RFID Data Aggregation*

Dritan Bleco and Yannis Kotidis

Department of Informatics
Athens University of Economics and Business
76 Patission Street, Athens, Greece
{dritan,kotidis}@aueb.gr

Abstract. Radio frequency identification (RFID) technology is gain-
ing popularity for many IT related applications. Nevertheless, an im-
mediate adoption of RFID solutions by the existing IT infrastructure
is a formidable task because of the volume of data that can be col-
lected in a large-scale deployment of RFIDs. In this paper we present
algorithms for temporal and spatial aggregation of RFID data streams,
as a means to reduce their volume in an application controllable man-
ner. We propose algorithms of increased complexity that can aggregate
the temporal records indicating the presence of an RFID tag using an
application-defined storage upper bound. We further present complemen-
tary techniques that exploit the spatial correlations among RFID tags.
Our methods detect multiple tags that are moved as a group and replace
them with a surrogate group id, in order to further reduce the size of
the representation. We provide an experimental study using real RFID
traces and demonstrate the effectiveness of our methods.

1 Introduction

Radio frequency identification (RFID) technology has gained significant atten-
tion in the past few years. In a nutshell, RFIDs allow us to sense and identify
objects. RFIDs are by no means a new technology. Its origins can be traced back
to World War 11, where it was deployed in order to distinguish between friendly
and enemy war planes [1]. Since then, RFIDs have seamlessly infiltrated our
daily activities. In many cities around the word, RFIDs are used for toll collec-
tion, in roads, subways and public buses. Airport baggage handling and patient
monitoring are more examples denoting the widespread adoption of RFIDs.
With their prices already in the range of a few cents, RFID tags are becoming
a viable alternative to bar codes for retail industries. Large department stores like
the Metro Group and Wal-Mart are pioneers in deploying RFID tags in their sup-
ply chain [2]. Individual products, pallets and containers are increasingly tagged
with RFIDs. At the same time, RFID readers, are placed at warehouse entrances,
rooms and distribution hubs. These readers compute and communicate the list
of RFID tags sensed in their vicinity to a central station for further processing

* This work has been supported by the Basic Research Funding Program, Athens
University of Economics and Business.

and archiving. The ability to automatically identify objects, without contact,
through their RFID tags, allows for a much more efficient tracking in the supply
chain, thus eliminating the need for human intervention (which for instance is
typically required in the case of bar codes). This removal of latency between the
appearance of an object at a certain location and its identification allows us to
consider new large- or global- scale monitoring infrastructures, enabling a much
more efficient planning and management of resources.

Nevertheless, an immediate adoption of RFID technology by existing IT in-
frastructure, consisting of systems such as enterprise resource planning, manu-
facturing execution, or supply chain management, is a formidable task. As an
example, the typical architecture of a centralized data warehouse, used by deci-
sion support applications, assumes a periodic refresh schedule [3] that contradicts
the need for currency by a supply chain management solution: when a product
arrives at a distribution hub, it needs to be processed as quickly as possible.
Moreover, existing systems have not been designed to cope with the voluminous
data feeds that can be easily generated through a wide-use of RFID technology.
A pallet of a few hundred products tagged with RFIDs generates hundreds of
readings every time it is located within the sensing radius of a reader. A con-
tainer with several hundred pallets throws tens of thousands of such readings.
Moreover, these readings are continuous: the RFID reader will continuously re-
port all tags that it senses at every time epoch. Obviously, some form of data
reduction is required in order to manage these excessive volumes of data.

Fortunately, the type of data feeds generated by RFIDs are embedded with
lots of redundancy. As an example, successive observations of the same tag by
a reader can be easily encoded using a time interval indicating the starting
and ending time of the observation. Unfortunately, this straightforward data
representation is prone to data collection errors. Existing RFID deployments,
routinely drop a significant amount of the tag-readings; often as much as 30%
of the observations are lost [4]. This makes the previous solution practically
ineffectual as it can not limit in a application-controllable manner the number
of records required in order to represent an existing RFID data stream. In this
paper, we investigate data reduction methods that can reduce the size of the
RFID data streams into a manageable representation that can then be fed into
existing data processing and archiving infrastructures such as a data warehouse.
Key to our framework is the decision to move much of the processing near the
locations where RFID streams are produced. This reduces network congestion
and allows for large scale deployment of the monitoring infrastructure.

Our methods exploit the inherent temporal redundancy of RFID data streams.
While an RFID tag remains at a certain location, its presence is recorded multi-
ple times by the readers nearby. Based on this observation we propose algorithms
of increased complexity that can aggregate the records indicating the presence
of this tag using an application-defined storage upper bound. During this pro-
cess some information might be lost resulting in false positive or false negative
cases of identification. Our techniques minimize the inaccuracy of the reduced
representation for a target space constraint. In addition to temporal, RFID data

streams exhibit spatial correlations as well. Packaged products within a pallet
are read all together when near an RFID reader. This observation can be ex-
ploited by introducing a data representation that groups multiple RFID readings
within the same record. While this observation has already been discussed in the
literature [5], to our knowledge we are the first to propose a systematic method
that can automatically identify and use such spatial correlations.

The contributions of our work are

— We propose a distributed framework for managing voluminous streams of
RFID data in an supply-chain management system. Our methods push the
logic required for reducing the size of the streams at the so-called Edgeware,
near the RFID readers, in an attempt to reduce network congestion.

— We present a lossy aggregation scheme that exploits the temporal correla-
tions in RFID data streams. For a given space constraint, our techniques
compute the optimal temporal representation of the RFID data stream that
reduces the expected error of the approximate representation, compared to
the full, unaggregated data stream. We also consider alternative greedy algo-
rithms that produce a near-optimal representation, at a fraction of the time
required by the optimal algorithm.

— We present complementary techniques that further exploit the spatial corre-
lations among RFID tags. Our methods detect multiple tags that are moved
as a group and replace them with a surrogate group id, in order to further
reduce the size of the representation.

— We provide an experimental evaluation of our techniques and algorithms
using real RFID data traces. Our experiments demonstrate the utility and
effectiveness of our proposed algorithms, in reducing the volume of the RFID
data, by exploiting correlations both at the time and space.

The rest of the paper is organized as follows. In Section 2 we discuss related
work. In Section 3 we introduce the system architecture we consider in this work,
present the details of an RFID data stream and state our optimization problem.
In Section 4 we present our algorithms for temporal aggregation of the RFID
streams, while in Section 5 we describe our spatial aggregation process. Our
experimental evaluation is presented in Section 6. Finally, Section 7 contains
concluding remarks.

2 Related Work

There have been several recent proposals discussing RFID technology. These
works analyze RFID systems from different points of view, including hard-
ware [6], software [2], data processing [7-9] and privacy [10]. The work in [11]
presents a RFID system deployed inside a building where the tagged partici-
pants walking through it produce a large amount of RFID data. The authors
discuss the system, its performance, showcase analysis of higher-level informa-
tion inferred from raw RFID data and comment on additional challenges, such
as privacy.

The main characteristics of an RFID system, such as their temporal and
dynamic behavior, the inaccuracy of data, the need for integration with existing
IT systems, the streaming nature of the raw data and their large volumes are
discussed in [12]. The paper presents a temporal data model, DRER, which
exploits the specific fundamentals of an RFID application and of the primitive
RFID data. This work shows the basic features that should be included in a RFID
Middleware system, such as including effective query support and automatic data
acquisition and transformation. The work in [9] introduces a deferred RFID data
cleaning framework of using rules executed at query time.

The work in [13] demonstrates the significance of compression in RFID sys-
tems and discusses a graph-based model that captures possible object locations
and their containment relationships. However, in order to provide accurate re-
sults, the graph models require high detection rates at the RFID readers. In [4],
the authors highlight the inherent unreliability of RFID data streams. Software
running at the Edgeware, typically corrects for dropped readings using a tem-
poral smoothing filter based on a pre-defined sliding window over the reader’s
data stream that interpolates for lost readings from each tag within the time
window. The work in [4] uses a statistical sampling-based approach that results
in an adaptive smoothing filter, which determines the window-size automatically
based on observed readings. This work nicely complements our techniques, as it
may be used at a pre-processing step in order to clean the incoming RFID data
stream, before applying our aggregation algorithms.

Our temporal aggregation process works by first transforming the individ-
ual readings produced by the readers into temporal segments and then reduces
the number of segments while trying to minimize the error of the approximate
temporal representation. At an abstract level, this process resembles the con-
struction of a one-dimensional histogram on the frequency distribution of a data
attribute, used in traditional database management systems [14-16]. Application
of existing data compression algorithms such as wavelets [17,18], their proba-
bilistic counterparts [19], or even algorithms developed for sensory data [20,21]
on RFID data streams is an interesting research topic.

A model for data warehousing RFID data has been proposed in [5]. This
work studies the movement of products from suppliers to points of sale taking
advantage of bulky object movements, of data generalization and the merge or
collapse of path segment that RFID objects follow. The authors introduce a
basic RFID data compression scheme, based on the observation that tags move
together in any stage of the movement path. However, there is no provision for
missing or erroneous data tuples. The work in [22] introduced the Flowcube, a
data cube computed for a large collection of paths. The Flowcube model ana-
lyzes item flows in an RFID system. The Flowcube differs from the traditional
data cube [23] in that it does not compute aggregated measurements but, in-
stead, movement trends of each specific item. The work in [24] introduced the
notion of a service provisioning data warehouse, which organizes records pro-
duced by a service delivery process (such as a delivery network). The paper
introduces pair-wise aggregate queries as a means to analyze massive datasets.

Level-3 o
eve IT Applications

Il

Level-2 Middleware (remote)

ﬁAggregated RFID Data Stream

Edgeware (on-site)

Level-1 filtering, cleaning, aggregation
ﬁ Raw RFID Data Stream
[RFID Reader | [RFID Reader | [RFID Reader |
Level-0

Fig. 1. System Overview

Such a query consists of a path expression over the delivery graph and a user
defined aggregate function that consolidates the recorded data. Our RFID data
aggregation framework can be used for the instrumentation of a large-scale ETL
process while building such a data warehouse using data emanating from RFID
readers along the delivery network.

3 Preliminaries

In this section we first present an overview of the architecture we assume for
managing RFID data. We then discuss in more detail the contents of an RFID
data stream and a simple relational mapping that exploits temporal correlations
in the stream.

3.1 System Architecture

In our work we assume, but are not limited to, a layered system architecture,
like the one depicted in Figure 1. The lower level of the architecture contains the
hardware specific to the RFID infrastructure, which includes, at the minimum,
the RFID tags and the readers. Raw RFID data streams generated by the Level-
0 devices are transferred to the Edgeware (Level-1), which can be implemented,
for instance, using an on-site data server. Depending on the hardware used, the
Edgeware is often capable to perform data filtering, cleaning and manipulation.
The Edgeware may also instantiate a local database server for buffering and
managing the reported data. Finally, the processed RFID data stream is sent to

the Middleware (Level-2), whose purpose is to bridge the RFID infrastructure
with the upper-level IT applications (Level-3) that rely on its data. The upper
level of the architecture in Figure 1 may be further broken down in additional
layers (for instance a Service layer and an Applications layer), however in the
Figure we omit such details as they are not related to the problems we address
with our techniques.

We note that unlike the Edgeware, which is typically implemented on-site,
the Middleware may be instantiated at a central data processing center. This
means that network data movement is required in order to transmit the pro-
cessed RFID data streams to the Middleware and the applications on top. Fur-
thermore, the Middleware may be responsible for multiple sites equipped with
RFID infrastructure. Thus, in order to reduce the network congestion and not
to overburden the servers implementing the Middleware, it is desirable that the
processed RFID data streams are aggregated as much as possible.

3.2 RFID Data Description

In its simplest form a RFID tag stores a unique identifier called the Electronic
Product Code (EPC). When the tag comes in proximity with a reader, the EPC
code is read, using an RFID Air Interface protocol, which regulates communi-
cation between the reader and the tag. A reader is also equipped with a unique
identifier, which in case of immobile readers relates to its location. Finally, an
internal clock lets the reader mark the time of the observation. Thus, each time
a tag is sensed a triplet of the form

(EPCZ, lOCi, tl)

is generated, where EPC; denotes the code of the tag, loc; the location (or the id)
of the reader and ¢; the current time. It is typical in this setup to assume that the
time is descritized: a reader reports tags at times ¢;, t2,... where the difference
t;+1 —t; is called the epoch duration. The reader buffers multiple observations in
its local memory and subsequently transmits them to the Edgeware for further
processing. This data stream of triplets representing base observations is called
the RFID data stream.

The data server at the Edgeware receives the RFID data streams by all read-
ers that it manages in a continuous manner. These readings are filtered based
on requirements prescribed by the applications of the upper level. For example
EPC codes of locally tagged equipment that are of no interest to the supply-chain
monitoring software may be dropped from the stream. A simple form of data
reduction is possible at this level my merging occurrences of the same EPC in
successive epochs. Let (EPCy,loc;, t;), (EPCy,loci, tit1),. .., (EPCyi,loc, tirm)
be part of the stream transmitted by the reader at location loc;. A straight-
forward data size reduction is possible if we replace these records with a single
quadruple of the form

(EPC;,loci, tstart, tend)

with ts¢qr¢=t; and tepg=t;n indicating the interval containing all observations
of tag EPC;. This is a basic temporal aggregation service that helps reduce the
volume of data in the network, when these readings are sent to the Middleware.
Unfortunately, RFID readers routinely drop a significant amount of tag-readings,
especially when a large number of tags are concurrently present within the sens-
ing radius of the reader. Moreover, as items are moving withing the facility, the
same RFID tag may appear in multiple time intervals in the stream produced by
a reader. Both observations complicate management of the RFID data stream
and limit the effectiveness of the basic temporal aggregation service.

In our work, we extend the format of the basic tuple generated at the Edge-
ware to also include a fifth attribute p indicating the percentage of epochs that
a tag was observed withing the time interval [tstqre, tend]- A value of p equal to
1 indicates that the tag was spotted during all epochs between 44+ and tepq-
This case is equivalent to the format used in basic temporal aggregation. How-
ever, a value of p lesser than 1 indicates that only p X (teng — tstart + 1) epochs
within the time interval contain observations of the tag. This extension, thus,
allows us to represent multiple occurrences of the same tag using fewer intervals.
Of course using a single interval to describe all observations of the tag results
in large inaccuracy, especially when there are many “holes”, i.e. time intervals
when the tag was never spotted, in the stream. Ideally, given an upper bound
on the number of records that can be produced to describe the tag, one would
like to find an allocation of intervals that best describe the presence of the tag
at the reader.

3.3 Problem Formulation

We can now state our optimization problem formally:

Problem Statement: Given a data stream containing observations of EPC; at
epochst;, <t;, <...<t;, findthebest B-tuple representation (EPC;,loc;,ts, ,te,,P1)s
- (EPCy,loci, tsy, tes, pB) Where

— [ts,,te,] and [ts,, L,] are non-overlapping intervals (1 < k #1 < B),
- X:{til, . ..tin}, Y:{t S [tilatin”t € X}, X C Uk[tskytek]

I XN[tsy ste

T Tt ey 1

and the cumulative error of the representation
Z erry(t) + Z erry(t)
tex tey
is minimized. Where
_ J1—=p; ,3j such that t € [t,,,.,]
erry(t) = { 1 , otherwise

and,
_ J pj ,3jsuch that t € [, t.,]
erry(t) = {0 ,otherwise

In this formulation X contains the set of epochs when the tag was spotted
by the reader and Y the set of epochs (between its first and last observation)
when the tag was not reported. If we use an interval [t4,1.] the value of p is
determined by the fraction of epochs in X that belong in [ts, t.] over the size of
the interval. Then the error in estimating the presence of the tag at an epoch
t within the interval is (1-p), in case the tag was spotted, and, p in case the
tag was not spotted by the reader, respectively. In the formulation of the error
function err, () denotes the false negative error rate when a tag is spotted but we
report a value of p less than 1. Similarly, err,() denotes the false positive error
rate when the tag was not spotted by the reader but the epoch in question is
inside the interval we report. Thus, our formulation takes into account both false
positive and false negative reports of a tag in the computed representation. Given
an initial RFID data stream we would like to compute the best representation,
using only B tuples, that minimizes the aforementioned error. Obviously, the
error is zero when we use as many intervals as the number of epochs in set X.
Depending on the distribution of epochs within X, we may be able to derive a
much smaller representation with small cumulative error.

In what follows we will discuss algorithms of increased complexity for solving
this problem. We first present two observations that help limit the search space
in finding the optimal set of tuples.

Lemma 1. If tuple (EPCy,loc;,ts, , te, , i) belongs in the optimal B-tuple rep-
resentation then i, ,t., € X.

Lemma 2. If tuple (EPCy,loc;,ts, , te, ,pr) belongs in the optimal B-tuple rep-
resentation then ts, — 1, te, + 1 € X.

Lemma 1 states that we should only consider intervals where the starting and
ending points both belong to set X. It is easy to see that if one or both end-points
do not satisfy this condition, we can always compute a better representation
by increasing ts, (resp. decreasing t.,) to the nearest epoch when the tag was
spotted, as this always reduces the error. Lemma 2 states that when consecutive
observations of a tag exist, it is always desirable to package them within the
same interval.

4 Temporal RFID Data Aggregation

Recall that given a series of observations of EPC; at a location, we would like
to compute a B-tuple representation of the form (EPC; loc;,ts, te,,D1)s - - -
(EPC;,loci,tsy tey, pB). Due to Lemmas 1 and 2, the computation can be per-
formed on the data stream produced after we apply the basic temporal aggrega-
tion service. Thus, if we ignore the EPC; and loc; values that are constant in this
discussion, we are given a set of non-overlapping intervals [ts,, L], - - -, [ts, Le,]
and would like to replace them with B << n intervals [t] ,t], 1 <k < B such
that each input time interval is contained within exactly one of the output inter-
vals. Given the definition of the error we presented in the previous section, we

can derive an analytical formula for computing the error associated with a can-
didate interval T'=[t, ,t.] as follows. Let X (T") denote the number of epochs

Sk? ek
that the tag was reported within 7". Similarly, let Y (7") denote the number of
epochs in 7", during which the tag was not reported by the reader. Then, the

error induced by T” is (pzﬁ%)

error(T") = (L-p) x X(T") +px Y(T') _, ~ X(I') x Y(T")

X(T) + Y (T") o +vaye W

4.1 Sub-optimal Algorithms

A straightforward way to obtain a B-tuple representation from the initial n
intervals if to first order them by their starting times t., and then group them in
B batches containing [5] input intervals each, except possibly the last. For each
batch we generate one interval 7' with starting point the starting time of the
first input interval in the batch and ending point the ending of the last interval
in the batch. The complexity of this simple algorithm is O(n) (linear), assuming
that the input n intervals are already ordered by their timestamps. This is a
valid assumption, since the basic temporal aggregation process that generates
the input intervals operates by first ordering the incoming RFID data stream
based on the timestamps of the observations.

The Linear algorithm merges consecutive input intervals, in an error-oblivious
manner. A better approximation can be obtained as follows. Given n input
intervals, we can consider merging each of the n-1 consecutive pairs in the input.
Each candidate pair results in a new interval T’ for which we can compute the
error using equation 1. A greedy strategy can then be applied that selects the
best such interval T' and replaces the corresponding two input intervals with
T'. This reduces the number of input intervals by one, to n-1. The same process
is then repeated until we are left with B intervals. We call this algorithm the
Greedy algorithm. The complexity of the Greedy algorithm is O((n — B) x n).

4.2 An Optimal Dynamic Programming Algorithm

We now describe a algorithm based on dynamic programing that computes the
best B intervals (equivalently best B-tuple representation) that minimize the
error of the approximation. Recall that our input consists of n time-intervals
that we would like to organize into B non-overlapping intervals, each containing
one or more of the original ones. In what follows we would refer to the output
intervals that the algorithm considers as buckets in order to distinguish them
from the input ones. Based on Equation 1, we observe that the error produced by
incorporating one or more input intervals within a bucket is independent of the
assignments that we have made for other buckets. This observations allows us to
state the computation problem using a dynamic programming formulation where
the optimal result of a (sub)problem can be obtained by dividing it into two
more subproblems and combining the optimal solutions to those subproblems.

In particular, let E(i, k) denote the cumulative error of the representation that
considers the best way to generate up to k buckets out of the first i input
intervals. Obviously E(i, k)=0, for i < k. We can now compute E(i, k) using the
following recursion.

B(i. k) = min(E(j.k = 1) + err(j + 1,1)) 2
err(j+1,i) in this formula denotes the error of using a single bucket for merging
all input intervals from j + 1 up to 4. This error is computed by equation 1 by
setting T'=[t,,,,, tc;]. Informally, the dynamic programming setup calculates the
best way to generate k buckets for the first 4 intervals by considering the best
way to compute k-1 buckets for up to the j-th interval and using a single bucket
for intervals 7 + 1,5 + 2,...,¢. The error of the optimal assignment is calculated
by E(n,B) and the optimal bucket configuration arises easily by backtracking
the selections made at each step. The running time complexity of the algorithm
is O(n? x B).

5 Spatial RFID Data Aggregation

Items tagged with RFIDs are typically moved in groups. For example, packaged
products within a pallet are read all together when near an RFID reader. This
observation can be exploited by introducing a data representation that groups
multiple RFID readings within the same temporal record. Given the RFID data
stream produced after we apply the temporal aggregation described in the previ-
ous Section, we now seek to exploit spatial correlations in its records. In particu-
lar, we order the incoming tuples based on their ¢, ,t., timestamps. Tuples with
the same starting and ending timestamps can be encoded using the single com-
mon interval by creating a EPC group-id. This is a system generated unique code
that we will using in order to refer to all EPC; codes that have been identified
during the same time interval. These group-ids are kept in a separate relational
table at the Edgeware. This way, they may get possibly reused in order to refer
to this subset of codes, when they participate at a larger group in other parts of
the data stream.

As an example, consider the records of Table 1 produced after we apply
the temporal aggregation process. We can observe that EPC codes 11 and 12
are observed simultaneously at location L1 between T1 and T5. Thus, we can
generate a group-id G1 to refer to both products. When these products are later
spotted at location L2 along with product 14, a new group G2 is generated,
which contains both G1 and I4. Table 2 depicts the final set of produced tuples.
Table 3 describes the assignment of product codes to group. We note that groups
may include other groups (as is the case of G2 and G1). This information needs
also be transmitted along with the spatially aggregated tuples in order to decode
the groups at the Middleware.

An additional point that we need to clarify when we aggregate multiple
records in a group is how to generate a new p-value for the composite record.

IEPC[loc[ts [te [p ‘
I1 L1|T1 |T5 |78
12 L1|T1 |T5 |69
13 L1|T2 |T5 |90
I1 L2|T12|T22|67
12 L2|T12|T22|62
14 L2|T12|T22|66

Table 1. Input RFID Data Stream

lEPC‘loc‘ts ‘te ‘p‘

G1 [L1|TL [T5 |69 |Group-id|[EPC list]

3 [L1|T2 |T5 |90 Gl TRD

G2 |L2|T12|T22(62 G2 G1,14
Table 2. Reduced RFID Data Stream Table 3. Map Table

Recall that the p-values in the temporally aggregated RFID data stream indicate
the percentage of epochs that the tag was spotted during the interval indicated
in the record. When we aggregate several records we have different options in
order to produce a new p-value for the group.

— If we seek to reduce the false negative rate of the representation, the p-value
of the group should be the minimum of the p-values of all tuples composing
the group.

— If we seek to reduce the false positive rate of the representation, we should
keep the maximum value of p among the group.

— If we seek to reduce both the false negative and the false positive rates, then
we can keep the average value.

In our running example, we used the minimum value, indicating that the
application is more concerned about false negative identifications of a tag.

The basic spatial aggregation scheme can be extended in two ways. First,
when we compose multiple records, we can set an upper bound on the false posi-
tive/negative error rate that we introduce. This may lead to fewer opportunities
for spatial aggregation but with reduced error. Another possible extension is to
allow an item to partially participate in a group. For example item 13 in Table 1
is spotted with items I1 and I2 in all but the first epoch (T1) at location L1. We
could, thus, consider including all three items in a single group for this location.

6 Experiments

In this Section we provide an evaluation of our temporal and spatial aggrega-
tion schemes. All algorithms were implemented using Visual Studio 2005. The

1000 . : : :
E "NumberOfintervals"

w
®© .
S 100 :
[}
1S
ks
o}
Qo
E 10} -
2 E]
1 1 1 1 [

0 5000 10000 15000 20000 25000
(epc,loc) combination

Fig. 2. Number of intervals for each (epc,loc) combination after application of the basic
temporal aggregation

reported times are on a Intel Core Duo CPU running at 1.83GHz with 1GB of
memory. We used as input dataset, the publicly available trace of RFID data
obtained during the 2008 Hope Conference in New York, sampled at 30sec inter-
vals. The trace contains 1.9M records of the form (EPC;, loc;,t;). At a first step,
we applied the basic temporal aggregation service that identifies continuous tag
observations in order to create tuples of the form (EPC;, loc;,ts,t.). This pro-
cess reduced the number of tuples to 423K. The aggregated dataset contained
22,245 unique pairs of (EPC},loc;) values identified at different time intervals.

In Figure 2 we plot the distribution of the number of intervals generated
for every pair in the dataset. The higher this number, the more opportunities
we have to further reduce the size of the data representation for the particular
pair, using our lossy temporal aggregation scheme. We note that, in this dataset,
about 10% of the observations are reported in a single interval, which can not
be further reduced at the time domain. For the remaining combinations though,
we can trade accuracy for compactness in their temporal representation.

In Figure 3 we plot the execution times of the three proposed algorithms:
Linear, Greedy and OptimalDP using as input the (tag,loc) combination with
the greatest number of intervals (569) from the previous step. We executed the
algorithms varying the number of output intervals B requested. Each output
interval corresponds to one tuple in the processed RFID data stream. As ex-
pected the execution time of Linear is the same independent of the value of B.
Greedy works bottom up in constructing the requested number of intervals and
its execution time decreases with B. The OptimalDP runs faster when a larger

1e+07

2000

"OptimalDp" *OptimalDP"
"Greedy" ------- 1800 ["Greedy" ------- 4
1e+06 "Linear" -~ "Linear" -------

1600 - —

100000 ’//f/ 3 1400 N\, 4
10000 |] 1200 1= T b

1000 - e 4
1000 F 4 h

Time (msecs)
Cumulative Error

800 | e 1

Py S— S a] 600 [R

10 F 4 .

200]

1 I I I I I 0 I I I I I S
0 100 200 300 400 500 600 0 100 200 300 400 500 600

Number of Intervals in Output (B) Number of Intervals in Output (B)

Fig. 3. Execution times Fig. 4. Error of each algorithm

degree of aggregation (smaller value of B is requested). We note that Greedy is
up to three orders of magnitude faster than OptimalDP for the same value of B.

In Figure 4 we compare the cumulative error (see Equation 1) computed
for the output intervals of each algorithm, when we vary B. As expected, the
error of all representations drops when more intervals are used to describe the
presence of the tag. We also note, that Greedy computes in most of the cases a
representation that is practically the same as optimal. However, this is achieved
at a fraction of the time that the dynamic programming algorithm requires, as
is evident by Figure 3. We observed this near-optimal behavior of Greedy in all
other combinations of tags and locations for this dataset.

We also tested the effect of grouping RFID tags that are moved together
over periods of time. We started with the stream resulting from the basic tem-
poral aggregation, which consisted of 423K tuples. Our analysis identified 77K
groups of items appearing in identical time intervals. The overall space reduction,
which also accounts for the space required for the surrogate group-id descrip-
tions, was 39%. The running time of the spatial aggregation process was 3.3secs.
We note that this process did not introduce any error as the original stream
can be reverse-engineered by replacing the surrogate group-ids with the corre-
sponding EPCs. The spatial aggregation process can be combined with any of
the three temporal aggregation algorithms. In Figure 5 we present the results
of an experiment were we tried different methods for reducing the size of the
RFID data stream. In the graph we depict (1) the size of the initial raw RFID
stream, (2) the size of the stream after the basic temporal aggregation, (3) the
resulting stream of the basic temporal aggregation followed by the spatial ag-
gregation process, (4) the resulting stream after applying the Greedy algorithm
in the initial dataset in order to reduce the number of tuples for each (epc,loc)
combination by a factor of 3:1 (for those combinations with at least three inter-
vals) and, (5) the resulting stream when Greedy is combined with the spatial
aggregation process. The first 3 schemes are lossless, while in (4) and (5) some
error is introduced because of the Greedy algorithm. Of course, one may further
reduce the stream size by choosing even fewer output intervals while executing
the Greedy algorithm.

25 4

20

Stream Size (MB)
=
«
|

-
o
L

Initial Stream Basic Temp Aggr Basic Temp Aggr+Spatial Aggr Greedy Greedy+Spatial Aggr

Fig. 5. Combination of Temporal and Spatial Aggregation

7 Conclusions

The increased adaptation of RFID technology promises to deliver massive datasets.
These datasets need to be tamed by reducing their volumes in an application-
controllable manner. In this paper we presented several algorithms for temporal
and spatial aggregation of RFID data. Our algorithm can reduce the volume
of their input data by exploiting correlations at the time and space (location)
dimension that characterize the identification of an RFID tag. We provided an
experimental study using real RFID traces and demonstrated the effectiveness
of our methods.

References

1. Stockman, H.: Communication by Means of Reflected Power. In: IRE. (Oct. 1948)

2. Chawathe, S., Krishnamurthy, V., Ramachandran, S., Sarma, S.: Managing RFID
Data. In: Proceedings of VLDB. (2004) 1189-1195

3. Kotidis, Y., Roussopoulos, N.: A Case for Dynamic View Management. ACM
Transactions on Database Systems (TODS) 26(4) (2001) 388-423

4. Jeffery, S., Garofalakis, M., Franklin, M.: Adaptive Cleaning for RFID Data
Streams. In: Proceedings of VLDB. (2006)

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

Gonzalez, H., Han, J., Li, X., Klabjan, D.: Warehousing and Analyzing Massive
RFID Data Sets. In: Proceedings of the 22nd International Conference on Data
Engineering (ICDE). (2006) 83

Finkenzeller, K., Waddington, R., eds.: RFID Handbook: Fundamentals and Ap-
plications in Contactless Smart Cards and Identification. Wiley, John & Sons,
Incorporated (2003)

Krompass, S., Aulbach, S., Kemper, A.: Data Staging for OLAP- and OLTP-
Applications on RFID Data. In: BTW. (2007) 542-561

Park, J., Hong, B., Ban, C.: A Continuous Query Index for Processing Queries on
RFID Data Stream. In: 13th IEEE International Conference on Embedded and
Real-Time Computing Systems and Applications (RTCSA). (2007) 138-145

Rao, J., Doraiswamy, S., Thakkar, H., Colby, L.S.: A Deferred Cleansing Method
for RFID Data Analytics. In: Proceedings of the 32nd international conference on
Very large data bases (VLDB). (2006) 175-186

Sarma, S., Weis, S.A., Engels, D.W.: RFID Systems and Security and Privacy
Implications. In: CHES ’02. (2003) 454-469

Welbourne, E., Koscher, K., Soroush, E., Balazinska, M., Borriello, G.: Longitu-
dinal Study of a Building-wide RFID Ecosystem. In: Mobisys. (2009)

Wang, F., Liu, P.: Temporal Management of RFID Data. In: Proceedings of the
31st International Conference on Very Large Data Bases (VLDB). (2005) 1128-
1139

Cocci, R., Tran, T., Diao, Y., Shenoy, P.J.: Efficient Data Interpretation and Com-
pression over RFID Streams. In: Proceedings of the 24th International Conference
on Data Engineering (ICDE). (2008) 1445-1447

Ioannidis, Y.E.: The History of Histograms (abridged). In: VLDB. (2003) 19-30
Gilbert, A.C., Kotidis, Y., Muthukrishnan, S., Strauss, M.: Optimal and Approxi-
mate Computation of Summary Statistics for Range Aggregates. In: PODS. (2001)
Jagadish, H.V., Koudas, N., Muthukrishnan, S., Poosala, V., Sevcik, K.C., Suel,
T.: Optimal Histograms with Quality Guarantees. In: Proceedings of 24rd Inter-
national Conference on Very Large Data Bases (VLDB). (1998) 275-286

Gilbert, A.C., Kotidis, Y., Muthukrishnan, S., Strauss, M.: One-Pass Wavelet
Decompositions of Data Streams. IEEE Trans. Knowl. Data Eng. 15(3) (2003)
541-554

Sacharidis, D., Deligiannakis, A., Sellis, T.K.: Hierarchically Compressed Wavelet
Synopses. VLDB J. 18(1) (2009) 203-231

Cormode, G., Garofalakis, M.N.: Histograms and Wavelets on Probabilistic Data.
In: ICDE. (2009) 293-304

Deligiannakis, A., Kotidis, Y., Roussopoulos, N.: Dissemination of Compressed
Historical Information in Sensor Networks. VLDB J. 16(4) (2007) 439-461
Guitton, A., Trigoni, N., Helmer, S.: Fault-Tolerant Compression Algorithms for
Delay-Sensitive Sensor Networks with Unreliable Links. In: DCOSS. (2008) 190—
203

Gonzalez, H., Han, J., Li, X.: Flowcube: Constructuing RFID FlowCubes for
Multi-Dimensional Analysis of Commodity Flows. In: roceedings of the 32nd In-
ternational Conference on Very Large Data Bases (VLDB). (2006) 834-845

Gray, J., Bosworth, A., Layman, A., Pirahesh, H.: Data Cube: A Relational Ag-
gregation Operator Generalizing Group-By, Cross-Tab, and Sub-Total. In: ICDE.
(1996) 152-159

Kotidis, Y.: Extending the Data Warehouse for Service Provisioning Data. Data
Knowledge. Engineering 59(3) (2006) 700-724

