This is an author’s extended version of the DaWak 2021 paper.

Smart-Views: Decentralized OLAP View
Management using Blockchains

Kostas Messanakis®, Petros Demetrakopoulos®, and Yannis Kotidis!

Athens University of Economics and Business
kostas.messanakis@gmail.com, petrosdem@gmail.com, kotidis@aueb.gr

Abstract. In this work we explore the use of a blockchain as an im-
mutable ledger for storing historical facts in a decentralized Data Ware-
house deployment. We also exploit the ledger for storing definitions of
aggregate data cube computations over these data, in the form of smart
contracts. These smart contracts implement smart views that encap-
sulate frequently requested aggregations. We propose a novel modular
architecture in which computations defined by the smart contacts are
passed to suitable data processing engines. On each node, a smart view
cache is also utilized, in the form of an in-memory database, so that fre-
quently requested aggregates can be delivered with small latency. Our
techniques model and take into consideration existing interdependencies
between the smart views to expedite their computation and maintenance.
We also propose efficient algorithms for managing the content of the
smart view cache. Our experiments demonstrate that the combination
of the cache and the post-processing offered by the data engine reduce
by orders of magnitude the overhead of reading data from the ledger,
resulting in fast delivery of results to the user.

1 Introduction

The emergence of cloud storage in the past decade, has familiarized businesses
with the benefits of outsourcing their installations. Recently, blockchain tech-
nology has been described as a potentially disrupting innovation that can utilize
decentralized storage, in the form of one or multiple cryptographically secured
ledgers, for managing large and sensitive data. Much like in a Data Warehouse,
historical data becomes immutable, when placed in a blockchain, because a cor-
rect copy is verified and subsequently stored at multiple locations. Still, there
are important differences between the two technologies. The Data Warehouse
goes well beyond storing raw data, as its main functionality is to provide fast
access to multiple interesting aggregations on user-defined dimensions of inter-
est [6]. Blockchains are mainly suited to publishing transactions and later prove
that those transactions were published. Many blockchain infrastructures utilize
some form of ”smart contracts”, as pieces of code that are embedded in the
ledger implementing binding agreements between parties that can, for instance,
auto-execute when certain conditions are met. Building on smart contracts, in
this work we envision a decentralized Data Warehouse implemented on top of

11 Kostas Messanakis, Petros Demetrakopoulos, and Yannis Kotidis
sl)s- D

Operational
Databases . £r
Distributed Ledger

’BIockchamS\/r\x
B@Ew @

View Cache Application Server ~SQL Backend View Cache ~ Application Server SQL Backend

[Z X K §-9-9-9

blockchain blockchain

Local Node 1 Local Node n

Data Marts

Fig. 1. Using Smart Views for building a decentralized Data Warehouse

a blockchain, where smart contracts are used as the means to describe data
processing over the collected multidimensional data. In essence, these contracts
define aggregate views over the data and we refer to them as smart views. Smart
views can trigger computations enabling complex data analysis workflows.

Following the smart views paradigm, organizations can implement a decen-
tralized data warehouse using the blockchain ledger for publishing its raw data
(fact records) as is depicted in Figure 1. The smart view logic (that will be
described in the next sections) feeds from this data and implements, on local
nodes, smaller Data Marts [9] that are used for specific analytical purposes. For
example, local node 1 in the figure can be utilized by data scientists working
on sales data, while local node n by executives analyzing inventory data. Both
user groups will need access to the distributed data warehouse repository. Each
user group may have its own analytical queries focusing on specific aspects of
the data. Their needs will be accommodated by their local node that (i) syncs
data updates from the shared data warehouse ledger, (ii) manages local user
inquires via the smart views API we provide and (iii) caches local results so that
subsequent queries are expedited. Queries that are common among the groups
will be shared at a semantic level, as their descriptions will be also stored in the
distributed ledger.

Unlike recent proposals that aim to elevate blockchains into a data processing
framework [1,4], in this work we use these ledgers for their indented purpose;
that is for storing in a decentralized manner raw transactions and snippets of
code (in the form of smart contracts) that define requested aggregations over
them. Smart views, much like traditional views in a database system, are vir-
tual up to the moment when they are instantiated by a user request. On each
node, we utilize a data processing engine (that can be a relational database
or a big data platform) for doing the heavy lifting of computing their content.
Additionally, an in-memory database acts as a cache, providing fast access to
their derived data. This cache is used to serve multiple user requests on a node,
orders of magnitude faster than what a blockchain could provide. In addition
to engineering a solution that scales blockchains for processing Data Warehouse

Smart-Views: Decentralized OLAP View Management using Blockchains 111

workloads, we also propose and compare algorithms that can manage effectively
the smart views content cached in the in-memory database.

2 Modular Node Architecture

In this section we describe the main components that are instantiated in each
local node (Figure 1).

Distributed Ledger: This component utilizes blockchain technology to im-
plement a permanent, indelible, and unalterable history of raw observations
(facts). The blockchain ledger substitutes for what is commonly referred to as
the “fact table” in a traditional Data Warehouse [9]. The inherent immutability
provided by the blockchain provides data integrity, as each fact is timestamped
and embedded into a “block” that is cryptographically secured by a hashing
scheme that links to and incorporates the hash of the previous block. The ledger
is also used to (i) store smart contracts that define and implement analytical
operations over the raw data, in the form of smart views and (ii) encode proofs
(in the form of hash codes) for materialized results of the aforementioned smart
views that are maintained in the View Cache (discussed next). In our proto-
type implementation, we used the Ethereum Blockchain' for implementing the
blockchain and the smart code functionality.

View Cache: This is a main-memory data store that preserves (locally at
a node) recently computed results of smart views, triggered by the execution of
the corresponding smart contract in the Application Server. The purpose of this
component is to leverage the speed of modern in-memory databases in order to
avoid costly look-ups on the blockchain during both query answering and when
performing view updates. The integrity of the cache is ensured by the immutable
smart contract code in the blockchain. Furthermore, the data are cryptographi-
cally signed and the resulting hash codes are stored in the distributed ledger. In
our implementation this component is implemented as a Redis? data store.

SQL Backend: This can be any database backend offering SQL capabili-
ties. Its purpose is to offload OLAP calculations defined in the smart contracts
from the application server to a more suitable engine. This database is used
for computing and updating the content of the smart views by consolidating
data records extracted from the blockchain and, whenever available, from the
View Cache. The results of these computations are passed back to the smart
contract caller (via the Application Server) and, subsequently, are cryptograph-
ically signed and stored in the local View Cache for further reference. Thus, the
backend is primarily used as an SQL computation engine. In our implementa-
tion, we use a MySQL relational database, however this component can be easily
swapped, depending on the application needs, with more resource-friendly solu-
tions (such as SQLite), or, for more demanding implementations with big data
frameworks such as Apache Hive and Apache Spark that provide SQL APIs.

! https://ethereum.org/
% https:/ /redis.io/

v Kostas Messanakis, Petros Demetrakopoulos, and Yannis Kotidis

Application Server: This component orchestrates the whole process of
defining, storing, reusing and updating the smart views. Smart views are defined
globally via smart contracts and contain aggregate calculations over the raw
data (facts) stored in the blockchain. Moreover, at the time of their definition,
smart views are linked together by means of metadata descriptors forming a
data cube lattice structure that captures interdependencies among them [7, 11].
These interdependencies are utilized by the Application Server in order to seek an
efficient plan for computing the results of a smart view, when the corresponding
smart contract API is called. This mechanism that will be described in more
details in the forthcoming sections, utilizes cached results either from the same
view or, from more detailed smart views that have been recently computed and
their results are available in the local View Cache. The goal of these optimizations
is to reduce the number of records that the application server retrieves from the
blockchain, as this operation is typically orders of magnitude slower that reading
from the in-memory View Cache. The corresponding calculations are passed to
the SQL backend so that the smart contracts running in the application server
do not need to perform data-heavy computations.

Our architecture is compromised of individual subsystems that are coordi-
nated in their operation by the application server. Each of these subsystems
operates according to its own specifications, as we do not assume some applica-
tion specific or cross-layer functionality. As an example, the ledger can be easily
replaced with alternative blockchains [2], other than Ethereum, with distributed
blockchain-enabled databases such as [3,8,15,16], or even with an outsourced
verifiable database [5,20]. The same is also true for the View Cache and the
SQL Backend subsystems. This is because, only the schema of smart views is
stored in the ledger and, thus, is shared across all participating nodes. We are
not trying to synchronize their instances across the network as this would incur
extreme overhead because of their size. Smart views contain projections of an
OLAP Data Cube [6] and their combined size can be orders of magnitude larger
than the raw data stored in the ledger [17]. Thus, each node maintains its local,
independent copy in the cache for serving the requests it receives and there is
no communication overhead among the nodes for managing their caches.

3 Smart Views

3.1 Preliminaries and Definitions

Smart views provide access to consolidated information from the detailed data
(fact records) stored in the blockchain. At a semantic level, smart views are in-
spired from aggregate OLAP views [10]. However, their implementation differs
in that their content is computed both from data available in the blockchain and
the View Cache. OLAP promotes interactive access to vast collections of records
available in a Data Warehouse via the use of a carefully selected set of ”dimen-
sions” of interest. These dimensions are derived from attributes available in the
raw records and enable analysts to render their data in exponentially different
points of view. For example, in a sales data warehouse, customer, product and

Smart-Views: Decentralized OLAP View Management using Blockchains \%

store-location may be the dimensions of interest. Additionally, one or sometimes
multiple hierarchies may be defined over each dimension. For example products
may be further categorized by their type, function, or maker.

The Data Cube was introduced in [6] in order to formalize all possible ag-
gregations in a Data Warehouse. An aggregate OLAP view contains a subset of
the records in the Data Cube depending on the selected dimensions and addi-
tional filters present in the view. Given a selection of aggregate views that are
of interest to the analyst, the Data Cube framework permits us to denote their
interdependencies, in a manner that guarantees correct summarisability during
roll-up or drill-down operations [11].

In our exposition, in order to simplify the notation used, we will assume
that the data warehouse implements a set of dimensions D = {d;,ds,...d,}
and a single measure m. The extension to examples with hierarchies and mul-
tiple measures is straightforward and omitted from our running examples. The
equivalent of a Data Warehouse centralized fact table is, in our decentralized
framework, the blockchain, where all detailed records are stored. Thus, we can
think of the blockchain data as the equivalent of a fact table with schema
DW(dy,ds,...d,, m). This basic schema can be easily extended to cover more
complex application scenarios including fact constellations [9].

A smart view V is defined by projecting the fact table records on a subset
Dy C D of the available dimensions and computing a function £y, on their mea-
sure values. For this discussion, we assume that Fy, is one of the commonly used
distributive or algebraic functions such as MAX (),MIN(), SUM(), COUNT(),
AVG(), STDEV (), topi(), etc. Optionally, the view may contain a set of con-
junctive predicates Py on the dimensions in set D — Dy that can be used, for
instance, in order to perform a slice operation [6]. We restrict our exposition
to conjunctions of simple atomic predicates of the form ’d; OP scalar’, where
d; € D, OP € {<,>,=,<,>,#} and scalarédomain(d;). Thus, a smart view
can be described as a triplet V = {Dy, Fy, Py }.

As an example, assume a Data Warehouse schema with three dimensions
D = {customer, product, store} and one measure amount. A smart view may
compute the total sales per customer and product for a specific store S. Then,
Dy = {customer, product}, Fy=SUM() and Py={'store = S’}. An equivalent
SQL query for the same view can be stated as "SELECT customer, product,
SUM(amount) FROM DW WHERE store=S GROUP BY customer, product”,
assuming relation DW stores the fact table records. We refer to this expression
as the view query of smart view V.

Given two views V; = {Dy,, Fy,, Py, } and V; = {Dv,, Fy,, Py, }, we say that
view V; is more detailed than view V; (V; <X V;) iff the following conditions hold

1. All dimensions in view V; are also present in view V;, i.e. va C Dy,.
2. F; and Fj are the same aggregation function.

3. Database query Q;(Py,) is contained in query Q;(Py;), for every state of the
Data Warehouse fact table DW. Query Q;(Py,) is expressed in relational
algebra as: mp,, (op,, (DW)), and similarly for Q;(Pv;).

VI Kostas Messanakis, Petros Demetrakopoulos, and Yannis Kotidis

As an example, for Vi = ({customer}, SUM(),{'store = S'}) and V5 =
({customer, product}, SUM(), D), it is easy to verify that V; < V,. This rela-
tionship essentially permits us to compute the result of smart view V; from a
previously computed result of V; [11]. This relationship will be key to our smart
view materialization and update policies.

3.2 On-demand Materialization of Smart Views

In our framework, a smart view is defined via a smart contract stored in the
blockchain. The smart view remains virtual, up to the time when its content is
first requested by a user, by calling a materialize() API function published by
the contract. For each smart view V', we maintain a list of more detailed views V;
(V <V;) also defined for the same data warehouse schema via the smart contract.
By definition, this list also contains view V. A view V; from this list, whose result
cached(V;) is stored in the View Cache can be used for computing the instance
of V, by rewriting the view query to use this result, instead of the fact table
DW . Nevertheless, we should also provision for fact table records that have
been appended to the blockchain after the computation of the cached instance
of V;. Let t; be the timestamp of the computation of the cached result of V; (this
timestamp is stored by the smart contract in the blockchain). Let deltas(t;)
denote the records that have appeared in the blockchain after timestamp ¢;. In
order to be able to retrieve these records efficiently, each fact table record also
maintains a timestamp of its creation.

After retrieving the cached, stale copy of view V; and the deltas, the contents
of the view are computed by executing the view query over the union of the data
in cached(V;) and deltas(t;). This functionality is provided by the SQL backend.
The result of the smart view is returned to the caller of function materialize()
and is also sent to the View Cache.

3.3 Cost-based Smart View Materialization

The process described in the previous subsection may be used to implement
function materialize() considering any available smart view V;: V' < V;. De-
pending on the definition of view V;, and the number of results in set deltas(V;)
the execution times may differ substantially. Let size.qcheq(i) denote the size
of the cached result of view V; in the View Cache and sizegeiras(i) the size of
the deltas, respectively. Running the smart view query over the union of the
cached results and the deltas by the SQL backend involves the execution of
an aggregate SQL statement over these data. Such aggregations are typically
computed either by hashing or sorting [14]. Both require linear I/Os over their
input (e.g. two-phase sort). Thus, we can estimate the cost at the backend as
Weql X (sizecached(i) + sizedelms(i)), for some weight parameter w,q; that reflects
the speed of the SQL backend.

Retrieval of records in deltas(t;) is performed by the application server that
is also running a blockchain node. We estimate this cost as wiedger X $i2€4eitas(i)-

Smart-Views: Decentralized OLAP View Management using Blockchains VII

In total, the cost of using smart view V; in order to materialize view V is
estimated as

COSt(‘/iv V) = Wsql X (Sizecached(i) + Sizedeltus(i)) + Wiedger X 57:Zedeltas(i)

or, equivalently

cost(Vi, V) = wsg x [(1 + wl%dg;r) X 8iZ€deltas(i) T 512€cqached(i)]
sq
Constants wgqi, Wiedger denote the cost of post-aggregating cached results with
delta records and retrieving data from the blockchain, respectively. In most im-
plementations we expect Wiedger >> Wsqi. Thus, for the purpose of ranking
the views V; and selecting the top candidate for materializing view V' the cost
formula can be simplified as

cost(Vi, V) = a X Sizegeitqs(i) + S12€cached(i) (1)

for some constant >> 1. The formula suggests that stale views in the cache are
less likely to be used for future materializations of smart views. This is because,
as new fact table records are stored in the ledger, the cost of reusing a stale view
increases, as $i2€geitqs(i) 1S increased.

3.4 View Cache Maintenance

As new smart views are materialized and stored in the cache, we need to provision
for the case that the View Cache exceeds the available storage space. Recall that
in our implementation the cache is maintained by an in-memory database. A
straightforward approach that uses standard policies such as LRU or LFU for
evicting results in case of a full cache would be very inefficient because the
smart views have different sizes and recomputation costs. We also need to take
into consideration the interdependencies between them. These interdependencies
are captured by Equation 1 that depicts the cost of materializing view V from
another view V; in the cache.

Let V denote the set of views that have been requested earlier by the appli-
cation. This set is easy to maintain in the Application Server. We will use this
set in order to estimate the cost of evicting a cached result. For each view V € V
we also maintain the frequency fy of calling function materialize(V'). For the
calculations that follow, we first remove from set)V those smart views that can
not be computed using results in the View Cache. These views do not affect the
calculations we perform for updating the cache.

Cost-based View Eviction Given that multiple views from the cache may
be used for materializing the result of another view V, we need to quantify
the benefits of keeping a result in the View Cache. Let costMat(V) denote
the minimum cost of materializing view V' and VC denote the set of all views
presently stored in the View Cache. Then,

costMat(V,VC) = min[erércl'}r‘}<Vv cost(V;, V), cost BC)]

VIII Kostas Messanakis, Petros Demetrakopoulos, and Yannis Kotidis

where cost BC' is the cost of computing V' directly from the blockchain data. This
cost is the same for all views based on the cost model described in the previous
subsection, as it implies fetching all records from the ledger. The displacement
cost dispCost(V;) of cached result V; is defined as the cumulative increase in the
materialization cost of all smart views V <XV}, in case view Vj is evicted. Thus,

dispCost(V;) = Z fv X (costMat(V,VC) — costMat(V,VC — V))
VeViV=V;

For all views, we amortize their displacement costs by dividing this number
with their size. In this way, we take into consideration the potentially large
differences between the space that these results occupy in the cache. Thus, we
estimate the amortized (per-space) displacement cost of result V; as

_ dispCost(V;)

amortizedDispCost(V;) -
S12€cached(i)

Our proposed cost-based view eviction policy (COST) lists the views in the
cache in increasing order of their amortized displacement cost. The eviction
process then discards views from the cache by scanning this list until enough
space is generated for storing the new result.

Eviction based on Cube Distance In order to capture the temporal locality
exhibited between successive calls to materialize views in the Data Cube lattice,
we propose an alternative eviction policy (DIST) based on the data cube distance
metric. The lattice contains an edge (V;, V;) iff V; < V; and |D(V;)| = |D(V;)|+1.
The Data Cube distance (distCube) in the lattice between two views is de-
fined as the length of the shortest path between the views. As an example,
distCube(Vproduct,store, Voroduct,customer)=2. For a newly computed view V', we
order the views in the cache in decreasing order based on their distance from V'
and discard views until enough space is generated as a result of these evictions.

4 Experiments

In this section we provide experimental results from a proof-of-concept imple-
mentation of our proposed system. Ganache was used for setting up a personal
Ethereum Blockchain and implementing the Smart Views API using Solidity
contracts. We used MySQL as a relational backend and Redis for implementing
and View Cache. The application server functionality was written in Node JS.
Within the code we made several optimizations so that heavy data processing
operations are delegated to the SQL database for efficiency and scalability. All
experiments were contacted in a Intel Core i7-5500U 2.4Ghz laptop with 8GB
memory and a 640GB HDD.

We used synthetically generated data using d=5 dimensions with cardinality
1,000 integer values each. Each fact table record contained 5 keys (one for each
dimension) and one randomly generated real value for the measure. In order

Smart-Views: Decentralized OLAP View Management using Blockchains X

3000

2500

2000

[Operation [Time (sec)] Ez““”

Blockchain Reads 86178.5 g |
View Cache Reads 8.1 B __M/

SQL Backend Time 354.2 O W0 200 W0 W0 W0 ww w00
Application Server Time 972.5

Table 1. Query Execution Times for Fig. 2. Blockchain Read Times

Wiz (1000 queries)

to evaluate the performance of the View Cache we generated three workloads
consisting of 1,000 queries (views) each. In the first, denoted as Wo4,, We started
from a random view in the lattice and each subsequent query was a roll-up
or drill-down from the previous one. The second workload W,.qndom contained
randomly selected views from the lattice (with no temporal locality). For the
last workload, Wy, a subsequent query was a roll-up or a drill-down from the
previous query or was a new randomly generated one. In order to test the View
Cache we implemented three eviction policies. The first two, cost based (denoted
as COST in the graphs), and distance-based (denoted as DIST in the graphs)
are discussed in subsection 3.4. We also implemented Least Recently Modified
(LRM), a simple policy that selects as a victim the cached view that that has
not been modified for the longest time in the cache. The intuition is that older
results in the cache require fetching more deltas from the blockchain (Equation
1), when used for materializing a new smart view request.

The intuition behind the architecture discussed in Section 2 is that we can
overcome the shortcomings of the blockchain technology by using (i) an SQL
processing engine to off-load heavy computations and (ii) an in-memory database
to provide fast access to frequently computed aggregations. In the fist experiment
we put our intuition into test using a small dataset consisting of 10,000 facts and
progressively add transactions in batches of 100 records for 1000 epochs. Thus,
the final blockchain contained 110,000 records. In each epoch we execute one
query from workload W,,;,. The size of the cache for this experiment was set to
40% of the cumulative size of all views in W,,,;,.. The eviction policy was COST.

In Table 1 we report statistics of the time spent for processing the query
workload. Retrieving data from the ledger amounts for most (98.5%) of the time
spent for serving the user with the results of the requested view. In comparison,
the overhead of the application server that includes communication with the dif-
ferent components, execution of smart contracts, collection and formatting of the
results into a json file served to the caller of function materialize() amounts for
1.1% of the time. SQL processing, which includes sending data and queries to the
MySQL server and retrieving the results, amounts for 0.4% of the time spent on
average for each query. Finally, the time-wait for fetching results from the View
Cache is practically negligible, as a result of using an in-memory database for

X Kostas Messanakis, Petros Demetrakopoulos, and Yannis Kotidis

= CosT
DIsT
- RM - LA

-
13
,
%4
g3
&
22
[I | I , W a
10 15 20 5 30 k3 40 10 15 20 Fs3 30 k3 40 10 15 20 pa3 30 3’ 40
Cache size (%) Cache size (%) Cache size (%)

(&) Wolap (b) W'random (C) szz

= cosT
DIST

= cosT
DisT
- RN

#BC Records Read
sk mowoom uw @
#BC Records Read
F T

Fig. 3. Number of records fetched from the blockchain.

this task. Figure 2 plots the blockchain read times (in secs) for different queries
in Wi,i, over the number of records read (deltas(i)). Clearly, there is a strong
correlation between the blockchain read times and the size of the delta records
fetched for each query, as was discussed in subsection 3.3. These results verify
our assumption that, by far, the largest overhead in materializing smart views
is attributed to fetching records from the blockchain. Based on these results, in
what follows we move on to larger datasets and concentrate on the performance
of the different cache eviction policies in reducing the number of records read
from the blockchain.

For the next experiment we used a larger dataset that initially contained
100,000 records. We run the experiment for 1,000 epochs. During each epoch we
inserted 100 new records and executed a query from the respective workload.
Thus, at end of the run, the blockchain stored 200,000 fact table records. In
Figure 3 we plot the number of blockchain records read for the three different
eviction policies and the three workloads used, as we varied the View Cache
size from 10% up to 40% of each workload result size in increments of 5%. As
expected, the W4y workload resulted is much fewer reads from the blockchain,
as successive queries target nearby views in the Data Cube lattice due to the
roll-up and drill-down operations. On the other hand, W.4n40m contains queries
with no temporal locality, resulting in fewer hits in the cache. Nevertheless, the
benefits of the cache are significant, even for this random workload. Compared to
not using the cache, even the smaller cache size (10%) with the COST policy re-
duces the total number of records fetched from the blockchain from 150,050,000
down to 55,631,700, i.e. a reduction of 63%. The largest cache tested (40%)
reduced this number by almost 97%. The results for workload W,,;, are in be-
tween, as expected. Comparing the three eviction policies, we observe that the
COST policy works better in constrained settings (smaller cache sizes), as it
avoids flashing from the cache, smart view results that help materialize many
other views in the workload. The DIST policy is often better for intermediate
cache sizes, while LRM performs worst, as it does not take into consideration
the interdependencies between the cached view results.

Smart-Views: Decentralized OLAP View Management using Blockchains XI
5 Related Work

Existing studies [3] show that blockchain systems are not well suited for large
scale data processing workloads. This has been our motivation for decoupling
in the proposed architecture the definition and properties of the smart views
(stored in the ledger) from their processing and maintenance that are handled
by appropriate data management modules. Our architecture differs from existing
solutions that either add a database layer with querying capabilities on top of
a blockchain [1,4] or, extend databases and, in some cases NoSQL, systems
with blockchain support [8,15,16]. A nice overview of these systems is provided
in [13]. There are also proposals that aim to build verifiable database schemas [5,
20] that can be shared among mutually untrusted parties. These proposals retain
the familiar SQL interface for accessing shared data, but this is achieved over a
verification layer that utilizes blockchain primitives.

QLDB [1] from amazon is a ledger database with SQL capabilities. Since
its primary purpose is to store a transaction log, it can be exploited in our
architecture for storing the data warehouse fact records in an append only man-
ner. However, unlike the Ethereum blockchain we utilize in our implementation,
OLDB lacks decentralization support. BlockchainDB [4] utilizes blockchains as
the native storage layer and implements an additional database layer with par-
titioning and sharding capabilities on top of it via the use of shared tables.
Shared tables are database storage abstractions that differ from smart views is
that they provide the means to define a database schema over the blockchain and
are suitable of OLTP-type of transactions, while smart views provide aggregated
information over the data warehouse records. Still, our work can benefit from
the work of [4] by using shared tables for defining and manipulating the raw fact
table records via a database-like interface.

Our work on smart views is motivated by previous work on view selection
in Data Warehouses [10-12, 18] that demonstrated how materialized views can
significantly enhance the performance of OLAP workloads. However, while past
work has considered using materialized views within the context of a standalone
system, in the proposed architecture, these views are defined and deployed in a
decentralized manner via smart contracts. Unlike traditional Data Warehouses,
the raw data required for deploying the smart views is stored in the ledger, while
processing and management of their derived aggregate results happens off-the-
chain. As a result, in this work we proposed a new cost model, tailored for our
modular architecture and implemented new cache policies based on this model.

6 Conclusions

In this work we proposed a modular architecture and algorithms for defining,
(re)using and maintaining materialized aggregate smart views in a decentralized
manner using existing blockchain technology. Our experimental results, based
on a proof-of-concept prototype we built have demonstrated the effectiveness
of smart views in reducing significantly the overhead of fetching stored data

XII Kostas Messanakis, Petros Demetrakopoulos, and Yannis Kotidis

from the distributed ledger. For the future, we plan (i) on benchmarking our
architecture using a larger scale deployment and, (ii) considering extensions of
smart views to support more complex OLAP analytics [19].

References

1. AWS. Amazon Quantum Ledger Database (QLDB).

2. M. Dabbagh, K. R. Choo, A. Beheshti, M. Tahir, and N. S. Safa. A survey of
empirical performance evaluation of permissioned blockchain platforms: Challenges
and opportunities. Comput. Secur., 100:102078, 2021.

3. T.T. A. Dinh, J. Wang, G. Chen, R. Liu, B. C. Ooi, and K. Tan. BLOCKBENCH:
A framework for analyzing private blockchains. In SIGMOD. ACM, 2017.

4. M. El-Hindi, C. Binnig, A. Arasu, D. Kossmann, and R. Ramamurthy.
Blockchaindb - A shared database on blockchains. VLDB, 2019.

5. J. Gehrke, L. Allen, P. Antonopoulos, A. Arasu, J. Hammer, J. Hunter, R. Kaushik,
D. Kossmann, R. Ramamurthy, S. T. V. Setty, J. Szymaszek, A. van Renen, J. Lee,
and R. Venkatesan. Veritas: Shared verifiable databases and tables in the cloud.
In CIDR 2019, Asilomar, CA, USA, January 2019.

6. J. Gray, A. Bosworth, A. Layman, and H. Pirahesh. Data Cube: A Relational Ag-
gregation Operator Generalizing Group-By, Cross-Tab, and Sub-Total. In ICDE,
pages 152-159, 1996.

7. V. Harinarayan, A. Rajaraman, and J. D. Ullman. Implementing Data Cubes
Efficiently. In SIGMOD Conference, pages 205-216, 1996.

8. S. Helmer, M. Roggia, N. E. Ioini, and C. Pahl. Ethernitydb - integrating database
functionality into a blockchain. In New Trends in Databases and Information
Systems - ADBIS Short Papers and Workshops, 2018.

9. W. H. Inmon. Building the Data Warehouse. QED Information Sciences, Inc.,
Wellesley, MA, USA, 1992.

10. Y. Kotidis and N. Roussopoulos. An alternative storage organization for ROLAP
aggregate views based on cubetrees. In SIGMOD, 1998.

11. Y. Kotidis and N. Roussopoulos. DynaMat: A Dynamic View Management System
for Data Warehouses. In SIGMOD, pages 371-382, 1999.

12. Y. Kotidis and N. Roussopoulos. A case for dynamic view management. ACM
Trans. Database Syst., 26(4):388-423, 2001.

13. M. Raikwar, D. Gligoroski, and G. Velinov. Trends in development of databases
and blockchain. In SDS, pages 177-182. IEEE, 2020.

14. R. Ramakrishnan and J. Gehrke. Database management systems (3. ed.). McGraw-
Hill, 2003.

15. M. S. Sahoo and P. K. Baruah. Hbasechaindb - A scalable blockchain framework
on hadoop ecosystem. In Supercomputing Frontiers, Singapore, March 26-29, 2018.

16. F. M. Schuhknecht, A. Sharma, J. Dittrich, and D. Agrawal. chainifydb: How to
get rid of your blockchain and use your DBMS instead. In CIDR, 2021.

17. Y. Sismanis and N. Roussopoulos. The complexity of fully materialized coalesced
cubes. In VLDB, pages 540-551. Morgan Kaufmann, 2004.

18. D. Theodoratos, S. Ligoudistianos, and T. K. Sellis. View selection for designing
the global data warehouse. Data Knowl. Eng., 39(3):219-240, 2001.

19. P. Vassiliadis, P. Marcel, and S. Rizzi. Beyond roll-up’s and drill-down’s: An
intentional analytics model to reinvent OLAP. Inf. Syst., 85:68-91, 2019.

20. M. Zhang, Z. Xie, C. Yue, and Z. Zhong. Spitz: A verifiable database system. Proc.
VLDB Endow., 13(12):3449-3460, 2020.

