
XML Publishing: Look at Siblings too!

Sihem Amer-Yahia
AT&T Labs–Research

sihem@research.att.com

Yannis Kotidis
AT&T Labs–Research

kotidis@research.att.com

Divesh Srivastava
AT&T Labs–Research

divesh@research.att.com

Abstract

In order to publish a nested XML document from flat re-
lational data, multiple SQL queries are often needed. The
efficiency of publishing relies on how fast these queries can
be evaluated and their results shipped to the client. We illus-
trate novel optimization techniques that enable computation
sharing between queries that construct sibling elements in
the XML tree. Such queries typically share large common
join expressions that can be exploited through appropri-
ate rewritings. These rewritings are fundamental to XML
publishing and provide considerable performance benefits
without having to modify the relational engine.

1 Introduction

Publishing relational data in XML is a growing need
for business applications where information is exchanged
in XML while most of the legacy data is stored in relational
back-ends. In addition, many users are now shredding XML
documents in different ways to store them in relational sys-
tems. Once stored, retrieving this XML data is similar to
publishing relational data.

Both applications need to construct an XML document
“on the fly” and, thus, need do so as efficiently as possi-
ble. Due to the flat nature of relational data, as opposed to
the nested structure of XML, generating an XML document
from a relational store often involves evaluating multiple
SQL queries (possibly as many as the number of elements
in the DTD) containing join expressions and merging an-
swers to queries corresponding to parent and children ele-
ments in order to reconstitute the XML tree structure. In
addition, data has to be tagged to produce the final docu-
ment. The cost of merging and tagging is negligible if the
data is sorted in document order [13]. However, due to the
presence of common join expressions in the SQL queries
used to build an XML document, query performance can
vary considerably between plans, necessitating a cost-based
optimization of the plan for building an XML document.

In [6], the authors explore rewriting-based optimizations

between the query for a parent element and the queries for
its children elements, for this purpose. Intuitively, compu-
tation sharing that is possible between queries for sibling
elements is guaranteed to be at least as much as, and often
significantly more than, the computation sharing possible
between a parent and its children elements. For this reason,
in this paper, we argue that sharing computation between
queries that construct sibling XML elements is the key to ef-
ficiently constructing XML documents from relational data,
regardless of whether we are publishing legacy data or re-
trieving XML data that has been shredded into relations. We
then exploit this observation to illustrate novel optimization
techniques that enable computation sharing between queries
for sibling elements in XML publishing.

The rest of this technical note is organized as follows. In
Section 2, we illustrate using an example the technical chal-
lenges posed by the optimization of queries for constructing
sibling elements in an XML document. We present related
work in Section 3, and then summarize in Section 4.

2 Motivation: Publishing Legacy Data

Applications such as publishing legacy data in XML [4,
6, 12, 16, 17] and reconstructing XML documents that have
been stored in relations [1, 3, 5, 7, 8, 10, 11] have gained
a lot of interest recently. In both of these applications,
XML queries are translated into SQL queries containing
key/foreign key joins in order to construct XML documents.
This process introduces common subexpressions between
the SQL queries used to build a document. Here, we dis-
cuss optimization of such common subexpressions in the
publishing application.

2.1 Legacy Data

We consider a simplified version of the relational schema
of the TPC-H benchmark [15]. This schema describes parts
ordered by customers and provided by suppliers.

CUSTOMER[C CUSTKEY,C NAME,C ACCTBAL,C NATIONKEY]
NATION[N NATIONKEY,N NAME,N REGIONKEY]
REGION[R REGIONKEY,R NAME,R COMMENT]

1

RegComRegName

*

Customer

Name

*

*

TPCH

AcctBal SuppNamePartName

Figure 1. Publishing Legacy Data: DTD

PART[P PARTKEY,P NAME]
SUPPLIER[S SUPPKEY,S NAME,S NATIONKEY]
ORDERS[O ORDERKEY,O CUSTKEY]
LINEITEM[L ORDERKEY,L PARTKEY,L SUPPKEY]

2.2 Publishing Legacy Data as XML

We want to publish an XML document that conforms
to the DTD (shown as a tree) given in Figure 1; edges la-
beled with a ‘ � ’ are used for repeated sub-elements. In or-
der to construct the XML document, an SQL query is gen-
erated for each element in the DTD, as follows (where

�����
���
	���������������������������� "!�#��%$&'!���(���)����������� *���,+%$&�!

and��-.�/�'�
	��0��,���1��2�3�4������� 5'�,60���
	7����(�8���(����� :9%$;!0�%$��,�,�
):

< 2>=@?>ACBEDCF�G �IH 2 2�3�4������� %J �'�
	&����,����K
< ��L>DCF �/H 2 2�3�4������� �M 2 ����N��,J �'�
	&����,����K
< �CO�O>A�P�LCQR�SH�2 2�3�4������� �M 2 ��2�2���P���T J �'�U	�����,�&��K
< (�F�V���L>DCF5�SH�2 2�3�4������� �M (����N�� J ���;K
< (�F�V�2CBEDW�SH�2 2�3�4������� �M (2���N�N������ J ���XK
<WY L�G�A���L>DCFW�IH�2 2�3�4������� ZM Y ����N�� J �,-7� Y ��(������� R[,#����0K
< 4>=�\�\C��L>DCFW�IH�2 2�3�4������� ZM 4 ����N�� J �,-7��4�3 Y�Y ���� 5	'��[,[�9%$����0K

2.3 Common Expressions in Sibling Queries

Several queries for sibling elements share common ex-
pressions, raising the possibilityof shared (optimized) com-
putation. The simplest example is the case of

< ��L>DCF
and< �CO�O>A�P�LCQ

that are both projections of the same CUSTOMER
table. This is due to the fact that different fields of the
CUSTOMER table generate different sub-elements. These
sibling queries could be merged into a single query:
< 2]�^HU2 2�3�4������� �M 2 ����N���M 2 ��2�2���P���T J �'�U	�����,�&��K

Note that, in this case, the parent query,
< 2>=@?>ACBEDCF�G

, shares
the same common expression as the two sibling queries.

The second example is that of two sibling queries< (�F�V���L>DCF
and

< (�F�V�2CBED
that share a common join expression�_�

. This is due to the fact that nations and regions are nor-
malized into tables and that recovering them requires per-
forming joins with these (intermediate) tables. By merging< (�F�V���L>DCF

and
< (�F�V�2CBED

into a single query, the common ex-
pression is evaluated only once:

< (�F�V���L>DCF�2CB>D �^H 2 2�3�4������� `M (����N���M (2���N�N�������J �_�;K

Note that, in this case, the common expression shared be-
tween the parent query and each of the children queries is a
sub-expression of that shared between the sibling queries.

The last example is the case of two sibling queries< Y L�G�A���L>DCF
and

< 4>=�\�\C��L>DCF
that share a common join expres-

sion �,- . However, due to the fact that a customer can have
multiple parts and multiple suppliers, sharing computation
is less straightforward. Merging

< Y L�G�A���L>DCF
and

< 4>=�\�\C��L>DCF
,

using an (outer)join, could result in replicated data, which
can slow down query processing as well as communication.
There are two ways to avoid replicated data in the result of
the merged query, without repeating computation. First, the
query is rewritten using an outer union, where the common
subexpression is factored out [4]:

< Y L�G�A�4>=�\�\ � J H 2 2�3�4������� �M Y ����N���M ��3�T�T�J �,-1� Y ��(������� [�#�����KCK
a J HU2 2�3�4������� �M ��3�TCT�M 4 ����N�� J �,-b��4�3 Y�Y ���� 5	'��[�[,9%$����0KCK

This is a good option if the relational database optimizer
is able to optimize outer unions with shared expressions.
Second, the relational database engine is forced to compute
and materialize

��-
, and then use it to evaluate each of the

two queries
<WY L�G�A���L>DCF

and
< 4>=�\�\C��L>DCF

. As a final option, the
relational database optimizer could take advantage of the
availability of some indices, and choose different plans to
evaluate the common join expression in the two queries,< Y L�G�A���L>DCF

and
< 4>=�\�\C��L>DCF

, possibly resulting in a cheaper
evaluation than any of the merged query alternatives.

2.4 Merging Parent-Child Queries

Merging of queries for a parent and its children elements
is sometimes beneficial, as with the merging of the par-
ent query

< 2>=@?>ACBEDCF�G
with the children queries

< ��L>DCF
and< �CO�O>A�P�LCQ

, to obtain
< 2

, or the merging of
< 2>=@?>ACBEDCF�G

with< Y L�G�A���L>DCF
or
< 4>=�\�\C��L>DCF

.
Often, though, merging a parent query with a child query

can result in replicated data, as with the (outer)join of
< 2

with
<WY L�G�A���L>DCF

or
< 4>=�\�\C��L>DCF

; each customer tuple (along
with its fields) will be replicated as many times as the num-
ber of parts or suppliers for this customer.

Essentially, when a parent element has both unique and
repeated children elements, parent-child merges result in
conflicting optimizations: the first creates “fat” nodes, the
second works well with “slim” nodes. Sibling merges,
via outer unions, on the other hand, avoids such conflicts.
Hence, depending on the amount of replicated data, it might
be desirable to optimize queries at siblings separately from
their parent query.

2

3 Related Work

The use of an optimization algorithm to find the SQL
queries that offer the best compromise between communi-
cation and processing costs when publishing relational data
in XML has been first explored in the Silkroute system [6].
The authors also provide a language to express XML views
of relational data and a query composition algorithm that
composes an XML query with a view definition to generate
an initial set of SQL queries that are given to the optimizer.

Another related work in the research community is the
one described in [13]. The authors provide an extension
to SQL to express XML views of relations and perform an
experimental study of publishing relational data in XML.
This work has not adopted an optimization approach to this
problem. Rather, it derived a set of heuristics that can be
useful when implementing a system where the choice of
which SQL queries to generate for a given view specifica-
tion is fixed and hard-coded depending on the nature of the
underlying application.

The recent work presented in [2] addresses issues related
to DTD-directed publishing. It introduces a new data struc-
ture called ATG (Attribute Translation Grammar), an exten-
sion of DTDs that associates attributes and semantic rules
with elements. A dynamic programming algorithm has
been designed to generate XML documents using ATGs.

There are three main commercial XML publishing sys-
tems: Microsoft SQL Server 2000 [14], Oracle XML SQL
Utility [16] and IBM DB2 XML Extender [17]. These
systems provide a language interface for expressing XML
views of relations, and rely on the user to specify SQL
queries. Our approach could be used with each of them.

4 Conclusion

We discussed the problem of efficiently publishing re-
lational data in XML and showed that exploring com-
mon computation between sibling queries is fundamental
to this problem. In particular, in the case where an ele-
ment has both unique and repeated children elements, sib-
ling merging combined with common subexpression elim-
ination guarantees computation sharing without replicating
data (which is not the case for parent-child merging), reduc-
ing both processing and communication times.

In the full version of this technical note, we describe
several rewriting-based optimization techniques that exploit
shared computation between queries used to build an XML
document, design an optimization algorithm that applies
our rewritings to find the set of SQL queries that achieves
a good compromise between processing and communica-
tion times, and provide an experimental study that compares
several possible ways of sharing common computation be-
tween sibling queries used to build an XML document.

References

[1] S. Banerjee, V. Krishnamurthy, M. Krishnaprasad,
R. Murthy. Oracle8i - The XML enabled data management
system. ICDE 2000.

[2] M. Benedikt, C. Y. Chan, W. Fan, R. Rastogi, S. Zheng,
A. Zhou. DTD-directed publishing with attribute translation
grammars. VLDB 2002.

[3] P. Bohannon, J. Freire, P. Roy, J. Simeon. From XML
schema to relations: A cost-based approach to XML storage.
ICDE 2002.

[4] M. J. Carey, J. Kiernan, J. Shanmugasundaram, E. J. Shekita,
S. N. Subramanian. XPERANTO: Middleware for publish-
ing object-relational data as XML documents. VLDB 2000.

[5] J. M. Cheng, J. Xu. XML and DB2. ICDE 2000.

[6] M. Fernandez, A. Morishima, D. Suciu. Efficient evaluation
of XML middle-ware queries. SIGMOD 2001.

[7] D. Florescu, D. Kossmann. A performance evaluation of al-
ternative mapping schemes for storing XML in a relational
database. IEEE Data Eng. Bulletin 1999.

[8] C. C. Kanne, G. Moerkotte. Efficient storage of XML data.
ICDE 2000.

[9] P. Roy, S. Seshadri, S. Sudarshan, S. Bhobe. Efficient and ex-
tensible algorithms for multi query optimization. SIGMOD
2000.

[10] M. Rys. Bringing the Internet to your database: Using
SQLServer 2000 and XML to build loosely-coupled systems.
ICDE 2001.

[11] J. Shanmugasundaram, H. Gang, K. Tufte, C. Zhang,
D. J. DeWitt, J. F. Naughton. Relational databases for query-
ing XML documents: Limitations and opportunities. VLDB
1999.

[12] J. Shanmugasundaram, J. Kiernan, E. J. Shekita, C. Fan,
J. Funderburk. Querying XML views of relational data.
VLDB 2001.

[13] J. Shanmugasundaram, E.J. Shekita, R. Barr, M.J. Carey,
B. G. Lindsay, H. Pirahesh, B. Reinwald. Efficiently pub-
lishing relational data as XML documents. VLDB Journal
10(2-3): 133-154 (2001).

[14] Support WebCast: Microsoft SQL Server 2000. New XML
Features. http://support.microsoft.com/servicedesks/ Web-
casts/wc042800/wcblurb042800.asp. April 2000.

[15] Transaction Processing Performance Council. TPC-
H benchmark: Decision support for ad-hoc queries.
http://www.tpc.org/.

[16] B. Wait. Using XML in Oracle Database Appli-
cation. http://technet.oracle.com/tech/xml/info/ ht-
docs/otnwp/about xml.htm. Nov. 1999.

[17] XML Extender Administration and Programming.
IBM DB2 Universal Database XML Extender.
http://www-4.ibm.com/software/data/db2/extender/xmlext/
docs/v71wrk/english/index.htm.

3

