B)

A

B1

B C D E

F

F

B2

B5

B3 B4

B6

A B1 B2 B3 C

F

D

G

GB
B4 -> C
B5 -> F
B6 -> D

E

Fig. 4. Zoom operation.

Y. Kotidis / Data & Knowledge Engineering 59 (2006) 700–724 707
show an example of zooming into node B in the sketch of Fig. 3. Original edge (A,B) is replaced by edge
(A,B1), since B1 is the starting node in GB. Similarly, nodes B4, B5 and B6 are mapped to nodes C, F and
D as shown in the figure.
UnZoom provides the reverse functionality. When we move from a more fine-grained description of the pro-

cess to a coarser one, we need to provide an aggregation method for coalescing the fine-resolution measure-
ments. The exact operation is application specific. For instance, when measurements describe a cost-related
attribute then we can use the sum() function. In that case, for reverting to the original sketch in Fig. 4,
UnZoom requires the following aggregations:
xBC ¼ sumB1!C ¼ sumB1!B4

xBF ¼ sumB1!F ¼ sumB1!B5

xBD ¼ sumB1!D ¼ sumB1!B6
We note that all these operations can be described in the context of pair-wise aggregate queries.
Hide(u): this operation results in a simpler sketch by removing node u from consideration. For a sketch

G(V,E), Hide(u) results in a new sketch G 0(V � {u},E 0) where
E0 ¼ E [fða; bÞ : ða; uÞ; ðu; bÞ 2 Eg � ðfðu; ?Þ 2 Eg [fð?; uÞ 2 EgÞ
Fig. 5 shows the resulting sketches from three successive calls: Hide(B) followed by Hide(D) and Hide(C).
The first call removes node B from the sketch. Incoming edge (A,B) is replaced by edges (A,F), (A,C) and
(A,D). Edge (A,F) ‘‘hides’’ the detailed transition A! B! F. For records that contain this transition, the
two measures xAB and xBF are replaced by a derived measure xAF. Like the case of the UnZoom operation,
the exact formula depends on the context. For instance, if the measures relay cost information, one can use
xAF = xAB + xBF = sumB!F.

4.4. Processing of pair-wise queries in a relational data store

A natural attempt to store this data in a relational system is to break each record into a list of (record-id,
edge-id, measure) triplets using table: Rðrid ; eid ; xÞ. This vertical representation has an excellent effect when
querying on transitions between two adjacent nodes: a pair-wise query Fu!v, where (u,v) 2 E is efficiently
computed given an index on eid. However, for paths u! v with one or more ‘‘hops’’ the query requires a num-
ber of self-joins of R equal to the length of the path in order to ‘‘collect’’ all measures along the path. Fur-
thermore, in case there are more that one paths between the selected nodes, the user has to implicitly write
an SQL sub-query for each one of them. For example query sumB!D P 5 returns the union of the following
expressions:
Hide(B)

Hide(D)

Hide(C)

A

A

A

A

B CD E

E

E

EC

F

FF

F

DC

Fig. 5. Hide operation.

708 Y. Kotidis / Data & Knowledge Engineering 59 (2006) 700–724
q1: select R1.rid, R1.x + R2.x
from RR1;RR2

where R1.rid = R2.rid and R1.eid = 00BC00
and R2.eid = 00CD00 and R1.x + R2.x P 5

q2: select R.rid, R.x
from RR
where R.eid = 00BD00 and R.x P 5

An alternative horizontal representation of the data is: Rhðrid ; xe1
; . . . ; xejEj Þ, where xei is the measure for edge

ei. If a record does not contain a transition, the corresponding xei value is null. Compared to the vertical rep-
resentation, the horizontal schema avoids the need for self-joins, but the user is still required to implicitly
describe all paths between the end-points u, v. The previous query is now written as

q3: select Rh.rid , Rh.xBC þRh.xCD

from Rh

where Rh.xBC þ Rh.xCD P 5
q4: select Rh.rid , Rh.xBD

from Rh

where Rh.xBD P 5

A potential problem of the horizontal representation is that most commercial database systems impose a
limit on the number of columns in a table that can be reached when G(V,E) is large and multiple measures
are being collected along each edge.

For aggregate functions like sum() and count() we can exploit a dual prefix-representation [22,29] of the
record:
rd
F ¼ fðv

e1
1 ; 0Þ; ðv

e2
1 ;Fðx1ÞÞ; . . . ; ðvekr

1 ;Fðx1; . . . ; xkr�1ÞÞ; ðvekr
2 ;Fðx1; . . . ; xkrÞÞg ð3Þ
The prefix-F representation allows us to compute the aggregation by subtracting the prefix-representation of
the measure at the ending node from the prefix-representation at the starting node using table Rd

Fðrid ; vid ; xFÞ.
Thus, a pair-wise query sumu!v/countu!v is expressed as a single self-join that can be optimized using an index
on the vid column.

For example sumB!D P 5 is written as

q5: select R1.rid, R2.xsum � R1.xsum

from Rd
sumR1;R

d
sumR2

where R1.rid = R2.rid

and R1.vid = 00B00 and R2.vid = 00D00
and R2.xsum � R1.xsum P 5

A common restriction of all three representations is that, in many cases, we cannot use an index for the
predicate on the measures (e.g. queries q1, q3 and q5). If the predicates on the measures based on values l,
h are highly selective (which is the case when we are looking for outliers) indexing on the path information
through indexes on eid or vid will not be sufficient. Querying the dataset is also cumbersome for the user, as
she/he has to compose the query appropriately to reflect the part of the sketch that is interested in. Material-
ized views can be used to accelerate query performance and also ease navigation through the dataset.

For some aggregate function F let view VF compute all pair-wise aggregates Fu!v for each u and v for
which there is a path u! v in GðV ;EÞ : VF ¼ fu; v; rid ;FðP u!vðrÞÞg. Using the view it is straightforward to
express query l 6Fu!v 6 h with selections on columns u and v. In addition to these attributes, indexes on the
derived function values FðP u!vðrÞÞ can be used to accelerate retrieval of matched records. The view requires,
asymptotically, OðjV j2 � jRjÞ space, where jVj is the number of nodes in the sketch and jRj the number of
records. The complete pair-wise collection of values in VF will probably be prohibitively large to compute
and store. In the following sections we show that there is a lot of redundancy in the values of this view that

Y. Kotidis / Data & Knowledge Engineering 59 (2006) 700–724 709
we use to reduce the space requirements. For referring to appropriate subsets of view VF we use the following
notation.

Definition 4.5. Given a pair u, v for which there exists a path u! v in G(V,E) we define view VFu!v as the
projection of all records in VF that contain these states.
5. Processing path queries

For a start we assume that F ¼ existð Þ, i.e. we are only interested in the transitions stored in the records
and not in the actual measures. A pair-wise path query existu!v = 1 retrieves all records that include a path
from u to v.2 View Vexistu!v lists all records that are returned by that query. The view can be stored as a list
of record-ids or even better as a (compressed) bitmap of length jRj.

Definition 5.1. Vexistu!v is a bitmap of length jRj with bits set at position i, for every record ri 2 Su!vðRÞ.

Given that Vexistu!v is materialized, what other queries benefit from this view? The answer to this question is
encoded in the graph representation of the sketch. Assume for instance that view VexistC!E is materialized. This
view lists all records that contain a path C! E. Since this path always includes state D we conclude that
SC!DðRÞ ¼ SC!EðRÞ and therefore we can use this view to answer query existC!D. For the previous query,
materialized view VexistB!D contains a superset of the required records since SC!DðRÞ � SB!DðRÞ. As a result,
querying the view instead of R results in generating false positives, i.e. it will return additional records that do
not belong to SC!DðRÞ. However, one might want to use the view, as a dirty filter over the dataset if the num-
ber of bits set in VexistB!D is much less than jRj, e.g. when lots of events terminate on state F. A third choice
arises for query existD!E and view VexistC!E . Because of edge (B,D), using the view to answer this query results
in false negatives, i.e. dismissal of records that contain the requested transition. An answering mechanism that
requires no false dismissals should always avoid the last case.

5.1. Materialized views for pair-wise path queries

We now investigate the problem of selecting the minimum subset of views Vexistu!v to be materialized so that
subsequent pair-wise path queries can be answered from these views without accessing the dataset. We first
define the notion of equivalence among two views.

Definition 5.2. Given two pairs of nodes (x,y) and (a,b) s.t. there is a path from x to y and from a to b in
G(V,E) we say that Vexista!b is equivalent (�) to view Vexistx!y if they contain the same records for any instance
of R.

The definition implies that Vexista!b �Vexistx!y if each valid record that contains a path x! y also contains
a path a! b and vice-versa. This means that there is a path x! a or a! x in G(V,E). Assuming that the first
is true (otherwise we swap (x,y) and (a,b)) the following condition verifies that x is always included in a record
that contains a path a! b:

1. For all nodes s in the set of starting nodes of G(V � {x},E � Ex),3 9= a path s! a.

Depending on the relative position of the remaining nodes in the sketch we have the following cases:
Case (1): $ a path y! a in G(V,E). Because the graph is acyclic, this implies that nodes a and b are reached
after departing nodes x and y in the specified order. We denote this as: x! y! a! b. In this case
Vexista!b �Vexistx!y if (i) after leaving node y we always pass through a and b and (ii) any path s! a includes
y. Thus, the following additional constraints must be met:
2. For all nodes t in the set of terminal nodes of G(V � {a},E � Ea), 9= a path y! t.
3. For all nodes t in the set of terminal nodes of G(V � {b},E � Eb), 9= a path y! t.
2 Similarly, existu!v = 0 retrieves all records without such a transition. When the predicate is omitted, we assume it is =1.
3 G(V � {v},E � Ev) is the graph obtained if we remove node v from the sketch and all its incident edges, e.g. Ev = {(v1,v2) 2 E s.t. v1 = v

OR v2 = v}.

x ay bS T

Required path

Forbidden path

Fig. 6. Required and forbidden paths in a sketch (case 1).

710 Y. Kotidis / Data & Knowledge Engineering 59 (2006) 700–724
4. For all nodes s in the set of starting nodes of G(V � {y},E � Ey), 9= a path s! a.

Fig. 6 depicts the required and forbidden paths in a sketch for case 1 to hold. Super-nodes S and T correspond
to all starting and terminal nodes.
Case (2): $ a path a! y in G(V,E). We denote this as: x! a! y! b. In this case we verify conditions (1), (3)
as well as:
5. 9= a path x! y in G(V � {a},E � Ea).
6. 9= a path a! b in G(V � {y},E � Ey).
Case (3): $ a path b! y in G(V,E). This is denoted as x! a! b! y. In this case we test conditions (1), (5) as
well as:

7. For all nodes t in the set of terminal nodes of G(V � {y},E � Ey), 9= a path b! t.
8. 9= a path x! y in G(V � {b},E � Eb).

These tests require at most 2jSj + 2 Depth-First-Search scans of the graph for every pair (x,y) and (a,b). We
stretch here that these tests are only performed once when the sketch is specified. For a sketch with 50 vertices
and 100 edges they take 45 seconds in a 600 MHz Pentium III PC.

The � relation partitions the views in equivalent classes ~V1; ~V2; . . . In the graph of Fig. 3 we have the fol-
lowing four classes:
~V1 ¼ fVexistA!C ;VexistB!C ;VexistC!D ;VexistC!Eg
~V2 ¼ fVexistA!F ;VexistB!F g
~V3 ¼ fVexistA!D ;VexistA!E ;VexistB!D ;VexistB!E ;VexistD!Eg
~V4 ¼ fVexistA!Bg
All views belonging to the same class ~Vi contain exactly the same bitmap for any instance of R. Thus, only
one of these views is needed to be materialized. For a view Vexistu!v , we denote as ~Vexistu!v the materialized
representative of its class. We also denote the number of classes of equivalent views in G(V,E) as j ~Vj. In
the graph of Fig. 3, j ~Vj ¼ 4.

In the previous discussion we assumed that there is a path from u to v in G(V,E). If this is not true then
Vexistu!v is empty by default. These views belong to a virtual class ~V0. The representative of this class contains
no records. On the opposite side, when transition u! v exists in all records for any instance of R (like A! B

in our example), the corresponding view indexes the whole dataset and ~VexistA!B is not materialized. In order to
see whether the representative ~Vexistu!v of a class trivially indexes all records in R the following condition is
tested:

9. For all pairs s, t from the sets of starting and terminal nodes of G(V � {u,v},E � Eu � Ev), 9= path s! t.

For the sketch of our example just three representative views are needed whose combined size is 3jRj
(uncompressed) bits. In practice j ~Vj depends on the complexity of the sketch. Business processes often have
parts with sequential actions v1! v2! � � � As an example processing of a customer’s order spawns several
processes (possibly on different departments) that are executed in parallel. We model this scenario in the fol-
lowing way: starting with a set of k nodes that are lined in a chain, we pick a random non-terminal node, gen-
erate a new branch from that node of length 6k and repeat several times. Fig. 7 shows a possible result for

Fig. 7. A service provisioning tree.

55 10 15 20 25 30 35 40
00

55

10

15

20

25

30

of nodes

of

 c
la

ss
es

Fig. 8. Number of classes.

Y. Kotidis / Data & Knowledge Engineering 59 (2006) 700–724 711
k = 5 and four iterations. Processes of this form are common in the telephone service provisioning domain. In
Fig. 8 we plot the number of classes j ~Vj versus the number of nodes in a sketch that we generate this way. We
varied k between 3 and 6, generated a sample set of 100 graphs and averaged the number of classes for
sketches with the same number of nodes. Clearly for this case the number of classes is linear in the number
of nodes and the combined size of all views is about the same as the size of a single index on the relation col-
umn storing the edge identifiers eid (see Section 4.4). We believe this to be true in many practical cases.

5.2. Evaluating more complex path queries

We now define the selection operator Sv1!���!vnðRÞ that returns all records that visit nodes v1, . . . ,vn in the
specified order. A multi-node path query existv1!���!vn evaluates to 1 for all records in Sv1!���!vnðRÞ and is com-
puted as follows:

n = 1: We answer the query by ORing the bitmaps of all views ~Vexists!v1
, s 2 S. Alternatively we could use

views ~Vexistv1!t , t 2 T. Overall, we need to OR at-most minðjSj; jT j; j ~VjÞ bitmaps.
n = 2: We directly answer the query using view ~Vexistv1!v2

.
n > 2: We AND bitmaps of views ~Vexistvi!viþ1

; i ¼ 1; . . . ; n� 1. Up to minðn� 1; j ~VjÞ bitmaps are read. This is
a crude upper bound as many of these views belong to the same class.

More complex path queries can be expressed as series of multi-node expressions. For example, if we want
all records that pass through nodes A,B,D,E but not from C we compute: existA!B!D!E AND NOT
existC!C ¼ ~VexistA!B AND ~VexistB!D AND ~VexistD!E AND NOT ~VexistA!C ¼ ~VexistA!E AND NOT ~VexistA!C .

A path query can be answered using bit-mapped indices on the nodes (B(ui)) based on the dual represen-
tation of a record. There is a direct way to translate the optimized view expression to an optimized expression
of bitmaps on the nodes. For the sketch of our running example there are the following four equivalent classes
of bitmaps: B(A) � B(B) (with all bits set), B(C), B(D) � B(E) and B(F). The query is now expressed as B(A)
AND B(B) AND B(D) AND B(E) AND NOT BðCÞ ¼ ~BðDÞ AND NOT ~BðCÞ.

712 Y. Kotidis / Data & Knowledge Engineering 59 (2006) 700–724
While, for a DAG, the translation to the dual representation is straightforward, in the next subsection we
demonstrate that when the sketch contains cycles, pair-wise views are more expressive than using bitmapped
indexes on the state information.

5.3. Processing path queries in a digraph

A digraph G(V,E) is used as a sketch if each weakly connected component has a non-empty set S 0 2 V of
nodes with no incoming edges and a non-empty set T 0 2 V of nodes with no out-going edges. The definition of
a record is now changed to be an ordered multi-set of (edge,measure) values. Query Fu!v is defined to aggre-
gate all measures between the first occurrence of node u and the last occurrence of node v in the record.4

Since the sketch may contain cycles, we need to add additional constraints in the evaluation of pairs (x,y)
and (a,b) for computing the � relation.

Case (1): Constraints (1)–(4) ensure that nodes a and b are visited after nodes x, y in a record. In an acyclic
graph this is enough to guarantee a path x! y! a! b in the record. In a digraph we may also see paths:
x! y! b! a, y! x! a! b and y! x! b! a that should be excluded. For that we add the following
two tests:

10. 9= a path y! b in G(V � {a}, E � Ea).
11. For all nodes s in the set of starting nodes of G(V � {x},E � Ex), 9= a path s! y.
Case (2): The relative order of the nodes cannot change if all four constraints are met.
Case (3): We need to secure the order of nodes x and y with the following test:
12. 9= a path x! b in G(V � {a},E � Ea)

When evaluating a multi-node path query as described in Section 5.2 the resulting bitmap describes more
records that are actually in Sv1!���!vnðRÞ as the evaluation process does not guarantee an order between paths
vi! vi+1. For example record r ¼ f. . . ; ððv2; v3Þ; xðv2;v3ÞÞ; . . . ; ððv1; v2Þ; xðv1;v2ÞÞ; . . .g contains both a path v1! v2

and v2! v3 but not path v1! v2! v3. Such a record is possible in a (complex) digraph but not in a DAG.
Thus, we use the optimized expression as a dirty filter and evaluate the retrieved records at a latter step to
eliminate possible false positives.

Example 5.3. For the graph of Fig. 9, the equivalent classes are:
4 Oth
~V1 ¼ fVexistA!B ;VexistA!C ;VexistA!D ;VexistB!C ;VexistB!D ;VexistC!Dg
~V2 ¼ fVexistA!E ;VexistB!E ;VexistC!E ;VexistD!Eg
~V3 ¼ fVexistA!F ;VexistB!F ;VexistC!F ;VexistD!F g
~V4 ¼ fVexistD!B ;VexistD!C ;VexistC!Bg
The representative of class ~V1 is omitted because of condition (9). Suppose that we want to find all records
that used the back-edge (D,B) and terminate at node E. The query is formulated as: existA!D!B!E. We com-
pute ~VexistA!D AND ~VexistD!B AND ~VexistB!E = ~VexistD!B AND ~VexistB!E . It is easy to see that for the given sketch,
the result describes exactly the records that we want, i.e. there are no false positives. Processing requires
retrieving exactly 2 bitmaps.

If for the same query we were to use bitmaps B(ui) on the nodes we get: B(A) AND B(B) AND B(D) AND
B(E) = B(E). This expressions describes all records that terminate on node E whether or not they used the
back-edge (B,D) and there is no way to express this property using indexes on the nodes. Pair-wise views
on the other hand allow us to describe arbitrary transitions between two nodes but evaluation does not guar-
antee the order of consecutive pairs in the expression. Compared to using bitmapped indices on the nodes, we
can show the following.
er definitions are possible depending on the context.

AA BB C D E

FF

Fig. 9. Sketch with cycles.

Y. Kotidis / Data & Knowledge Engineering 59 (2006) 700–724 713
Lemma 5.4. Evaluation of a multi-node path query existv1!���!vn in a digraph using bitmap indexes on the nodes vi

results in at least as many false positives as the optimized expression of pair-wise path views.

In many practical scenarios pair-wise views do not add false positives in evaluation of path-expressions over
digraphs. In-fact, we can detect all pathological cases by analyzing the sketch in a similar manner. That is, we
can tell if there is a need to make a second pass over the records to eliminate false positives by looking at the
sketch.

6. Processing pair-wise aggregate queries

We now address the problem of using materialized views for answering pair-wise aggregate queries of the
form:
5 Fu
1 < i <
functio
partitio
l 6Fa!b 6 h ð4Þ

when F ¼ sumð Þ; countð Þ;maxð Þ;minð Þ. A pair-wise aggregate view VFx!y contains pairs of ðrid ;FðP x!yðrÞÞÞ
values. We can implement this view as a B-tree with the second value used as a key and the first value used to
point to the appropriate records in R.

If another view VFx!y with (x,y) 5 (a,b) and Vexistx!y �Vexista!b is materialized it can be used to locate all
records with a transition from a to b. This however is inefficient if the numeric predicates on the aggregate are
highly selective, e.g. when many records contain a path from a to b but few of them satisfy l 6
FðP a!bðrÞÞ 6 h.

Unfortunately, there is no way to relate the aggregates stored in the view with the aggregates requested by
the query since pairs (x,y) and (a,b) might be on (connected but) unrelated parts of the sketch. As an example
consider query maxB!D > 100 that retrieves all records that either have (i) an edge (B,D) with a measure
greater than 100 or (ii) edges (B,C) and (C,D) with associated measures that at least one is greater than
100. If view VmaxD!E was materialized it provides filtering on the path expression only, since VexistD!E �
VexistB!D . On the other hand, view VmaxA!E provides more leverage since a candidate record r must have
max(PA!E(r)) > 100. Therefore, we execute query maxA!E > 100 on view VmaxA!E and then check the
retrieved records whether max(PB!D(r)) is indeed greater than 100. This process is called query rewriting
and is discussed in details in the forthcoming sections.

In general we may be able to exploit the aggregates stored in view VFx!y when evaluating query (4) if nodes
a and b are contained in a path from x! y. Containment is not a mandatory condition for view equivalence as
defined in the previous section. It is described as x! a! b! y in case (3). When all four conditions for this
case are met then for distributive aggregate functions, the stored aggregate value along path x! y can be
expressed as5:
FðP x!yðrÞÞ ¼F0ðFðP x!aðrÞÞ;FðP a!bðrÞÞ;FðP b!yðrÞÞÞ ð5Þ

where F0 ¼F for F ¼ maxð Þ;minð Þ; sumð Þ and F0 ¼ sumð Þ for F ¼ countð Þ. This well-known property of a
distributive function is frequently exploited to share computation of data cube aggregates [2].
nction Fðx1; . . . ; xnÞ is distributive if there exists function G such that Fðx1; . . . ; xnÞ ¼ GðF ðx1; . . . ; xiÞ; F ðxiþ1; . . . ; xnÞÞ for any i:
n. The definition implies that the input of F can be partitioned into an arbitrary number of sets (sub-problems) and the result of the
n can always be computed by composing (using G) the results of the sub-problems without any ‘‘state’’ information on how
ning were obtained.

714 Y. Kotidis / Data & Knowledge Engineering 59 (2006) 700–724
For any two pairs of nodes (x,y) and (a,b) for which the conditions of case (3) are met we denote that
VFa!b �VFx!y . The � relation is reflexive, transitive and antisymmetric. Thus, it defines a partial order
on the views. The antisymmetry comes from the containment requirement. For the sketch of Fig. 3 the � rela-
tion is shown in Fig. 10. A node in the figure represents an aggregate view on the corresponding pairs. An
arrow between two views depicts that the pointed view � the other. We also include the whole dataset R
to depict that all these views can be computed from the raw records.

For a view VFu!v the top-level ancestor, i.e. the higher view V in the hierarchy s.t. VFu!v �V is denoted

as V̂Fu!v . For example V̂FD!E ¼VFA!E . The number of top-level views is denoted as jV̂j, and is 5 in our
example.

6.1. Weaker condition

When view VFx!y such that VFa!b �VFx!y is used for query (4), it retrieves all records with a transition
a! b with some additional filtering based on a rewriting for the measures along x! y. The details of this
rewriting are included in the forthcoming sections. The rewriting introduces false positives (but no false neg-
atives) for the aggregate values but is exact on the path requirement: all records retrieved from view VFx!y

contain a path a! b.
We can relax the path equivalence requirement at the expense of getting more false positives. We define that

VFa!b �VFx!y if (i) x is required to reach a and (ii) any path from b to a terminal node includes y. Thus, only
tests (1) and (7) are required.

The � relation is also a partial order and implies that Sa!bðRÞ � Sx!yðRÞ. For the sketch of Fig. 3 the �
partial order is depicted in Fig. 11. The top-level views of the order are denoted as _V and their number as j _Vj.
In this example j _Vj ¼ 3.

Based of the definition of relations �, � and � the following observations are made:

• VFa!b �VFx!y implies that Vexista!b �Vexistx!y and therefore j ~Vj 6 jV̂j.
• Views V̂Fa!b answer exactly path queries in a DAG and with possible false positives in a digraph.
AE

AD

BD

BE

DE

CE

CD

AC

BC

AF

BF

AB

 R

Fig. 10. The � partial order.

AE

AD

BD

BE

DECE

CD

AC

BC

AF

BF

AB

 R

Fig. 11. The � partial order.

Y. Kotidis / Data & Knowledge Engineering 59 (2006) 700–724 715
• VFa!b �VFx!y implies that VFa!b �VFx!y and therefore j _Vj 6 jV̂j.
• Views _VFa!b is the smallest set of pair-wise views that answer any pair-wise path/aggregate query with no

false negatives without looking at the data. However, these views may introduce false positives in path
expressions both in a DAG and a digraph.
6.2. Pair-wise sum-queries

Pair-wise sum-queries are queries of the form: l 6 suma!b 6 h. We assume that at least the top-level views
V̂sumu!v of the � hierarchy of Fig. 10 are materialized and we explore how queries on the remaining pairs can
be translated and executed efficiently using these views.

If view Vsuma!b is not computed we are using materialized view Vsumx!y ¼ V̂suma!b as a dirty filter to find
candidate records that we retrieve and evaluate from R in a latter step. Along with the views, we store in
the database the dependency graph of Fig. 10. This graph has a size of O(jVj2), which we consider insignificant
in a data warehouse context. For each node in the graph we maintain the minimum and maximum value of
the sum() function evaluated over the stored records that contain the specified transition. For instance, node
DE will store the following two numbers: min_sumD!E = min(sum(PD!E(r))) and max_sumD!E =
max(sum(PD!E(r))) for all r 2 SD!EðRÞ. These statistics are easy to maintain in an append-only scenario,
while we load new records in the data warehouse. In fact, many service provisioning datasets are obtained
from recording tools and data is indeed append only. Using Eq. (5), query l 6 suma!b 6 h is re-written as6:
6 we
l0 ¼ lþmin sumx!a þmin sumb!y 6 sumx!y 6 hþmax sumx!a þmax sumb!y ¼ h0 ð6Þ

We therefore query view Vsumx!y using constants l 0 and h 0 and get a list of rids that satisfy formula (6). Each
candidate record r is retrieved from R in order to evaluate whether l 6 sum(Pa!b(r)) 6 h. Because of the �
relation using the view is equivalent for the path-requirement a! b and is therefore at least as good as using
any type of indices on the node/edge-ids of the records.

Lemma 6.1. A query rewrite of formula (6) results in accessing no-more records than what is required because of

the path-expression a! b.

We now calculate the number of false positives introduced by the rewriting of formula (6). The probability
of a record being a false positive is the conditional probability:
Probfalse positive ¼ ProbðsumðP a!bðrÞÞ 62 ½l; h	jsumðP x!yðrÞÞ 2 ½l0; h0	Þ
If the distribution of values of the stored measures are known, one can analytically compute the above
probability for any combination of pairs a,b and x,y. As an exercise, we here consider the following example.
Assume that the values collected along edges (C,D) and (D,E) form two independent uniform random vari-
ables X and Y respectively. Assume that view VsumC!E is materialized and used for evaluating query:
a 6 sumC!D 6 1, i.e. the query requests all records with X P a (with a 6 1). Using formula (6) we retrieve
all records with a + 0 6 X + Y 6 1 + 1, since min_sumD!E = min(Y) = 0, max_sumD!E = max(Y) = 1. The
probability of getting a false positive is then:
Probfalse positive ¼ ProbðX < ajX þ Y P aÞ ¼ ProbðX < a ^ X þ Y P aÞ
ProbðX þ Y P aÞ
This probability is computed based on Fig. 12. All records retrieved from the rewriting X + Y P a are above
line DC. Thus, we must compute the integral of the join-density distribution for the trapezoid ABCD over the
integral over the whole area except the lower triangle OCD. For independent uniform random variables the
integrals simply compute the respective areas:
AreaABCD ¼
ð1þ 1� aÞ � a

2
;AreaOCD ¼

a2

2
) Probfalse positive ¼

ð2� aÞa
2� a2
assume that min_sumu!v = max_sumu!v = 0 if u = v.

a 1

X+Y=a

YY

XX

1
A BB

CC

DDa

OO

Fig. 12. Computation of false positives.

0

 0.2

 0.4

 0.6

 0.8

1

0 0.2 0.4 0.6 0.8 1

R
ec

or
ds

 r
et

rie
ve

d
ov

er
 In

de
x

S
ca

n

a

CE
CD

Fig. 13. Records retrieved over index scans.

716 Y. Kotidis / Data & Knowledge Engineering 59 (2006) 700–724
In practice we evaluate query speed-up when using the view in comparison with the use on an index I that
retrieves all records that contain an edge (C,D). Let jIj be the number of records retrieved using this index. The
number of records retrieved from view VsumC!E is expected to be: jVCEj ¼ ð1� AreaOCDÞjI j ¼ 2�a2

2
jI j. Similarly,

the number of records contained in the query result that would have retrieved from view VsumC!D if it were
materialized is: jVCDj ¼ ð1� aÞjI j. Fig. 13 plots these values with respect to a. The graph demonstrates that
using view VsumC!E is always better than using an index, as expected because of Lemma 6.1. The maximum
speed-up that we obtain compared to the index is 2-1 since at least jIj/2 records are accessed. In the following
subsection we show how to obtain even better speed-ups.

6.2.1. Using phantom aggregates to speed-up queries on non-materialized views

We now show how to calibrate indexing of the records of a materialized view V to achieve better perfor-
mance when querying for another view V0 �V that is not materialized.

Each top-level view V of Fig. 10 defines a poset DV with all views V0 �V. Let LV be the set of lower
bounds in DV. For example LVsumA!E

¼ fVsumB!D ;VsumD!Eg.

Lemma 6.2. For each top-level view V in the � order, LV contains views on non-overlapping paths in G(V,E)

(with the exception of the end-points).

Proof. Let Vsuma1!b1
; Vsuma2!b2

be two lower bounds in DV. We assume that paths a1! b1 and a2! b2 over-
lap and without loss of generality that the arrangement of the nodes is a1! a2! b1! b2, otherwise we switch
notation.7
7 The case where a1! a2! b2! b1 is not permissible because of the assumption that Vsuma1!b1
is a lower-bound in DV.

Y. Kotidis / Data & Knowledge Engineering 59 (2006) 700–724 717
Because of conditions (1), (5), (7) and (8) of case (3) for a1! b1 and a2! b2, we conclude that
Vsuma2!b1

�V; that is Vsuma2!b1
2 DV. With similar arguments we have that Vsuma2!b1

�Vsuma1!b1
. The latter

contradicts the assumption that Vsuma1!b1
is a lower bound in DV, unless a1 = a2. However, in case (a1 = a2)

then Vsuma1!b1
�Vsuma2!b2

, which again contradicts the assumption that Vsuma2!b2
is a lower bound, unless

a1 = a2 and b1 = b2. That is, the two paths cannot overlap, unless we are talking about the same pair. h

Our key-idea is to use the values of the views in LV to cluster the records of V in a way that will allow
fewer false positives due to the rewriting. We propose two methods for storing the view based on partitioning
its records on the values of the aggregates in LV. We call these values phantom aggregates as they do not
appear in V. Both methods maintain a hybrid data-structure, in which the upper part describes a partitioning
scheme based on the phantom aggregates and the lower part implements a collection of B-trees on the values
of V, using one tree per partition. The upper partitioning scheme is fixed, i.e. we make no attempt to modify it
during updates. This is not a problem as phantom aggregates have a suggestive value during query rewriting.
In practice we can periodically modify the partitions when the dataset or the query workload change.

kd-tree method. For some small value B, we generate B partitions for the values of V ¼ V sumu!v in the fol-
lowing manner: we treat each value of V as an jLV j-dimensional point with coordinates defined by the phan-
tom sum() aggregates of views in LV . We then build the first logjLV jðBÞ levels of a kd-tree for these values. The
kd-tree is an extension of a binary search tree in more dimensions. The main difference is that levels of the tree
are split along successive dimensions, i.e level 0 is split on the first dimension, level 1 on the second etc. More
details on the kd-tree can be found in [20]. In our framework, each node at level logjLV jðBÞ contains a pointer
to a partition of the original values in V with all records whose phantom aggregates fall in the sub-space
specified by the path from the root to that node in the kd-tree. Each partition is organized as a B-tree having
sum(Pu !v(r)) as the key and the corresponding rids as values. At the root of each tree we store the min_sum()
and max_sum() values for the partition, for each phantom aggregate.

Querying this structure for any view V0 �V is done using the top-level kd-tree nodes for pruning the
search. Queries on values of V ignore these levels and access all the underlying B-trees. In the presence of
multiple disks, all these trees can be efficiently searched in parallel. The space requirement for the first
logjLVjðBÞ levels of the kd-tree is 2 * (B � 1), which fits in a single data page for small Bs.

Example 6.3. We demonstrate the creation of the hybrid structure of Fig. 14 for view VsumA!E . Each record of
this view is a pair of (rid, sum(PA!E(r))) values. We first attach the phantom aggregates of views LVsumA!E

¼
fVsumB!D ;VsumD!Eg and generate a temporary table Vtemp with attributes: rid, sum(PA!E(r)), sum(PB!D(r)),
sum(PD!E(r)). We then scan Vtemp and generate a kd-tree on the sum(PB!D(r)) and sum(PD!E(r)) phantom
aggregates. During this phase we also compute min_sumB!D, max_sumB!D, min_sumD!E, max_sumD!E. For
B = 16, we keep the first logjLVsumA!E

j¼2ðBÞ ¼ 4 levels of the tree and use them to partition Vtemp in a second

scan. Each partition projects the first two attributes of Vtemp and is implemented as a separate B-tree using
sum(PA!E) as the key and rid as the values indexed. Nodes of the kd-tree that split the records on the phantom
Fig. 14. Implementation of view VsumA!E .

718 Y. Kotidis / Data & Knowledge Engineering 59 (2006) 700–724
sum(PB!D(r)) aggregates are used to prune the search space when evaluating queries: sumB!D, sumB!E and
sumA!D, while nodes that split on sum(PD!E(r)) aggregates are used during sumB!E and sumD !E searches.

Grid-based method. We create a hybrid data-structure, which partitions the records of the view by super-
imposing a jLVj-dimensional grid on its values. The simplest way to achieve this is to partition the aggregates
of each view V0 2LV by computing appropriate quantiles [19,37,23,25]. Multi-dimensional index loading
techniques like [15] are also applicable. Notice that the goal is not to equi-split the tuples of the view, but
to impose a partitioning scheme that will benefit the expected workload on the phantom aggregates. After
the grid is decided, a single B-tree on the records of V is built for each cell. Storage requirements for the grid

is jLVj � ðB
1

jLV j � 1Þ þ B 6 2 � B, including the pointers to the underlying B-trees.

Example 6.4. View VsumC!E is used for queries sumC!E as well as queries sumC!D, when the latter one is not
materialized as a view. To create the grid-based hybrid-structure, we partition the records of the view based on
the phantom sumC!D values (which we know at creation time) into B P 2 sets. This is achieved using known
statistics on the values xCD along edge (C,D) to split the records in a way that better suits the expected sumC!D

queries. Fig. 15 shows an example where B = 4. The left sub-tree contains record-ids indexed by sumC!E

values, for which the phantom xCD measure (that is not stored in the structure) is less or equal to cd1. The
second tree from the left has records with xCD values in the range (cd1,cd2], while the last tree contains records
with xCD values greater than cd3. In the header-page of each B-tree we also store the minimum and maximum
values along edge (D,E) for the corresponding partition, which again are known when the values are loaded.

Given a query l 6 sumC!D 6 h, we access the corresponding tree for each partition that intersects the [l,h]
range. Each one of these trees we query using the re-writing of formula (6) where min_sumD!E and
max_sumD!E are defined per tree. In case l (resp. h) is lower (resp. higher) than the values of the grid-points of
the partition they are substituted accordingly.
6.3. Pair-wise count-queries

For evaluating query l 6 counta!b 6 h we first list all possible paths p1, . . . ,pk from a to b in G(V,E) with
the appropriate number of transitions. As described in Section 5.2 we can find all records that contain path pi

by accessing up to j ~Vj appropriate bitmaps. This results in a bitmap Bi for each path. The answer to the query
is then computed by ORing all bitmaps Bi. This method requires no access to the dataset R and generates no
false positives/dismissals. The method is applicable when views V̂Fa!b (for any function F) are available. The
answer is similarly computed by merging appropriate lists of records ids. If views _VFa!b are used then the
answer may include false positives.

6.4. Pair-wise min/max-queries

Pair-wise max/min queries are treated similarly to the pair-wise sum queries. The rewriting in this case will be:
l0 ¼Fðl;min Fx!a;min Fb!yÞ 6Fx!y 6Fðh;max Fx!a;max Fb!yÞ ¼ h0
for F ¼ minð Þ=maxð Þ.
Fig. 15. Implementation of view VsumC!E .

Y. Kotidis / Data & Knowledge Engineering 59 (2006) 700–724 719
6.5. Handling parallel paths

In business workflows it is common to have multiple sub-tasks that are spawn from a node. Consider for
example the sketch of Fig. 16. State A spawns two parallel processes that are being synchronized later at state
D. An event that leaves state A collects measures xi along all four edges (A,B), (B,D), (A,C) and (C,D). In
order for our framework to apply for this case we need to define the meaning of an aggregation for pair
(A,D) (similar to path-aggregation in [44]). If timing information is of use then sum(PA!D(r)) can be defined
as max(x1 + x2,x3 + x4). If on the other hand some cost-related weights are stored in the edges we may define
sum(PA!D(r)) to be x1 + x2 + x3 + x4. As long as we provide a succinct way to describe theses aggregations,
the same framework is directly applicable for this data.
7. Experiments

7.1. Evaluate rewriting using the � partial order

In this set of experiments we focus on a specific portion of a sketch that contains n + 1 nodes: v1, . . . ,vn+1

forming a chain (Fig. 17). Business workflows frequently contain parts with such local sequential actions. We
denote as xi the measure value collected on edge (vi,vi+1). Each measure describes arrival times that are fol-
lowing an independent exponential distribution. We assume that Vsumv1!vnþ1

is the only view materialized.
The first two experiments evaluate how efficient the view can be for answering pair-wise sum queries of the

following two practical classes:

• queries for outliers: these are queries of the form:
sumvi!vjþ1
P E½xi þ � � � þ xj	 þ kDEV ½xi þ � � � þ xj	 ð7Þ
this query can be stated as: ‘‘find all records where a transition from node i to node j + 1 took more that
l + k * s’’, where l, s are the expected time and standard deviation for transitions between these nodes and
k is a user defined parameter that describes how selective the query is. Conceptually, this type of queries access
‘‘sparse’’ areas of the n-dimensional space formed by the measures, looking for outliers.
• queries on hot-spots: these are queries of the form:
E½xi þ � � � xj	 � kDEV ½xi þ � � � xj	 6 sumvi!vjþ1
6 E½xi þ � � � xj	 þ kDEV ½xi þ � � � xj	 ð8Þ
AA
BB

CC

DDXX11 XX22

XX33
XX44

Fig. 16. Sketch with parallel parts.

VV11 VV22 VVii VV j+1
VVn+1XX22XX11 XXii XXnnXXjj

Query

View

Fig. 17. Chain of n nodes.

720 Y. Kotidis / Data & Knowledge Engineering 59 (2006) 700–724
These queries ask for aggregates close to the expected value of the combined distribution and evaluate the
rewriting when querying a ‘‘dense’’ area of the data.

For the first experiment we varied n and tested querying view Vsumv1!vnþ1
for computing outliers on the first

two transitions: sumv1!v3
¼ x1 þ x2 P E½x1 þ x2	 þ kDEV ½x1 þ x2	. We used a synthetic dataset of 1,000,000

records with a transition v1! � � � ! vn+1. In Fig. 18 we report the number of records returned from the view
varying parameters k and n. The flat line represents the number of records returned if instead of the view we do
index look-ups in R for the two edges. This number is constant as all 1,000,000 records qualify. Two obser-
vations are made from this graph: (i) performance of the view degrades with the length of the path due to
‘‘noise’’ from measures x3, . . . ,xn and (ii) performance gets better when we are looking for extreme outliers
(e.g. as k increases).

In Fig. 19 we experiment with queries on hot-spots using as an example query E½x1	 � kDEV ½x1	 6
sumv1!v2

6 E½x1	 þ kDEV ½x1	, varying k from 0.01 to 0.30 and n from 1 (exact view) to 6. For these queries,
1 2 3 4 5 6

00

100000

200000

300000

400000

500000

600000

700000

800000

900000

1000000

Index Scan

Exact View (n=2)

n=3

n=4

n=5

n=6

k

re

co
rd

s
re

tr
ie

ve
d

Fig. 18. Querying for outliers.

0.01 0.05 0.1 0.15 0.2 0.25 0.3
0

250000

500000

750000

1000000
Index Scan
Exact View

n=2

n=3

n=4

n=5

n=6

n=2 (2 part)
n=3 (2 part)

n=4 (2 part)

n=5 (2 part)

n=6 (2 part)

n=2 (3 part)

n=3 (3 part)
n=4 (3 part)

n=5 (3 part)

n=6 (3 part)

k

re

co
rd

s
re

tr
ie

ve
d

2 partitions

3 partitions

Fig. 19. Querying on hot-spots.

11 1.5 22 2.5 33 3.5 44 4.5 55 5.5 66

00

100000

200000

300000

400000

500000

600000

700000

800000

900000

1000000

Index Scan

Exact View

n=3

n=4

n=5

n=6

k

re

co
rd

s
re

tr
ie

ve
d

Fig. 20. Pair-wise max-queries.

Y. Kotidis / Data & Knowledge Engineering 59 (2006) 700–724 721
view Vsumv1!vnþ1
is not as effective as when querying for outliers. For n > 2, the view is about as bad as using the

index. In a second run, we used the grid-based index of Section 6.2.1 with 2 and 3 partitions per phantom
aggregate x2, . . . ,xn. For the first case we partitioned on the expected median of each xi, that is 0.693 for this
distribution, and for the latter the break-points where set to 0.7 and 1.3 to better reflect the query pattern. The
size of view Vsumv1!vnþ1

was 11.61 MB when stored as a single B-tree, 11.73 MB when stored using a

2 · 2 · 2 · 2 · 2 · 2 grid and 14.31 MB for the 3 · 3 · 3 · 3 · 3 · 3 grid.8 This is comparable to the size of a
B-tree on eid (11.6 MB).

In the next experiment we evaluate processing of pair-wise max queries. Assume that we would like to find
all records for which at least one transition between states v1 and v3 was delayed. Thus, we want to retrieve all
records with an instance of x1 or x2 that was much higher than the expected value E[xi] = a. The query is
stated as: query maxv1!v3

P E½xi	 þ kDEV ½xi	. Notice how this is different than query sumv1!v3
P

E½x1 þ x2	 þ kDEV ½x1 þ x2	 that retrieves records for which the overall transition was delayed. We evaluated
the query using view Vmaxv1!vnþ1

, varying n from 2 (exact case) to 6. Fig. 20 plots the number of records
retrieved. Again performance gets better when we search for extreme outliers (higher value of k).

7.2. Evaluating rewriting using the � partial order

We now modify the initial sketch by adding a cross-over edge (v1,vn+1). As a result now Vsumvi!vjþ1
�

Vsumv1!vnþ1
. We generated 1,000,000 new records varying the probability P of a record using the edge

(v1,vn+1). The measure along the new edge was following the same exponential distribution. We executed
query sumv1!v3

P E½x1 þ x2	 þ 6 � DEV ½x1 þ x2	 (for n = 6) using the view or an index on eids as shown in
Fig. 21. For P = 0 no record uses the cross-over path and the index returns all records. With P increasing
the index scan becomes more selective but the same is happening for the view.

7.3. Experiment with real data

For the next experiment we used real traces from a business workflow with 6 states, forming a chain. The
dataset had 42,754 records. Measures xi record timing information. In Fig. 22 we normalize the number of
records retrieved from view Vsumv1!v6

, those retrieved from an index on eid as well as the exact answer size, over

the dataset size for all possible queries of formula (7) with i 2 [1, 5], j 2 [i, 5] and k = 4. The x-axis in the figure
represents pairs i, j. For the view we used a grid with 2 partitions per measure. We experimented with two
8 We also tested a grid of the form 3 · 3 · 1 · 1 · 1 · 1 that was slightly worse on queries on x1 but used only 11.62 MB of disk space.

00 0.25 0.5 0.75

00

100000

200000

300000

400000

500000

600000

700000

800000

900000

1000000

Index Scan

View (n=6)

cross−over probability (P)

re

co
rd

s
re

tr
ie

ve
d

Fig. 21. Testing the � partial order.

(1,1) (1,2) (1,3) (1,4) (1,5) (2,2) (2,3) (2,4) (2,5) (3,3) (3,4) (3,5) (4,4) (4,5) (5,5)

00

10

20

30

40

50

60

70

80

90

100

Index Scan

Exact View

View 1–>6 (part1)

View 1–>6 (part2)

query

re
co

rd
s

re
tr

ie
ve

d
(%

)

Fig. 22. Querying for outliers, real data.

722 Y. Kotidis / Data & Knowledge Engineering 59 (2006) 700–724
setups for the grid: the first indicated as part-1 used as break-points the average value of each measure, while
for part-2 we used value E[xi] + k * DEV[xi]. part-2 did better in most cases, as expected, but not always as the
optimal break-point per measure is not necessarily optimal for multi-measure queries (e.g. when j > i). Overall,
the view in all but 2 cases managed to filter-out more than 90% of the dataset. Its size was 652KB while the size
of the B-tree index on eids 521KB.

8. Conclusions

In this paper we showed how to apply data warehousing techniques for organizing service provisioning
data. Our solution is based on the notion of a sketch as an abstract description of the underlying process that
generates the records. We explored the implications of storing, indexing and querying this data in a relational
engine. We introduced pair-wise queries, a new class of aggregate queries that consolidate data from a part of

Y. Kotidis / Data & Knowledge Engineering 59 (2006) 700–724 723
the process, based on a user defined path expression, and explored their use for multi-resolution analysis of a
complex process through appropriate navigation operations.

We further explored the use of materialized views for speeding up frequent computations. We first
showed how to select a minimum set of views to answer any pair-wise path query and then how to opti-
mize the evaluation of more complex path-expression over the given sketch from the views. For pair-wise
queries with aggregations, we defined two partial orders among the views: � is used to find the minimum
set of aggregate views to answer any query with no false dismissals while � describes an augmented set that
allows false positives on the aggregates but not on the path requirement. Computing a non-materialized
aggregate is done through appropriate rewriting of the user query. We described two hybrid-indexing
schemes that use phantom aggregate values and allow us to efficiently query the view, even for non-mate-
rialized aggregates. Experimental results show these schemes to perform well on the synthetic and real data-
sets that we used.

While our techniques have been motivated by the service provisioning scenario, our framework can be
applied to the more general problem of analyzing workflow log records generated by process management
software. Post-analysis of such records can benefit from the class of aggregate queries we introduced in this
paper and our indexing and view selection techniques can further help in managing the large collections of
record logs generated by such systems.
References

[1] R. Agrawal, D. Gunopulos, F. Leymann, Mining process models from workflow logs, in: Proceedings of International Conference on
Extending Database Technology (EDBT), March 1998, pp. 469–483.

[2] S. Agrawal, R. Agrawal, P.M. Deshpande, A. Gupta, J.F. Naughton, R. Ramakrishnan, S. Sarawagi, On the Computation of
Multidimensional Aggregates, in: Proceedings of the 22nd VLDB conference, Bombay, India, August 1996, pp. 506–521.

[3] G. Alonso, D. Agrawal, A. El Abbadi, M. Kamath, R. Günthör, C. Mohan, Advanced transaction models in workflow contexts,
in: Proceedings of the Twelfth International Conference on Data Engineering, February 1996, pp. 574–581.

[4] E. Baralis, S. Paraboschi, E. Teniente, Materialized view selection in a multidimensional database, in: Proceedings of the 23th
International Conference on VLDB, Athens, Greece, August 1997, pp. 156–165.

[5] C. Beeri, P.A. Bernstein, N. Goodman, A model for concurrency in nested transactions systems, J. ACM 36 (2) (1989) 230–269.
[6] C. Bettini, X.S. Wang, S. Jajodia, Free schedules for free agents in workflow systems, in: Proceedings of the TIME, Nova Scotia,

Canada, July 2000, pp. 31–38.
[7] A. Biliris, S. Dar, N.H. Gehani, H.V. Jagadish, K. Ramamritham, Asset: a system for supporting extended transactions, in:

Proceedings of ACM SIGMOD, May 1994, pp. 44–54.
[8] A. Bonifati, F. Casati, U. Dayal, M.-C. Shan, Warehousing workflow data: challenges and opportunities, in: Proceedings of VLDB,

Rome, Italy, 2001, pp. 649–652.
[9] O.A. Bukhres, A.K. Elmagarmid, E. Kühn, Implementation of the flex transaction model, IEEE Data Eng. Bull. 16 (2) (1993) 28–32.

[10] C.Y. Chan, Y. Ioannidis, Bitmap index design and evaluation, in: Proceedings of ACM SIGMOD International Conference on
Management of Data, Seattle, Washington, USA, June 1998, pp. 355–366.

[11] S. Chaudhuri, U. Dayal, An overview of data warehousing and OLAP technology, SIGMOD Record 26 (1) (1997).
[12] P. Pin-Shan Chen, The entity-relationship model—towards a unified view of data, ACM Trans. Database Syst. (TODS) 1 (1) (1976)

9–36.
[13] P.K. Chrysanthis, K. Ramamritham, ACTA: a framework for specifying and reasoning about transaction structure and behavior,

in: Proceedings ACM SIGMOD, May 1990, pp. 194–203.
[14] J.E. Cook, A.L. Wolf, Discovering models of software processes from event-based data, ACM Trans. Softw. Eng. Methodol. 7 (3)

(1998) 215–249.
[15] J. Van den Bercken, B. Seeger, P. Widmayer, A generic approach to bulk loading multidimensional index structures, in: Proceedings

of the 23rd International Conference on VLDB, Athens, Greece, August 1997, pp. 406–415.
[16] J. Eder, Extending SQL with general transitive closure and extreme value selections, TKDE 2 (4) (1990).
[17] J. Eder, E. Panagos, M. Rabinovich, Time constraints in workflow systems, in: CAiSE, June 1999, pp. 286–300.
[18] J. Eder, G.E. Olivotto, W. Gruber, A data warehouse for workflow logs, in: EDCIS, 2002, pp. 1–15.
[19] T. Feder, R. Motwani, R. Panigrahy, C. Olston, J. Widom. Computing the median with uncertainty, in: STOC, Portland, Oregon,

May 2000, pp. 602–607.
[20] V. Gaede, O. Günther, Multidimensional access methods, ACM Comput. Surveys 30 (2) (1998) 170–231.
[21] H. Garcia-Molina, K. Salem, Sagas, in: Proceedings of ACM SIGMOD, May 1987, pp. 249–259.
[22] S. Geffner, D. Agrawal, A. El Abbadi, T.R. Smith, Relative prefix sums: an efficient approach for querying dynamic OLAP data

cubes, in: Proceedings ICDE Conference, Sydney, Australia, March 1999, pp. 328–335.
[23] A. Gilbert, Y. Kotidis, S. Muthukrishnan, M. Strauss, How to summarize the universe: dynamic maintenance of quantiles, in:

Proceedings of VLDB, 2002, pp. 454–465.

724 Y. Kotidis / Data & Knowledge Engineering 59 (2006) 700–724
[24] J. Gray, The Benchmark Handbook for Database and Transaction Processing Systems, second ed., Morgan Kaufmann, San
Franscisco, 1993.

[25] M. Greenwald, S. Khanna, Space-efficient online computation of quantile summaries, in: Proceedings of ACM SIGMOD, 2001,
pp. 58–66.

[26] D. Grigori, F. Casati, M. Castellanos, U. Dayal, M. Sayal, M.-C. Shan, Business process intelligence, Comput. Industry 53 (3) (2004)
321–343.

[27] H. Gupta, Selections of views to materialize in a data warehouse, in: Proceedings of ICDT, Delphi, January 1997, pp. 98–112.
[28] V. Harinarayan, A. Rajaraman, J. Ullman, Implementing data cubes efficiently, in: Proceedings of ACM SIGMOD, Montreal,

Canada, June 1996, pp. 205–216.
[29] C.-T. Ho, R. Agrawal, N. Megiddo, R. Srikant, Range queries in OLAP data cubes, in: Proceedings ACM SIGMOD, Tucson,

Arizona, May 1997, pp. 73–88.
[30] R. Hull, F. Llirbat, E. Siman, J. Su, G. Dong, B. Kumar, G. Zhou, Declarative workflows that support easy modification and

dynamic browsing, in: Proceedings of the International Joint Conference on Work Activities Coordination and Collaboration, 1999,
pp. 69–78.

[31] H. Pirahesh, I.S. Mumick, R. Ramakrishnan, The magic of duplicates and aggregates, in: Proceedings of VLDB, August 1990,
pp. 264–277.

[32] M. Kamath, K. Ramamritham, Correctness issues in workflow management, Distrib. Syst. Eng. J. 3 (4) (1996) 213–221.
[33] R. Kimball, The Data Warehouse Toolkit, John Wiley & Sons, 1996.
[34] Y. Kotidis, N. Roussopoulos, A case for dynamic view management, ACM Trans. Database Syst. 26 (4) (2001) 388–423.
[35] P. Larson, V. Deshpande, A file structure supporting traversal recursion, in: Proceedings of ACM SIGMOD, June 1989.
[36] B. List, J. Schiefer, M. Tjoa, Process-oriented requirement analysis supporting the data warehouse design process—a use case driven

approach, in: Proceedings of DEXA, September 2000, pp. 593–603.
[37] G.S. Manku, S. Rajagopalan, B.G. Lindsay, Approximate medians and other quantiles in one pass and with limited memory, in:

Proceedings of the ACM SIGMOD International Conference on Management of Data, Seattle, Washington, June 1998, pp. 426–435.
[38] C. Mohan, G. Alonso, R. Günthör, M. Kamath, Exotica: a research perspective on workflow management systems, IEEE Data Eng.

Bull. 18 (1) (1995) 19–26.
[39] J. Moss, Nested transactions: an approach to reliable computing. Ph.D. thesis, MIT, Cambridge, MA, 1981.
[40] S.B. Navathe, Evolution of data modeling for databases, Commun. ACM 35 (9) (1992) 112–123.
[41] P. O’Neil, G. Graefe, Multi-table joins through bitmapped join indices, SIGMOD Record 24 (3) (1995) 8–11.
[42] P. O’Neil, D. Quass, Improved query performance with variant indexes, in: Proceedings of the ACM SIGMOD International

Conference on Management of Data, Tucson, Arizona, May 1997, pp. 38–49.
[43] S. Ozeki, N. Ikeuchi, Customer service evaluation in the telephone service provisioning process, in: Proceedings of Winter Simulation

Conference, Arlington, Virginia, December 1992, pp. 1341–1348.
[44] A. Rosenthal, S. Heiler, U. Dayal, F. Manola, Traversal recursion: a practical approach to supporting recursive applications, in:

Proceedings of ACM SIGMOD, 1986.
[45] P. Scheuermann, J. Shim, R. Vingralek, WATCHMAN: A data warehouse intelligent cache manager, in: Proceedings of the 22nd

VLDB Conference, Bombay, India, September 1996, pp. 51–62.
[46] J. Shim, P. Scheuermann, R. Vingralek, Dynamic caching of query results for decision support systems, in: it SSDBM, Cleveland,

Ohio, July 1999, pp. 254–263.
[47] A. Shukla, P.M. Deshpande, J.F. Naughton, Materialized view selection for multidimensional datasets, in: Proceedings of the 24th

VLDB Conference, New York City, New York, August 1998, pp. 488–499.
[48] J.R. Smith, C. Li, V. Castelli, A. Jhingran, Dynamic assembly of views in data cubes. in: Proceedings of the Symposium on Principles

of Database Systems (PODS), Seattle, Washington, June 1998, pp. 274–283.
[49] S. Sudarshan, R. Ramakrishnan, Aggregation and relevance in deductive databases, in: Proceedings of VLDB, Barcelona, Spain,

1991, pp. 501–511.
[50] M. Wu, A.P. Buchmann, Encoded bitmap indexing for data warehouses, in: Proceedings of the Fourteenth ICDE Conference,

Orlando, Florida, February 1998, pp. 220–230.

Yannis Kotidis is a Senior Technical Specialist at the Database Research Department of AT&T Labs-Research in
Florham Park, New Jersey. He holds an B.Sc. degree in Electrical Engineering and Computer Science from the
National Technical University of Athens and a Ph.D in Computer Science from the University of Maryland. His
interests include data warehousing, approximate query processing, data quality in large datasets and sensor
networks.

	Extending the data warehouse for service provisioning data
	Introduction
	Map

	Motivation
	Telephone service provisioning
	Delivery service provisioning

	Related work
	A framework for service provisioning data
	Data model
	Pair-wise queries
	Process navigation
	Processing of pair-wise queries in a relational data store

	Processing path queries
	Materialized views for pair-wise path queries
	Evaluating more complex path queries
	Processing path queries in a digraph

	Processing pair-wise aggregate queries
	Weaker condition
	Pair-wise sum-queries
	Using phantom aggregates to speed-up queries on non-materialized views

	Pair-wise count-queries
	Pair-wise min/max-queries
	Handling parallel paths

	Experiments
	Evaluate rewriting using the pre partial order
	Evaluating rewriting using the pr partial order
	Experiment with real data

	Conclusions
	References

