
ARTICLE IN PRESS
0306-4379/$ - se

doi:10.1016/j.is.

$Recommen

Science, McGill

Engineering Bu

H3A 2A7.
�Correspondi

fax: +1973 360

E-mail addre
Information Systems 31 (2006) 770–792

www.elsevier.com/locate/infosys
Processing approximate aggregate queries in wireless
sensor networks$

Antonios Deligiannakisa, Yannis Kotidisb,�, Nick Roussopoulosa

aUniversity of Maryland, USA
bDepartment of Information Systems and Analysis, AT&T Labs-Research, P.O. Box 971, Florham Park, NI 07932-0971, USA

Received 5 February 2004; received in revised form 1 February 2005; accepted 8 February 2005
Abstract

In-network data aggregation has been recently proposed as an effective means to reduce the number of messages

exchanged in wireless sensor networks. Nodes of the network form an aggregation tree, in which parent nodes aggregate

the values received from their children and propagate the result to their own parents. However, this schema provides

little flexibility for the end-user to control the operation of the nodes in a data sensitive manner. For large sensor

networks with severe energy constraints, the reduction (in the number of messages exchanged) obtained through the

aggregation tree might not be sufficient. In this paper, we present new algorithms for obtaining approximate aggregate

statistics from large sensor networks. The user specifies the maximum error that he is willing to tolerate and, in turn, our

algorithms program the nodes in a way that seeks to minimize the number of messages exchanged in the network, while

always guaranteeing that the produced estimate lies within the specified error from the exact answer. A key ingredient to

our framework is the notion of the residual mode of operation that is used to eliminate messages from sibling nodes

when their cumulative change to the computed aggregate is small. We introduce two new algorithms, based on potential

gains, which adaptively redistribute the error thresholds to those nodes that benefit the most and try to minimize the

total number of transmitted messages in the network. Our techniques significantly reduce the number of messages, often

by a factor of 10 for a modest 2% relative error bound, and consistently outperform previous techniques for computing

approximate aggregates, which we have adapted for sensor networks.

r 2005 Elsevier B.V. All rights reserved.

Keywords: Sensor networks; Aggregate queries; Approximation
e front matter r 2005 Elsevier B.V. All rights reserve

2005.02.001

ded by Bettina Kemme, School of Computer

University, 3480 University Street, McConnell

ilding, Room 318, Montreal, Quebec, Canada

ng author. Tel.: +1973 360 8347;

8077.

ss: kotidis@research.att.com (Y. Kotidis).
1. Introduction

Densely distributed sensor networks are used
in a variety of monitoring applications ranging
from measurements of meteorological data (like
temperature, pressure, humidity), noise levels,
d.

www.elsevier.com/locate/infosys

ARTICLE IN PRESS

A. Deligiannakis et al. / Information Systems 31 (2006) 770–792 771
chemicals etc., to complex military vehicle surveil-
lance and tracking applications. Real time (or
near-real time) measurements taken from biologi-
cal and chemical sensor networks are also used in
conjunction with modeling and data mining tools
in large environmental databases for evaluating
environmental conditions and security decision
making [1].

A common characteristic of sensor node appli-
cations revolves around the severe energy and
bandwidth constraints that are met in such
networks. In many applications sensor nodes are
powered by batteries and replacing them is not
only very expensive, but often impossible. For
example, sensor nodes thrown in a disaster area
need to operate unattended within an uncontrol-
lable environment. Thus, energy-aware protocols
involving the operation of the nodes are required
to ensure the longevity of the network [2,3]. The
bandwidth constraints arise from the wireless
nature of the communication among the nodes,
the short ranges of their radio transmitters and the
high density of network nodes in some areas.
Energy and bandwidth consumption in sensor
networks are strongly correlated, since radio
transmission is the most important source of
energy drain on sensor nodes [3,4].

Designing efficient data dissemination protocols
is, thus, essential for the survivability of large scale
sensor networks. Furthermore, the abundance of
data that can be collected in networks consisting of
thousand of nodes might be overwhelming for the
end-user to process. Aggregation is an effective
means to reduce the data measurements into a
small set of comprehensive statistics, like sum,
min, max, average, etc. At the same time,
aggregation, when performed inside the network,
can substantially reduce the amount of transmitted
data [2,5,15,7]. At the core of these techniques lies
the notion of an aggregation tree that provides the
conduit within which detailed measurements taken
from the sensors are aggregated on their route to
the monitoring node. Non-leaf nodes of that tree
aggregate the values of their children before
transmitting the aggregate result to their parents.
In [2], after the aggregation tree has been created,
the nodes carefully schedule the periods when they
transmit and receive data. The idea is for a parent
node to be listening for values from its child
nodes within specific intervals of each epoch (the
user specified period between updates to the
query result), and vice versa. This allows the nodes
to power-down their radios when not necessary
and, thus, reduce energy consumption. At each
epoch, ideally, a parent node coalesces all partial
aggregates from its child nodes and transmits
upwards a single partial aggregate for the whole
subtree.
All the above techniques try to limit the number

of transmitted data while always providing accu-
rate answers to posed queries. However, there are
many instances where the application is willing to
tolerate a specified error in order to reduce the
bandwidth consumption and increase the lifetime
of the network. In [8], Olston et al. study the
problem of error-tolerant applications where the
users register continuous queries along with strict
precision constraints at a central stream processor.
The stream processor then dynamically distributes
the error budget to the remote data sources by
installing filters on them that necessitate the
transmission of a data value from each source
only when the source’s observed value deviates
from its previously transmitted value by more that
a threshold specified by the filter.
As we will demonstrate in this paper, the

algorithms in [8] cannot be directly applied to
monitoring applications over sensor networks.
While the nodes in sensor networks form an
aggregation tree where messages are aggregated
and, therefore, the number of transmitted mes-
sages depends on the tree topology, [8] assumes a
flat setup of the remote data sources, where the
cost of transmitting a message from each source is
independent to what happens at the other data
sources. Moreover, as we will show in this paper,
the algorithms in [8] may exhibit several undesir-
able characteristics for sensor networks, the most
important of which are:
�
 The existence of a few volatile sensor nodes, that
is nodes that exhibit large variance in their
measurements, will make the stream processor
distribute much of its available budget to these
nodes, without any significant benefit and at the
expense of all the other sensor nodes.

ARTICLE IN PRESS

A. Deligiannakis et al. / Information Systems 31 (2006) 770–792772
�
 The error distribution assumes a worst-case
behavior of the sensor nodes. If any node
exceeds its specified threshold, then its
data needs to be propagated to the monitoring
node. However, there might be many cases
when changes from different data sources
effectively cancel out each other. When this
happens frequently, our algorithms should
exploit this fact and, therefore, prevent
unnecessary messages from being propagated
all the way to the root node of the aggregation
tree.

In this paper, we develop new techniques for in-
network data aggregation, when the monitoring
application is willing to tolerate a specified error
threshold. Our techniques operate by considering
the potential benefit of increasing the error
threshold at a sensor node, which is equivalent
to the amount of messages that we expect to save
by installing a larger filter at the node. The result
of using this gain-based approach is a robust
algorithm that is able to quickly identify volatile
data sources and eliminate them from considera-
tion. Moreover, we introduce the residual mode of

operation, during which a parent node may
eliminate messages from its children nodes in the
aggregation tree when the cumulative change
from these sensor nodes is small. Finally, unlike
the algorithms in [8], our algorithms operate with
only local knowledge, where each node simply
considers statistics from its children nodes in the
aggregation tree. This allows for more flexibility
in designing adaptive algorithms and is a more
realistic assumption for sensors nodes with very
limited capabilities [2].

Our contributions are summarized as follows:
(1)
 We present a detailed analysis of the current
protocols for in-network data aggregation in
the case of error-tolerant applications, along
with their shortcomings.
(2)
 We introduce the notion of the residual mode
of operation. In cases when the cumulative
change in the observed quantities of multiple
sensor nodes is small, this operation mode
helps filter out messages close to the sensors
and prevents these messages from being
propagated all the way to the root of the
aggregation tree.
(3)
 We introduce the notion of the potential gain

of a node or an entire subtree and employ it as
an indicator of the benefit of increasing the
error thresholds in some nodes of the subtree.
We then present two adaptive algorithms that
dynamically determine how to rearrange the
error thresholds in the aggregation tree using
simple, local statistics on the potential gains of
the nodes. Unlike previous techniques, where
nodes are treated independently, our algo-
rithms take into account the tree hierarchy and
the resulting interactions among the nodes.
The difference between our two proposed
algorithms is that the first one redistributes
the error budget in a top-down manner,
starting from the Root node of the tree, while
the second one uses a more localized approach,
redistributing the budget among parent–child
nodes at each level of the tree.
(4)
 We present an extensive experimental analysis
of our algorithms. Our experiments demon-
strate that, for the same maximum error
threshold of the application, our techniques
have a profound effect on reducing the number
of messages exchanged in the network and
outperform previous algorithms, which we
have adapted for sensor networks.
The rest of the paper is organized as follows.
Section 2 presents related work. In Section 3 we
provide an introduction to sensor nodes and the
data aggregation process. In Section 4 we describe
the algorithms presented in [8], along with their
shortcomings when applied to sensor networks.
Section 5 presents our extensions and algorithms
for dynamically adjusting the error thresholds of
the sensor nodes. Section 6 contains our experi-
ments, while Section 7 contains concluding re-
marks and discusses future work.
2. Related work

The development of powerful and inexpensive
sensors in recent years has spurred a flurry of
research in the area of sensor networks, with

ARTICLE IN PRESS

A. Deligiannakis et al. / Information Systems 31 (2006) 770–792 773
particular emphasis in the topics of network self-
configuration [9], data discovery [4,10], distributed
data storage [11–13], energy efficient data routing
[14,15] and in-network query processing [2,5,7,16].
A survey of the applications and the challenges
that sensor networks introduce is presented in [4].

For monitoring queries that aggregate the
observed values from a group of sensor nodes,
[5] suggested the construction of a greedy aggrega-
tion tree that seeks to maximize the number of
aggregated messages and minimize the amount of
the transmitted data. To accomplish this, nodes
may delay sending replies to a posed query in
anticipation of replies from other queried nodes. A
similar approach is followed in the TAG [2],
TinyDB [3] and Cougar [7] systems. In [17], a
framework for compensating for packet loss and
node failures during query evaluation is proposed.
In [11], additional issues such as selecting the
optimal aggregation tree given a query workload
and optimizing the scheduling of the transmissions
to minimize collisions are discussed.

The work in [2] also addressed issues such as
query dissemination, sensor synchronization to
reduce the amount of time a sensor is active and,
therefore, increase its expected lifetime, and also
techniques for optimizations based on character-
istics of the used aggregate function. Similar issues
are addressed in [3], but the emphasis is on
reducing the power consumption by determining
appropriate sampling rates for each data source.
The above work complements ours in many cases,
but our optimization methods are driven by the
error bounds of the application at hand.

Our work is also related to the area of
continuous queries over data streams, which has
been broadly studied in recent years [18–20].
Olston et al. in [21–23] investigated the tradeoffs
between precision and performance in cached and
replicated data. More recently, in [8] the issue of
applications that may tolerate a specified error
threshold was discussed and a novel dynamic
algorithm for minimizing the number of trans-
mitted messages was suggested. While our work
shares a similar motivation with the work in [8],
our methods apply over a hierarchical topology,
such as the ones that are typically met in
continuous queries over sensor networks. Simi-
larly, earlier work in distributed constraint check-
ing [24,25] cannot be directly applied in our
setting, because of the different communication
model and the limited resources at the sensors. The
work of [6] provides quality guarantees during in-
network aggregation, like our framework, but this
is achieved through a uniform allocation strategy
and does not make use of the residual mode of
operation that we introduce in this paper. The
evaluation of probabilistic queries over imprecise
data was studied in [26]. Extending this work to
hierarchical topologies, such as the ones studied in
our paper, is an open research topic.
3. In-network data aggregation

Depending on their application, sensor nodes
typically operate under one of two possible modes.
In the batch processing mode sensor nodes collect
data until either the collected data reaches a
specified size, or until a maximum amount of time
since the last transmission has elapsed. The collected
data is then processed locally and periodically
forwarded to a base station for further processing
and analysis. In the data-driven mode, the time of
the data transmission is determined by the values of
the collected data. For example, a node may be
programmed to transmit its measurement when a
collected value deviates by more than 20% from its
previously transmitted value. The applications that
we consider in this paper involve the data-driven
processing mode of sensor nodes. For the batch
processing mode, data reduction techniques such as
the ones presented in [27] may be applied.

3.1. Data aggregation process

We now briefly describe the data aggregation
process in sensor networks when 100% accuracy
(ignoring network delays or lost messages) is
desired in the querying node, and when utilizing
the TAG [2] model to synchronize the transmission
of data values by the sensor nodes.
Consider a node Root, which initiates a con-

tinuous query over the values observed by a set of
data sources, and requests that the results of this
query be reported to it at regular time periods. The

ARTICLE IN PRESS

1

4 5 6 87

2 3

1

4 5 6 87

2 3

1

4 5 6 87

2 3

(a) (b) (c)

Fig. 1. Query dissemination process (steps (a) and (b)) and formed aggregation tree (step (c)).

A. Deligiannakis et al. / Information Systems 31 (2006) 770–792774
time interval between two such consecutive time
periods is referred to as the epoch of the query. The
continuous query is disseminated through the
network in search of the sensor nodes that collect
data relevant to the posed query. While each such
node may have received the announcement of the
query through multiple nodes, it only selects one
of these nodes as its parent node, through which it
will propagate its results towards the Root node.
The flow of the query results forms a tree, rooted
at the Root node, which is commonly known as the
aggregation tree [2,4,5]. The query dissemination
process and a sample aggregation tree are depicted
in Fig. 1. The nodes in the aggregation tree can be
classified as either active or passive. Active nodes
(marked gray in the figure) collect measurements
relevant to the query, while passive nodes (marked
white in the figure) simply facilitate the propaga-
tion of results towards the Root node.

At each epoch, each sensor node Ni calculates
the partial aggregate corresponding to the query
result produced by measurements obtained by
sensor nodes in the subtree of Ni: This calculation
is performed bottom-up, where each node first
waits to receive any updated partial aggregate
values from its children nodes (in the aggregation
tree) and then combines these values with its own
collected measurements (if this is an active node)
to produce the partial aggregate for its subtree.

3.2. Challenges and opportunities during in-network

data aggregation

We now discuss some challenging characteristics
of in-network data aggregation that motivate our
techniques.
3.2.1. Hierarchical structure of nodes

The hierarchical organization of the nodes
results in a single aggregate value transmitted by
each node towards its parent in the aggregation
tree. However, not all kinds of information
relevant to the query execution process can be
aggregated in the same manner. Consider, for
example, a scenario where only a non-predeter-
mined subset of the sensor nodes in the aggrega-
tion tree makes a transmission within each epoch.
This scenario is typical, as we will discuss later in
this paper, in the evaluation of approximate
aggregate continuous queries. If some application
requires that the Root node know exactly which
nodes made a transmission during each epoch,
then each transmitting node needs to piggyback
its identifier (id) to each message that it trans-
mits. Note that, because messages are combined
in the aggregation tree, in this scenario each
message transmitted by a node Ni will contain
the node ids of all the transmitting nodes in the
subtree of Ni: Obviously, this side information can
potentially be excessive; it may not even fit within
the maximum packet size, thus requiring that it be
fragmented and transmitted through multiple
messages.
A similar problem occurs whenever a node

requires individual statistics from the sensors in the
aggregation tree. This information cannot be
aggregated, since each individual node statistic
needs to be accompanied by the node’s identi-
fier. Thus, any technique or algorithm that
requires individual node statistics will result in
the transmission of large amounts of information,
which may outweigh the benefits of in-network
aggregation.

ARTICLE IN PRESS

A. Deligiannakis et al. / Information Systems 31 (2006) 770–792 775
3.2.2. Nodes with different characteristics

In a large sensor network, nodes with widely
different characteristics may exist. The measure-
ments of some nodes may be either significantly
higher or exhibit much larger variance than the
measurements of some other nodes. For example,
in an application where sensors are used to trace
moving objects within their vicinity, some sensor
nodes may detect a large number of moving
objects, while others may detect only few, if any.
Moreover, the number of detected moving objects
over time by each sensor may change either
rapidly, if the speed of the objects is significant,
or very slowly, if the objects are moving slowly.
Throughout this paper, we refer to sensor nodes
that exhibit large variance in their measurements
as volatile nodes. Proper handling of volatile nodes
is crucial, as an ill-designed algorithm may allocate
a lot of resources to them at the expense of other
nodes in the network.

3.2.3. Negative correlations in neighboring areas

During the data aggregation process, each node
calculates the partial aggregate value of its subtree
and forwards this new value to its parent node in
the aggregation tree. However, there might be
cases when changes from nodes belonging to
different subtrees of the aggregation tree either
cancel out each other, or result in a very small
change in the value of the calculated aggregate.
This may happen either because of a random
behavior of the data, or because of some proper-
ties of the measured quantity.

Consider for example the aggregation tree of
Fig. 1(c), and assume that each node observes the
number of items moving within the area that it
monitors. If some objects move from the area of
node 4 to the area of node 5, then the changes that
will be propagated to node 2 will cancel out each
other. In this case, the partial aggregate value
calculated by node 2 does not change and,
therefore, there is no need for node 2 to make a
transmission. Node 1 may then safely assume that
the partial aggregate value of node 2 has not been
modified. Even when the overall change of a
node’s aggregate value is non-zero, but reasonably
small, the filtering of transmissions from this node
may result in a large number of saved messages
with only minimum effect in the reported aggre-
gate result. In an approximate data aggregation
application it is crucial to detect and exploit areas
where such negative correlations occur frequently.
4. Existing techniques and their drawbacks

In this section, we will demonstrate that
straightforward extensions to the algorithm of [8]
for sensor network applications result in several
shortcomings due to the issues discussed in Section
3.2. The original algorithm of [8] was devised for
applications containing a non-hierarchical node
setup, where all the nodes in the aggregation tree
can be assumed to be direct children of the Root

node that initiates the query, and therefore, all the
messages are aggregated only on that node. More-
over, due to the node setup considered in [8], all the
nodes in the aggregation tree collect data relevant
to the query (passive nodes do not exist).
In our discussion hereafter, we will use the term

burden-based adjustment (BBA) to refer to the
adaptation of the algorithm of [8] for approximate
in-network data aggregation, combined with the
model of TAG [2], with the latter being used in
order to coalesce messages within the aggregation
tree.

4.1. Burden-based adjustment of node filters

Consider a node Root, which initiates a con-
tinuous query over the values observed by a set of
data sources. This continuous query aggregates
values observed by the data sources, and produces
a single aggregate result. For each defined query, a
maximum error threshold, or equivalently a
precision constraint E_Global that the application
is willing to tolerate is specified. The algorithm will
install filters at each queried data source, that will
help limit the number of transmitted messages
from the data source. The selection process for
the filters enforces that at any moment after the
installation of the query to the data sources, the
aggregate value reported at node Root will lie
within the specified error threshold from the true
aggregate value (ignoring network delays or lost
messages).

ARTICLE IN PRESS

A. Deligiannakis et al. / Information Systems 31 (2006) 770–792776
Initially, a filter F i is installed in every data
source Si: Each filter F i is an interval of real values
½Li;Hi� of width W i ¼ Hi � Li; such that any
source Si whose current observed value Currenti

lies outside its filter F i will need to transmit its
newly calculated partial aggregate value, while
also taking into account any messages from its
children nodes, towards the Root node and then
re-center its filter around this transmitted value, by
setting Li ¼ Currenti �W i=2 and Hi ¼ Currenti þ

W i=2: If Currenti lies within the interval specified
by the filter F i; then this value does not need to be
transmitted. Note, however, that for any non-leaf
node in the aggregation tree, any messages that it
receives from its children (unless the resulting
aggregate change from these messages is zero)
need to be propagated towards the Root node,
since the node’s filter is applied only to the node’s
observed data value and not on the partial
aggregate of its subtree.1 In this case, the
node may include for free in the newly cal-
culated partial aggregate its current observed value
and recenter its filter around this value. It is
important to emphasize that the initial error
guarantees should not be violated by the filter
initialization. For example, for the SUM aggregate
function the following inequality must be true:P

iW i=2pE_Global:
In order for the algorithm to be able to adapt to

changes in the characteristics of the data sources,
the widths W i of the filters are periodically
adjusted. Every Upd time units, Upd being the
adjustment period, each filter shrinks its width by a
shrink percentage (shrinkFactor). At this point, the
Root node obtains an error budget equal to ð1�
shrinkFactorÞ � E_Global; which it can then dis-
tribute to the data sources. The decision of which
data sources will increase their window W i is
based on the calculation of a Burden Score metric
Bi for each data source, which is defined as Bi ¼

Ci=ðPi �W iÞ: In this formula, Ci is the cost of
sending a value from the data source Si to the
Root and Pi is the estimated streamed update
1In the experiments we also investigate the option of applying

the error filter to the partial aggregate value of the subtree.

However, this modification typically resulted in more trans-

mitted messages than the presented one.
period, defined as the estimated amount of time
between consecutive transmissions for Si over the
last period Upd. For a single query over the data
sources, it is shown in [8] that the goal would be to
try and have all the burden scores be equal. Thus,
the Root node selects the data sources with the
largest deviation from the target burden score
(these are the ones with the largest burden scores
in the case of a single query) and sends them
messages to increase the width of their windows
by a given amount. The process is repeated every
Upd epochs.

4.2. Drawbacks of the BBA algorithm

We now discuss some of the key drawbacks of
the BBA algorithm when applied to sensor net-
work applications. Our discussion will be based on
the data aggregation characteristics discussed in
Section 3.2.

4.2.1. Hierarchical structure of nodes

In order to calculate the burden score of each
sensor Ni; the Root node needs to estimate the
node’s estimated streamed update period Pi; and
the cost Ci of node Ni transmitting values towards
the Root node. In order for the Root to estimate
the Pis, each node either needs to transmit at the
last epoch of the update period the number of total
transmissions that it performed, or piggyback in
each message that it transmits its identifier.
Obviously, this amount of side information needed
is excessive (see Section 3.2.1) and may outweigh
the benefits of approximate data aggregation.
Note that in a non-hierarchical setup of nodes,
this problem would not occur, since the Root node
would be able to identify from any received
packet’s header the sender of the message, and
accurately compute the number of transmissions
by each node.
Calculating the average cost of the transmis-

sions made by a node is more complex. In a non-
hierarchical setup of the nodes, this cost could
depend on parameters like the bandwidth capacity
of the link between each node and the Root and
could be considered to be either fixed throughout
the query execution, or change only occasionally.
In a hierarchical setup, this quantity, if measured

ARTICLE IN PRESS

A. Deligiannakis et al. / Information Systems 31 (2006) 770–792 777
in the number of messages resulting from each
node’s transmission, depends on the topology of
the other transmitting nodes in the aggregation
tree. This point can be more easily understood
with an example. Consider the two scenarios
depicted in Fig. 2. In both scenarios, only two
nodes make a transmission (the transmitted
messages are depicted by bold, thick arrows).
However, the transmitted messages are aggregated
at different nodes of the aggregation tree. In the
first scenario (Fig. 2(a)), nodes 4 and 6 make a
transmission, and nodes 2 and 3 propagate these
messages towards the Root node. In this case, each
transmission from nodes 4 and 6 is responsible for
generating 2 messages. On the other hand, in the
second scenario (Fig. 2(b)), nodes 4 and 5 make a
transmission, and node 2 propagates a single
message to node 1. Therefore, each transmission
is responsible for only 3/2 messages in this case.

To calculate the actual cost Ci (in number of
generated messages) for each node transmission
(or an average cost over multiple transmissions),
the Root node requires knowledge of not only
which nodes made a transmission within each
epoch, but also of the exact topology (parent–child
relationships) of these nodes and, furthermore,
whether these nodes made a transmission because
their monitored value laid outside the node’s filter,
or simply made a transmission to forward changes
in their calculated partial aggregate because of
transmissions by some of their descendants.
However, this is a completely unrealistic scenario,
since too much information would need to be
communicated, namely the exact topology and the
root-cause of each transmission. Therefore, the
2 Generated Messages
Average Transmission Cost =

1

4 5 6 87

2 3

1

4 5 6 87

2 3

3/2 Generated Messages
Average Transmission Cost =

(a) (b)

Fig. 2. Two transmissions scenarios with different costs for

each transmission.
techniques introduced in [8] can be applied in our
case only by using a heuristic function to estimate
Ci: In Section 6 we describe such a heuristic.

4.2.2. Nodes with different characteristics

One of the principle ideas behind the adaptive
algorithms presented in [8] is that an increase in
the width of a filter installed in a node will result in
a decrease at the number of transmitted messages
by that node. While this is an intuitive idea, there
are many cases, even when the underlying dis-
tribution of the observed quantity does not
change, where an increase in the width of the filter
does not have any impact in the number of
transmitted messages. To illustrate this, consider
a node whose values follow a random step pattern,
meaning that the observed value at each epoch
differs by the observed value in the previous epoch
by either þD or �D: In this case, any filter with a
window whose width is less than 2� D will not be
able to reduce the number of transmitted mes-
sages. A similar behavior may be observed in cases
where the measured quantity exhibits a large
variance. In such cases, even a filter with
considerable width may not be able to reduce but
a few, if any, transmissions.
The main reason why this occurs in the

BBA algorithm is because the burden score metric
being used does not give any indication about the
expected benefit that we will achieve by increasing
the width of the installed filter at a node. In this
way, a significant amount of the maximum error
budget that the application is willing to tolerate
may be spent on a few nodes whose measurements
exhibit the aforementioned volatile behavior (note
that due to the large number of their transmissions
these nodes will also exhibit large burden scores),
without any real benefit.

4.2.3. Negative correlations in neighboring areas

According to the algorithms in [8], each time the
value of a measured quantity at a node Ni lies
outside the interval specified by the filter installed
at Ni; then the new calculated partial aggregate
value of the node is transmitted and propagated to
the Root node. In this case, negative correlations,
such as the ones described in Section 3.2.3 are not
exploited and messages cannot be prevented from

ARTICLE IN PRESS

Table 1

Symbols used in our algorithms

Symbol Description

Ni Sensor node i

W i The width of the filter of sensor Ni

Ei ¼W i=2 Maximum permitted error in node Ni

E_Subi Maximum permitted error in entire

subtree of node Ni

E_Global Maximum permitted error of the

application

V_Cur The latest measurement obtained by the

node (if active)

Upd Update period of adjusting error filters

shrinkFactor Shrinking factor of filter widths

T Number of nodes in the aggregation tree

Root The node initiating the continuous query

Gain The estimated gain of allocating

additional error to the node

CumGain The estimated gain of allocating

additional error to the node’s entire

subtree

CumGain_Sub[i] The estimated gain of allocating

additional error to the node’s i-th subtree

1

E_Global = 13.5
E1 = 0

3
E3 = 2.5

E2 = 0

E4 = 1 E5 = 4 E6 = 2 E7 = 1 E8 = 3

654

2

7 8

Fig. 3. Sample aggregation tree.

A. Deligiannakis et al. / Information Systems 31 (2006) 770–792778
reaching the Root node. Even when we modify the
BBA algorithm to take into account negative
correlations (see Section 6), performance is often
worse, because BBA cannot distinguish on the true
cause of a transmission (change on local measure-
ment or change in the subtree).
2The width of the error filter in node 2 may in general be non-

zero in our algorithms.
5. Our algorithms

In this section, we first provide a high-level
description of our framework and then present the
details of our algorithms for dynamically modify-
ing the widths of the filters installed in the sensor
nodes. The notation that we will use in the
description of our algorithms is presented in
Table 1.

5.1. A new framework for approximate in-network

data aggregation

We assume that the aggregation tree (e.g. Fig. 3)
for computing and propagating the aggregate has
already been established. Techniques for discover-
ing and modifying the aggregation tree are
illustrated in [2]. Our algorithms will install a filter
at each node Ni in the aggregation tree, indepen-
dently on whether the node is an active or passive
one. This is a distinct difference from the frame-
work of [8], where filters are assigned only to active
nodes.
In our discussion we focus on queries containing

the SUM aggregate function. The COUNT func-
tion can always be computed exactly as the
number of active nodes in the aggregation tree,
while the AVG function can be computed by the
SUM and COUNT aggregates. As the work in [8]
demonstrated, adaptive filter adjustment algo-
rithms for the MAX and MIN aggregate functions
make sense only when considering a multi-query
optimization scenario.
Fig. 3 shows the maximum error of each filter

for a query calculating the SUM aggregate over
the active nodes of the tree.2 Notice that the sum
of the errors specified is equal to the maximum
error that the application is willing to accept
(E_Global). Moreover, there is no point in placing
an error filter in the Root node, since this is where
the result of the query is being collected. This can
change, when the Root node collects and transmits
the aggregate to a distant base station. The
modifications to all algorithms considered here
are straightforward.
We now describe the protocol of propagating

values in the aggregation tree assuming the TAG
model [2] is used to synchronize the transmissions

ARTICLE IN PRESS

A. Deligiannakis et al. / Information Systems 31 (2006) 770–792 779
between parent and children nodes in the aggrega-
tion tree:
�
 An active leaf node i obtains a new measure-
ment and forwards it to its parent if the new
measurement lies outside the interval ½Li;Hi�

specified by its filter.

�
 A passive (non-leaf) node awaits for messages

from its children. If one or more messages are
received, they are combined and forwarded to
its own parent only if the new partial aggregate
value of the node’s subtree does not lie within
the interval specified by the node’s filter.
Otherwise, the node remains idle.

�
 An active non-leaf node obtains a new measure-

ment and waits for messages from its children
nodes as specified in [2]. The node then
recomputes the partial aggregate on its subtree
(which is the aggregation of its own measure-
ment with the values received by its child-nodes)
and forwards it to its parent only if the new
partial aggregate lies outside the interval speci-
fied by the node’s filter.

Along this process, the value sent from a node to its
parent is either (i) the node’s measurement if the
node is a leaf or (ii) the partial aggregate of all
measurements in the node’s subtree (including itself)
if the node is an intermediate node. In both cases, a
node remains idle during an epoch if the newly
calculated partial aggregate value lies within the
interval ½Li;Hi� specified by the node’s filter. This is
a distinct difference from [8], where the error filters
are applied to the values of the data sources, and not
on the partial aggregates calculated by each node.

5.2. Operation of nodes

The operation of each sensor node is described
in Algorithm 1 (notation from Table 1). The
algorithms consists of four major tasks: initializa-
tion, adjustment of filters, aggregation and trans-

mission of new aggregate. These tasks are discussed
in detail below.

Initialization (Lines 1–3): A filter is initially
installed in each node of the aggregation tree,
except for the Root node (Line 1). The initial width
of each filter is important only for the initial stages
of the network’s operation, as our dynamic
algorithm will later adjust the sizes of the filters
appropriately. In our experiments we initialize the
widths of the error filters similarly to the uniform

allocation method. For example, in the case when
the aggregate function is the function SUM and
there are Nactive active nodes in the aggregation
tree (excluding the Root node) then each active
node is assigned the same fraction
E_Global=Nactive of the error E_Global that the
application is willing to tolerate.
We note that E_i (Line 1) is the maximum

permitted error in node Ni; while E_Subi is the
maximum permitted error in the entire subtree of
node Ni: Thus, for the SUM function, E_Subi is
the sum of E_i and all E_j; where Nj is a
descendant of node Ni in the aggregation tree.

Adjustment of filters (Lines 5–10): This adjust-
ment phase is performed every Upd epochs. The
first step is for all nodes to shrink the widths of
their filters by a shrinking factor shrinkFactor

(0oshrinkFactorp1). After this process, the Root

node has an error budget of size E_Global � ð1�
shrinkFactorÞ; where E_Global is the maximum
error of the application, that it can redistribute
recursively to the nodes of the network (Lines
8–10). This redistribution process is done using a
statistic called the cumulative gain of the node,
which is a single value and is the only statistic
propagated to the parent node at each transmis-
sion. Details of the adjustment process will be
given later in this section.s At each epoch the node
also updates some statistics (Line 21), which will
be later used to adjust the widths of the filters.
Algorithm 1. Operation of nodes

Input: E_Sub {The maximum permitted error for the subtree of this node}

{
E is the total maximum permitted error of the node itself}

{
V_Self is the value of the node’s measured quantity at its last transmission}

ARTICLE IN PRESS

A. Deligiannakis et al. / Information Systems 31 (2006) 770–792780
{
LastReceived[i] is the last received partial aggregate value of the node’s i-th subtree}

1:I
n each node initialize Ei using uniform allocation policy and calculate E_Subi
2:N
ewAggr ¼ 0 {Current partial aggregate}

3:L
TA ¼ 0 {Last transmitted partial aggregate}

{
Every Upd epochs the widths of the filters will shrink.}
4:f
or each epoch ep do
5: i
f ep40 AND ep modulo Upd ¼ 0 then
6:
 E
_Sub ¼ shrinkFactor � E_Sub f0pshrinkFactoro1g

7:
 E
 ¼ shrinkFactor � E
8: i
f received message from father to increase error of subtree by E_Additional then

9:
 E
_Subþ ¼ E_Additional
10:
 D
istribute E_Additional to self and subtrees and clear all gain related statistics

11: i
f node is active then
12:
 G
et current measurement V_Curr
13: W
ait for messages from children nodes.

14: D
ChAggr ¼ 0

15: f
or Each Child i do
16:
 i
f Child i transmitted an aggregate value V i and its cumulative gain CumGaini then
17:
 D
ChAggr + ¼ V i � LastReceived½i� {Needed for non-residual operation}

18:
 L
astReceived½i� ¼ V i
19:
 C
umGain_Sub½i� ¼ CumGaini {Store the cumulative gain of the node’s subtrees}

20: N
ewAggr ¼ Combine(LastReceived, V_Curr)

21: (
Gain, CumGain) ¼ UpdateExpectedGain(NewAggr,
LTA;E;E_Sub;Gain;CumGain_Sub)

22: i
f (nonResidualOperation AND ((DChAggr40) OR jV_Self � V_Currj4E)) OR (ResidualOperation

AND jNewAggr� LTAj4E) then

23:
 V
_Self ¼ V_Curr
24:
 L
TA ¼ NewAggr
25:
 T
ransmit (NewAggr, CumGain) to parent node and re-center the error filter
Aggregation (Lines 11–20): In each epoch, the
node obtains a measurement related to the
observed quantity if it is an active node (Lines
11–12), and then waits for messages from its
children nodes containing updates to their mea-
sured aggregate values (Line 13). We here note
that each node computes a partial aggregate based
on the values reported by its children nodes in the
tree. This is a recursive procedure which ultimately
results in the evaluation of the aggregate query
at the Root node. After waiting for messages from
its children nodes, the current node computes
the new value of the partial aggregate based on
the most current partial aggregate values it has
received from its children (Line 20). Variable
LastReceived [i] stores the last received partial
aggregate value of the root of node’s i subtree
(Line 18).
Aggregation is performed through a call to the

Combine function. The specific implementation
depends on the aggregate function specified by the
query. In Table 2 we provide its implementation
for the most common aggregate functions. In the
case of the AVG aggregate function, we calculate
the sum of the values observed at the active nodes,
and then the Root node will divide this value with
the number of active nodes participating in the
query.

Transmission of new aggregate (Lines 22–25):
After calculating the current partial aggregate, the
node must decide whether it needs to transmit a
measurement to its parent node or not. This

ARTICLE IN PRESS

A. Deligiannakis et al. / Information Systems 31 (2006) 770–792 781
depends on the operation mode being used. In a
non-residual mode, the node would have to
transmit a message either when the value of the
measured quantity at the node itself lies outside its
filter, or when at least one of the subtrees has
transmitted a message and the new changes do not
exactly cancel out each other (DChAggr40). This
happens because in the non-residual mode (e.g. the
original algorithm of [8]) the error filters are
applied to the values measured by each node, and
not to the partial aggregates of the subtree. On the
contrary, in a residual mode of operation, which is
the mode used in our algorithms, the node
transmits a message only when the value of the
new partial aggregate lies outside the node’s filter.
In both modes of operation the algorithm that
distributes the available error enforces that for any
node Ni; its calculated partial aggregate will never
deviate by more than E_Subi from the actual
partial aggregate of its subtree (ignoring propaga-
tion delays and lost messages). When a node
makes a transmission, it caches its current state
that includes its latest measurement V_Curr

(which is copied to variable V_Self).
Table 2

Definition of the Combine function

Aggregate Implementation of Combine function

SUM/AVG V_Currþ
P

i LastReceived½i�

MAX maxfV_Curr;maxifLastReceived½i�gg

MIN minfV_Curr;minifLastReceived½i�gg

Table 3

Node operation in residual mode

Node Ei Epoch 1

V_Curr NewAggr LTA Diff Transm

4 1 20 20 19 1 NO

5 4 50 50 45 5 YES

6 2 10 10 7 3 YES

7 1 25 25 24 1 NO

8 3 12 12 16 �4 YES

2 0 — 69 64 5 YES

(19+50)

3 2.5 19 65 67 �2 NO

(10+24+12+19)

1 0 30 166 160 6 N/A

(69+67+30)
Consider the aggregation tree of Fig. 3. Assume
that the posed query involves the sum of values in
the active nodes of the tree (all nodes except for
node 2), and that the maximum error that the
application is willing to tolerate is 13.5, as shown
in Fig. 3. We will explain in detail the transmission
of messages for the residual mode of operation, for
the sample error filters shown in the figure.
In Table 3 we present an example based on the

aggregation tree of Fig. 3. In this table we show
the current observed values (V_Curr), the newly
calculated partial aggregate value (NewAggr) and
the last transmitted partial aggregate value of each
node (LTA), the difference between these two
values (Diff), and whether the node makes a
transmission or not based on whether the absolute
value of this deviation is greater than the
maximum permitted error in the node
(jDiff j4Ei). Notice that whenever a node makes
a transmission, then the values of LTA are
modified in the next epoch. Moreover, since we
are using the model of TAG, each non-leaf node
first receives (any) messages from its children
nodes and then calculates the new estimate of its
partial aggregate.
5.3. Calculating the potential gain of each node

Our algorithm updates the width of the filter
installed in each node by considering the potential
gain of increasing the error threshold at a sensor
Epoch 2

it? V_Curr NewAggr LTA Diff Transmit?

21 21 19 2 YES

51 51 50 1 NO

9 9 10 �1 NO

23 23 24 �1 NO

17 17 12 5 YES

– 71 69 2 YES

(21+50)

17 68 67 1 NO

(10+24+17+17)

28 166 166 0 N/A

(71+67+28)

ARTICLE IN PRESS

A. Deligiannakis et al. / Information Systems 31 (2006) 770–792782
node, which is defined as the amount of messages
that we expect to save by allocating more resources
to the node. This computation of potential gains,
as we will show, requires only local knowledge,
where each node simply considers statistics from
its children nodes in the aggregation tree.

In Fig. 4 we show the expected behavior of a
sensor node Ni; varying the width of its filter W i:
The y-axis plots the number of messages sent from
this node to its parent in the aggregation tree in a
period of Upd epochs. Assuming that the measure-
ment on the node is not constant, a zero width
filter (W i ¼ Ei ¼ 0) results in one message for each
of the Upd epochs. By increasing the width of the
filter, the number of messages is reduced, up to the
point that no messages are required. Of course, in
practice this may never happen as the width of the
filter required may exceed the global error
constraint E_Global. Some additional factors that
can make a node deviate from the typical behavior
of Fig. 4 also exist. As an example, the measure-
ment of the node may not change for some period
of time exceeding Upd. In such a case, the curve
becomes a straight line at y ¼ 0 and no messages
are sent (unless there are changes on the subtree
rooted at the node). In such cases of very stable
nodes, we would like to be able to detect this
behavior and redistribute the error to other, more
volatile nodes. At the other extreme, node Ni may
be so volatile that even a filter of considerable
width will not be able to suppress any messages.
Thus, the curve becomes a straight line at y ¼

Upd: Notice that the same may happen because of
a highly volatile node Nj that is a descendant of Ni

in the aggregation tree.
shrink expand

shrinkFactor * W W Width

Number of Messages

Cexpand

Cshrink

Upd

W+dW

Fig. 4. Potential gain of a node.
In principle, we cannot fully predict the
behavior of a node Ni unless we take into account
its interaction will all the other nodes in its subtree.
Of course, a complete knowledge of this interac-
tion is infeasible, due to the potentially large
amounts of information that are required, as
described in Section 3.2.1. We will thus achieve
this by computing the potential gains of adjusting
the width of the node’s filter W i; using simple
local statistics that we collect during the query
evaluation.
Let W i be the width of the filter installed at node

Ni at the last update phase. The node also knows
the shrinkFactor that is announced when the query
is initiated. Unless the adaptive procedure decides
to increase the error of the node, its filter’s width is
scheduled to be reduced to shrinkFactor�W i in
the next update phase, which takes place every
Upd epochs. The node can estimate the effects of
this change as follows. At the same time that the
node uses its filter W i to decide whether or not to
send a message to its parent, it also keeps track of
its decision assuming a filter of a smaller width of
shrinkFactor�W i: This requires a single counter
Cshrink that keeps track of the number of messages
that the node would have sent if its filter was
reduced. Cshrink gives an estimate of the negative
effect of reducing the filter of Ni: Since we would
also like the node to have a chance to increase its
filter, the node also computes the number of
messages Cexpand in case its filter was increased by
a factor dW to be defined later.3

Our process is demonstrated in Fig. 4. Let
dGX0 be the reduction in the number of messages
by changing the width from shrinkFactor�W i

(which is the default in the next update phase) to
W i þ dW : The potential gain for the node is
defined as

Gaini ¼ dG ¼ Cshrink � Cexpand .
3Even though this computation based on two anchor points

may seem simplistic, there is little more that can truly be

accomplished with only local knowledge, since the node cannot

possibly know exactly which partial aggregates it would have

received from its children in the case of either a smaller or a

larger filter, because these partial aggregates would themselves

depend on the corresponding width changes in the filters of the

children nodes.

ARTICLE IN PRESS

A. Deligiannakis et al. / Information Systems 31 (2006) 770–792 783
It is significant to note that our definition of the
potential gain of a node is independent on whether
the node is active or not, since the algorithm for
deciding whether to transmit a message or not is
only based on the value of the partial aggregate
calculated for the node’s entire subtree. Moreover,
the value of dW is not uniquely defined in our
algorithms. In our implementation we are using
the following heuristics for the computation
of gains:
�
 For leaf nodes, we use dW ¼ E_Global=Nactive;
Nactive being the number of active nodes in the
aggregation tree.

�
 For non-leaf nodes, in the residual mode, we

need a larger value of dW, since the expansion
of the node’s filter should be large enough
to allow the node to coalesce negative cor-
relations in the changes of the aggregates
on its children nodes. As a heuristic, we
have been using dW ¼ num_childreni �

ðE_Global=NactiveÞ; where num_childreni is the
number of children of node Ni:

These values of dW have been shown to work well
in practice on a large variety of tested configura-
tions. We need to emphasize here that these values
are used to give the algorithm an estimate on the
behavior of the sensor and that the actual change
in the widths W i of the filters will also be based on
the amount of ‘‘error budget’’ available and the
behavior of all the other nodes in the tree.

5.3.1. Computation of cumulative gains

The computation of the potential gains, as
explained above, provides us with an idea of the
effect that modifying the size of the filter in a node
may have, but is by itself inadequate as a metric
for the distribution of the available error to the
nodes of its subtree. This happens because this
metric does not take into account the correspond-
ing gains of descendant nodes in the aggregation
tree. Even if a node may have zero potential gain
(this may happen, for example, if either the node
itself or some of its descendants are very volatile),
this does not mean that we cannot reduce the
number of transmitted messages in some areas of
the subtree rooted at that node.
Because of the top-down redistribution of the
errors that our algorithm applies (using the
AdjRoot algorithm described below), if no budget
is allocated to Ni by its parent node then all nodes
in the subtree of Ni will not get a chance to
increase their error thresholds and this will
eventually lead to every node in that subtree to
send a new message on each epoch, which is clearly
an undesirable situation. Thus, we need a way to
compute the cumulative gain on the subtree of Ni

and base the redistribution process on that value.
In our framework we define the cumulative gain
on a node Ni as

CumGaini ¼

Gaini Ni : leaf node;

Gaini þ
P

Nj2childrenðNiÞ

CumGain_Sub½j� otherwise:

8<
:

This recursive formula is computed in a bottom-up
manner by having nodes piggy-back the value of
their cumulative gain in each message that they
transmit to their parent along with their partial
aggregate value. This is a single number that is
being aggregated in a bottom-up manner, and thus
poses a minimal overhead. Moreover, transmitting
the cumulative gain is necessary only if its value
has changed, and in most cases only if this change
is significant, since the last transmission of the
node.

5.4. Adjusting the filters

We here present two algorithms for adjusting
the width of the filters on the nodes. Both
algorithms make their decisions using the
cumulative gains calculated at each node. They
differ in that in the first algorithm, denoted
as AdjRoot; the Root node is the one initiating
the process based on the available error bud-
get generated from shrinking the filters. In
contrast, in the second algorithm that we de-
note as AdjLocal; this process happens in a
localized manner on a level by level basis in the
aggregation tree. Below we provide details for
both algorithms.

5.4.1. The AdjRoot algorithm

Every Upd epochs, all the filters shrink by a
factor of shrinkFactor (see Algorithm 1, Lines

ARTICLE IN PRESS

A. Deligiannakis et al. / Information Systems 31 (2006) 770–792784
5–7). This results in an error budget of E_Global �

ð1� shrinkFactorÞ which the Root node can dis-
tribute to the nodes of the tree. Each node Ni can
distribute a total error of E_Additional to itself
and its descendants (Lines 8–10) as follows (for the
Root node,
E_Additional ¼ E_Global � ð1� shrinkFactorÞ)
�
 For each subtree j of node Ni; increase E_Subj

proportionally to its cumulative gain:

E_Additionalj

¼
E_Additional � CumGain_Sub½j�

Gaini þ
P

Nj2childrenðNiÞ
CumGain_Sub½j�

.

This distribution is performed only when this
quantity is at least equal to E_Global=Nactive:

�
 The remaining error budget is distributed to the

node itself.

The fraction of the error budget allocated to the
node itself and to each of the subtrees is analogous
to the expected benefit of each choice. The use of
the computed local gain on the node in compar-
ison to the cumulative gains of its subtrees, allows
us to differentiate on the true cause of the
transmissions coming out of this node.

The only additional detail is that in case when
the error allocated to a subtree of node Ni is less
than the E_Global=Nactive value, then we do not
allocate any error in that subtree, and allocate this
error to node Ni itself. This is done to avoid
sending messages downwards the aggregation tree
for adjusting the filters when the error budget is
too small.

5.4.2. The AdjLocal algorithm

In the AdjLocal algorithm, the nodes negotiate
the allocation of the error budget in a localized
level-by-level manner, instead of having the whole
process initiated by the Root node. In particular,
each non-leaf node in the tree claims an available
error budget equal to

E_Additionali

¼
X

Nj2childrenðNiÞ

Ej � ð1� shrinkFactorÞ. ð1Þ
This is exactly the available error budget due to the
shrinkage of the filters of its immediate descen-
dants. The allocation of this budget among itself
and its children nodes in the tree is performed
using the potential gain of the node and the gains
of its subtrees:

E_Additionalj ¼
E_Additionali � Gainj

Gaini þ
P

Nj2childrenðNiÞ
Gainj

.

(2)

One way to visualize the differences of the two
algorithms is to consider how the error budget is
being distributed. In the AdjRoot algorithm, the
whole budget is claimed by the Root node. This is
possible because all nodes shrink their filters by the
same percentage. Then, this error budget is let to
flow downwards through the tree, using the
accumulated statistics (gains) on the nodes. This
process continues until either we reach a leaf node,
or when the remaining budget is too small. In the
later case the node in consideration claims all the
remaining error budget, thus saving downward
messages on the corresponding subtree. In con-
trast, the AdjLocal algorithm adjusts the filters in
a localized fashion. Any intermediate node in the
aggregation tree uses information on the filter
widths of its direct descendant nodes to determine
its available error budget and then distributes this
budget among them and the node itself, without
recursively continuing this process on lower levels
of the tree.
When comparing the AdjRoot and the

AdjLocal algorithms, one would expect in
most cases the AdjRoot algorithm to per-
form better, as it allows broader redistribution
of the available error budget. For instance, the
AdjLocal algorithm will require more rounds
(update periods) to shift a significant amount of
error from a subtrees S1 rooted at a node close to
the Root to a sibling subtree S2; because the error-
budget will first have to gradually ascend towards
the root node of the S1 subtree and then slowly be
distributed to the nodes in the S2 subtree. In
AdjLocal; whenever some nodes allocate a sig-
nificant amount of their error budget to them-
selves, then this results in an increased error
budget for the parents of these nodes in the next

ARTICLE IN PRESS

A. Deligiannakis et al. / Information Systems 31 (2006) 770–792 785
update period. Using this process, the error of an
entire subtree can gradually ascend to (and there-
fore be distributed by) nodes in higher levels of the
aggregation tree.

However, there are occasions when we expect
the AdjLocal algorithm to be superior. In parti-
cular, consider the case when the Root node is
physically located very far from the nodes that
actually collect measurements and that the aggre-
gation tree is tall and narrow in its upper levels.
This is a realistic scenario when the aggregate
query involves the values observed in just one area
of the network. In some extreme cases, the
Root will be connected to the active nodes through
a string of nodes. When the Root is several links
away from the leaf nodes, the AdjRoot algorithm
requires a lot of messages to propagate the error
budget to the nodes that actually need it. In such
cases, the AdjLocal algorithm might require fewer
messages, since the redistribution process will
mostly involve active nodes at (or near) the leaves
of the tree. Moreover, due to the minimum
additional error that can be distributed to subtrees
by the AdjRoot algorithm, nodes with modest
gains may not receive any budget if they belong
to subtrees with small cumulative gains. However,
in the AdjLocal algorithm, through a local redis-
tribution of errors from their siblings and their
parent, these nodes will still be able to increase
their filters and, thus, reduce the number of their
transmitted messages.
6. Experiments

We have developed a simulator for sensor
networks that allows us to vary several parameters
like the number and configuration of the nodes,
the topology of the aggregation tree, the data
distribution etc. The synchronization of the sensor
nodes is performed as described in TAG [2]. In our
experiments we compare the following algorithms:
1.
 BBA: This is an implementation of the algo-
rithm presented in [8] for the adaptive precision
setting of cached approximate values.
2.
 Uni: This is a static setting where the error is
evenly distributed among all active sensor nodes
and, therefore, does not incur any communica-
tion overhead for adjusting the error thresholds
of the nodes.
3.
 PGA (Potential Gains Adjustment): This is our
precision control algorithm, based on the
potential gains as described in Section 5. For
adjusting the filters of the sensor nodes we use
the AdjRoot algorithm; later in this section we
also provide an experimental evaluation with
the AdjLocal method as well.

For the BBA algorithm, we experimented with
several heuristics for estimating the cost Ci of each
message transmitted by a node Ni; and set it in our
experiments to ðdisti þ 1Þ=2; where disti denotes
the distance in number of hops of the node from
the Root node. Our heuristic is the average of the
worst case cost (message not aggregated with any
other message until it reaches the Root) and the
best case cost (message aggregated with others at
the parent node of Ni) of messages transmitted by
node Ni; and provided the best results in most
cases. With this heuristic, each node is able to
estimate its burden score and potentially transmit
it to the Root node at the last epoch of the update
period. It is important to emphasize that in our
implementation of BBA; we do not account for the
additional amount of information needed for the
nodes to transmit their burden scores (we do not
count the messages needed to transmit them). This
is an ideal scenario for BBA and is used to provide
a more direct comparison to the PGA algorithm,
as to the amount of messages pruned by each
method due to the installation of the filters.
For the PGA and BBA algorithms we made a

few preliminary runs to choose their internal
parameters adjustment period (Upd) and shrink

percentage (shrinkFactor). Based on the observed
behavior of the algorithms, we have selected the
combination of values of Table 4 as the most
representative ones for revealing the ‘‘preferences’’
of each algorithm. The first configuration (Conf1)
consistently produced good results, in a variety of
tree topologies and data sets, for the
PGA algorithm, while the second configuration
(Conf2) was typically the best choice for the
BBA algorithm. In the BBA algorithm we also
determined experimentally that distributing the

ARTICLE IN PRESS

Table 4

Used configurations

Parameters Configuration

Conf1 Conf2

Upd 50 20

shrinkFactor 0.6 0.95

Invocations Fewer Frequent

Error amount redistributed Significant Smaller

A. Deligiannakis et al. / Information Systems 31 (2006) 770–792786
available error to 10% of the nodes with the
highest burden scores was the best choice for the
algorithm.

The initial allocation of error thresholds was
done using the uniform policy. We then used the
first 10% of epochs as a warm-up period for the
algorithms to adjust their thresholds and report
the results (number of transmitted messages) for
the later 90%.

6.1. Description of data sets

6.1.1. Synthetic data sets

We generated synthetic data, similar in spirit to
the data used in [8]. For each simulated active
node, we generated values following a random
walk pattern, each with a randomly assigned step
size in the range ð0 . . . 2�: We further added in the
mix a set of ‘‘unstable nodes’’ whose step size is
much larger: ð0 . . . 200�: These volatile nodes allow
us to investigate how the different algorithms
adapt to noisy sensors. Ideally, when the step-size
of a node is comparable to the global error
threshold, we would like the precision control
algorithm to restrain from giving any of the
available budget to that node at the expense of
all the other sensor nodes in the tree. We denote
with Punstable the probability of an active node
being unstable.

We further divide the sensor nodes in two
additional classes: workaholics and regulars. Reg-
ular sensors make a random step with a fixed
probability of 1% during an epoch. Workaholics,
on the other hand, make a random step on every
epoch. We denote with Pworkaholic the probability of
an active node being workaholic.
6.1.2. Real data sets

We also report results using two real data sets.
The first, denoted as LBL-TCP-3, is described in
[28] and was also used in the original paper of [8].
It contains information on all the wide-area TCP
traffic between the Lawrence Berkeley Laboratory
and the rest of the world for a period of 2 h. We
have processed this data and created individual
time-series (one per sensor node) for each of the
1540 source IP addresses in the trace. Each time-
series describes the number of bytes transmitted
from a source IP per second.
The second real data set, denoted as Weather,

was obtained from IRI/LDEO Climate Data
Library and consists of precipitation data from
1582 weather stations. Again, we created indivi-
dual time-series (one per sensor node) using
precipitation measurements from each weather
station. Sensor networks that are used in environ-
mental monitoring are expected to process similar
data.

6.2. Network topology

We used three different network topologies
denoted as Tleaves; Tall and Trandom: In Tleaves the
aggregation tree was a balanced tree with 5 levels
and a fan-out of 4 (341 nodes overall). For this
configuration all active nodes were at the leaves of
the tree. In Tall ; for the same tree topology, all
nodes (including the Root) were active. Finally in
Trandom we used 500 sensor nodes, forming a
random tree each time. The maximum fan-out of a
node was in that case 8 and the maximum depth of
the tree 6. Intermediate nodes in Trandom were
active with probability 20%.
In all experiments, we executed the simulator 10

times and present here the averages. In all runs we
used the SUM aggregate function (the perfor-
mance of AVG was similar).

6.3. Benefits of residual mode of operation

The three precision control algorithms consid-
ered (Uni; PGA; BBA) along with the mode of
operation (residual: Res; non-residual: NoRes)
provide us with six different choices (Uni+Res;
Uni+NoRes; . . .). We note that BBA+NoRes is

ARTICLE IN PRESS

A. Deligiannakis et al. / Information Systems 31 (2006) 770–792 787
the original algorithm of [8] running over TAG,
while BBA+Res is our extension of that algorithm
using the residual mode of operation. The
combination PGA+Res denotes our algorithm.
In this first experiment we investigate whether
the precision control algorithms benefit from
the use of the residual mode of operation. We
also seek their preferences in terms of the values
of parameters adjustment period and shrink per-

centage.
We used a synthetic data set with Punstable ¼ 0

and Pworkaholic ¼ 0:2: We then let the sensors
operate for 40,000 epochs using a fixed error
constraint E_Global ¼ 500: The average value of
the SUM aggregate was 25,600, meaning that this
E_Global value corresponds to a relative error
of about 2%. In Table 5 we show the total number
of messages in the sensor network for each choice
of algorithm and tree topology and each selection
of parameters. We also show the number of
messages for an exact computation of the SUM

aggregate using one more method, entitled as
(E_Global ¼ 0)+Res; which places a zero width
filter in every node and uses our residual mode of
operation for propagating changes. Effectively, a
node sends a message to its parent only when the
partial aggregate on its subtree changes. This is
nothing more than a slightly enhanced version of
TAG. The following observations are made:
�

Ta

Fir

ne

(se

PG

PG

BB

BB

Un

Un

(E

Un

alg
Using a modest E_Global value of 500 (2%
relative error), we are able to reduce the number
ble 5

st number is total number of messages (in thousands) in the

twork when using parameters of Conf1, second for Conf2

e also Table 4).

Tleaves Tall Trandom

A+Res 423/978 479/903 677/1207

A+NoRes 463/924 558/894 830/1454

A+Res 2744/1654 2471/1426 3775/2657

A+NoRes 3203/1394 2967/1481 4229/2474

i+Res 2568 2451 3906

i+NoRes 2568 2642 4044

_Global ¼ 0)+Res 4176 4176 5142

i does not use these parameters. Best numbers for each

orithm in bold.
of messages by 7.6–9.9 times (in PGA+Res)
compared to (E_Global ¼ 0)+Res: Thus, error-
tolerant applications can significantly reduce the
number of messages in the network resulting in
great savings on both bandwidth and energy
consumption.

�
 Algorithm PGA seems to require fewer invoca-

tions (larger adjustment period) but with a larger
percentage of the error to be redistributed
(a smaller shrink percentage results in a wider
reorganization of the error thresholds). In the
table we see that the number of messages for the
selection of values of Conf1 is always smaller.
Intuitively, larger adjustment periods allow for
more reliable statistics on the computation of
potential gains.

�
 On the contrary, BBA seems to behave better

when filters are adjusted more often by small
increments. We also note that BBA results in a
lot more messages than PGA; no matter which
configuration is used.

�
 The PGA algorithm, when using the residual

operation (PGA+Res), results in substantially
fewer messages than all the other alternatives.
Even when using the non-residual mode of
operation, PGA outperforms, significantly, the
competitive algorithms.

�
 BBA seems to benefit only occasionally from the

use of the residual operation. The adjustment of
thresholds based on the burden of a node
cannot distinguish on the true cause of a
transmission (change on local measurement or
change in the subtree) and does not seem to
provide a good method of adjusting the filters
with respect to the tree hierarchy.

In the rest of the section, for PGA we used the
residual mode of operation. For BBA we tested
both the residual and non-residual modes and
present the best results for each experiment. We
configured PGA using the values of Conf1 and
BBA using the values of Conf2.

6.4. Sensitivity analysis

We first investigate the performance of the
algorithms when varying Pworkaholic and Punstable:
We first fixed Pworkaholic to be 20% and used

ARTICLE IN PRESS

0

500000

1e+06

1.5e+06

2e+06

2.5e+06

3e+06

3.5e+06

4e+06

4.5e+06

5e+06

0 200 400 600 800 1000 1200 1400 1600 1800 2000

T
ot

al
 n

um
be

r
of

 m
es

sa
ge

s

Error Threshold (E_Global)

"Uni"
"BBA"
"PGA"

Fig. 7. Messages varying E_Global, Trandom configuration.

8e+06

1e+07
sa

ge
s

"Uni"
"BBA"
"PGA"

A. Deligiannakis et al. / Information Systems 31 (2006) 770–792788
Punstable ¼ 0. In Fig. 5 we plot the total number of
messages in the network (y-axis) for 40,000 epochs
when varying the error constraint E_Global from
100 to 2000 (8% is terms of relative error).
Depending on E_Global, PGA results in up to
4.8 times fewer messages than BBA and up to 6.4
times fewer than Uni: Figs. 6 and 7 repeat the
experiment for the Tall and Trandom configurations.

In Fig. 8 we vary Pworkaholic between 0 and 1 for
Tall (best network topology for BBA) and for
E_Global ¼ 500. Again PGA outperforms the
other algorithms. An important observation is
that when the value of Pworkaholic is either 0 or 1, all
the methods behave similarly. In this case all the
nodes in the network have the same character-
istics, so it is not surprising that Uni performs so
well. The PGA and BBA algorithms managed to
filter just a few more messages than Uni for these
0

500000

1e+06

1.5e+06

2e+06

2.5e+06

3e+06

3.5e+06

4e+06

0 200 400 600 800 1000 1200 1400 1600 1800 2000

T
ot

al
 n

um
be

r
of

 m
es

sa
ge

s

Error Threshold (E_Global)

"Uni"
"BBA"
"PGA"

Fig. 5. Messages varying E_Global, Tleaves configuration.

0

500000

1e+06

1.5e+06

2e+06

2.5e+06

3e+06

3.5e+06

0 200 400 600 800 1000 1200 1400 1600 1800 2000

T
ot

al
 n

um
be

r
of

 m
es

sa
ge

s

Error Threshold (E_Global)

"Uni"
"BBA"
"PGA"

Fig. 6. Messages varying E_Global, Tall configuration.

0

2e+06

4e+06

6e+06

0 0.2 0.4 0.6 0.8 1

T
ot

al
 n

um
be

r
of

 m
es

P_workaholic

Fig. 8. Messages varying Pworkaholic; Tall configuration.
cases, but due to their overhead for updating the
error thresholds of the nodes, the overall number
of transmitted messages was about the same for all
techniques.
In Figs. 9 and 10 we vary the percentage of

unstable nodes (nodes that make very large steps)
from 0% to 100% and plot the total number of
messages for Tall and Trandom (Pworkaholic ¼ 0.2,
E_Global ¼ 500). For Punstable ¼ 1 the error
threshold (500) is too small to have an effect on
the number of messages and all algorithms have
practically the same behavior. For smaller values
of Punstable; algorithm PGA results in a reduction in
the total number of messages by a factor of up to
3.8 and 5.5 compared to BBA and Uni; respec-
tively.
In Fig. 11 we vary the value of Upd from 10 to

100 for a running query of 1000 epochs
(Pworkaholic ¼ 20%, E_Global ¼ 500). For both

ARTICLE IN PRESS

0

1e+06

2e+06

3e+06

4e+06

5e+06

0 0.2 0.4 0.6 0.8 1

T
ot

al
 n

um
be

r
of

 m
es

sa
ge

s

P_unstable

"Uni"
"BBA"
"PGA"

Fig. 9. Messages varying Punstable; Tall configuration.

0

1e+06

2e+06

3e+06

4e+06

5e+06

6e+06

7e+06

0 0.2 0.4 0.6 0.8 1

T
ot

al
 n

um
be

r
of

 m
es

sa
ge

s

P_unstable

"Uni"
"BBA"
"PGA"

Fig. 10. Messages varying Punstable; Trandom configuration.

40000

50000

60000

70000

80000

90000

100000

110000

10 20 30 40 50 60 70 80 90 100T
ot

al
 n

um
be

r
of

 m
es

sa
ge

s
(1

00
0

ep
oc

hs
)

Upd

"UNI"
"BBA"
"PGA"

Fig. 11. Messages varying Upd.

30000

40000

50000

60000

70000

80000

90000

100000

110000

120000

130000

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T
ot

al
 n

um
be

r
of

 m
es

sa
ge

s

shrinkFactor

"UNI"
"BBA"
"PGA"

Fig. 12. Messages varying shrinkFactor.

Fig. 13. Original tree.

A. Deligiannakis et al. / Information Systems 31 (2006) 770–792 789
PGA and BBA the number of messages is initially
reduced with increasing values of Upd. However,
in both algorithms there is a point where a further
increase in the value of Upd results in more
messages since there are not enough update phases
to properly adjust the behavior of the nodes. We
further varied shrinkFactor between 10% and
99%. The results in Fig. 12 suggest that
BBA behaves better when frequent updates
(Fig. 11) reallocate small amount of the error
budget. Algorithm PGA shows a relatively steady
behavior for shrinkFactor between 10% and 70%.
We further examine how all algorithms scale

with the size of the aggregation tree and in
particular with the distance of the leave nodes
from the Root (changing the fan-out of the
aggregation tree did not significantly affect per-
formance). We started with a balanced aggrega-
tion tree with a fan-out of 4 and 6 levels (1365
nodes overall) having all active nodes at the leaves
of the tree (i.e. similar to Tleaves). We then
gradually augmented the tree by injecting transport

nodes between levels 0–1, 1–2 and 2–3 in the tree.
This process is illustrated in Figs. 13–15. For
presentation purposes in these figures we use an
initial tree with fan-out 2 and only 4 levels. In
Fig. 14 we show the resulting tree of adding
transport nodes between levels 0–1 and 1–2, while
Fig. 15 shows the tree after adding another set of

ARTICLE IN PRESS

0

 10

 20

 30

 40

 50

0 2 4 6 8 10

N
od

es
 T

ra
ns

m
itt

in
g

pe
r

E
po

ch
 (

%
)

#steps

"BBA"
"PGA-AdjRoot"
"PGA-AdjLocal"

Fig. 16. Messages varying the number of transport layers.

A. Deligiannakis et al. / Information Systems 31 (2006) 770–792790
transport nodes between these levels. Essentially
each step makes the top-level nodes of the tree lay
further away for the leaf nodes that collect the
measurements.

In Fig. 16 we compare the performance of the
BBA algorithm against PGA (residual mode) with
the later using (i) the AdjRoot algorithm for
adjusting the filters (the default choice) and (ii)
the AdjLocal algorithm. The y-axis is the figure
shows the percentage of nodes in the tree
transmitting on an epoch, averaged over 1000
epochs (E_Global ¼ 1500). The x-axis shows the
number of successive steps of adding transport
nodes. As more nodes are added between the
Root and the leaves of the tree, the number of
messages increases in both BBA and
PGA+AdjRoot algorithms. This is due to both
Fig. 14. After adding transport nodes between layers 0–1 and

1–2.

Fig. 15. After adding second set of transport nodes between

layers 0–1 and 1–2.
the increased number of nodes in the tree and
because both algorithms adjust the filters in a top-
down manner, thus resulting in a larger re-
organization overhead, since the average distance
of the Root node from the nodes of the aggrega-
tion tree that ultimately received most of the
error budget increases. In contrast, when using
the AdjLocal algorithm for adjusting the filters,
the performance is practically unaffected by the
addition of the transport nodes. We note that both
PGA+AdjLocal and PGA+AdjRoot operate on
the same set of statistics collected at the nodes and,
in principle, one can alternate between the two
algorithms, i.e. use PGA+AdjLocal when the data
distribution appears to be relatively static and
switch to PGA+AdjRoot when a quick large-scale
redistribution of the budget is required.

6.5. Experiments with real data

In Fig. 17 we summarize our results for the
LBL-TCP-3 data set and the Trandom topology.
This data set has the unique feature that many IP-
sources show long periods of inactivity (number of
bytes sent is zero) followed by short, bursty
transmissions. We include this data, as a ‘‘hard’’
case for our algorithm, since this property makes it
hard to predict future behavior based on past
statistics. However, we can see that PGA still
outperforms the other alternatives. We also note
that, for very small values of E_Global, Uni is very
competitive, as in that case the available thresh-
olds are not enough to prune transmissions of

ARTICLE IN PRESS

350000

400000

450000

500000

550000

600000

650000

0 10 20 30 40 50 60 70 80 90 100

T
ot

al
 n

um
be

r
of

 m
es

sa
ge

s

Error Threshold (E_Global)

"Uni"
"BBA"
"PGA"

Fig. 18. Messages, Weather data set.

550000

600000

650000

700000

750000

800000

0 1000 2000 3000 4000 5000 6000

T
ot

al
 n

um
be

r
of

 m
es

sa
ge

s

Error Threshold (E_Global)

"Uni"
"BBA"
"PGA"

Fig. 17. Messages, LBL-TCP-3 data set.

A. Deligiannakis et al. / Information Systems 31 (2006) 770–792 791
active IP sources. We remind that Uni has a static
allocation of filters, and has no overhead of
adjusting them, unlike the other two algorithms.
We also provide results using precipitation read-
ings from the Weather data set. In Fig. 18 we
show the total number of messages, varying
E_Global, for the three algorithms, when nodes
are organized in the Tall configuration.
7. Conclusions and future directions

In this paper, we proposed a new framework for
approximate in-network data aggregation for
sensor networks. Unlike previous approaches,
our algorithms exploit the tree hierarchy of the
sensor nodes to significantly reduce the number of
transmitted messages, and therefore, increase the
lifetime of the network.
Our algorithms are based on two key ideas that
we presented in this paper. Firstly, the residual
mode of operation for nodes in the aggregation
tree allows nodes to apply their error filters to the
partial aggregates of their subtrees, and therefore,
potentially suppress messages from being trans-
mitted towards the root node of the tree. A second
key idea is the use of simple and local statistics to
estimate the potential gain of allocating additional
error to nodes in a subtree. This is a significant
improvement over straightforward extensions for
the hierarchical setting of previous approaches
that require a large amount of information to be
transmitted to the root node of the tree. Through
an extensive set of experiments, we have shown in
this paper that while the distribution of the error
based on the computed gains is the major factor
for the effectiveness of our techniques compared to
other approaches, the fusion of the two ideas
provides the best improvements.
While our algorithms have been shown to

drastically reduce the number of messages ex-
changed among the nodes, there is still a number
of open issues to explore. Since multiple monitor-
ing nodes may exist in sensor networks, we plan to
consider how to extend our techniques to optimize
the bandwidth utilization of multiple continuous
queries. Moreover, in many applications the dual
problem might be of interest, that is to minimize
the error of the approximation for a target
bandwidth constraint. In other cases, minimizing
a weighted sum of error and bandwidth might be
desirable. Finally, for applications that require
more powerful sensor nodes, it will be challenging
to devise more complex error filters (perhaps by
building appropriate data models [16]) than the
ones used in this manuscript.
References

[1] A. Ailamaki, C. Faloutsos, P.S. Fischbeck, M.J. Small, J.

VanBriesen, An environmental sensor network to deter-

mine drinking water quality and security, ACM SIGMOD

Rec. 32 (4) (2003) 47–52.

[2] S. Madden, M.J. Franklin, J.M. Hellerstein, W. Hong,

Tag: a tiny aggregation service for ad hoc sensor networks,

in: OSDI Conference, 2002.

ARTICLE IN PRESS

A. Deligiannakis et al. / Information Systems 31 (2006) 770–792792
[3] S. Madden, M.J. Franklin, J.M. Hellerstein, W. Hong, The

design of an acquisitional query processor for sensor

networks, in: ACM SIGMOD Conference, June 2003.

[4] D. Estrin, R. Govindan, J. Heidermann, S. Kumar, Next

century challenges: Scalable coordination in sensor net-

works, in: MobiCOM, 1999.

[5] C. Intanagonwiwat, D. Estrin, R. Govindan, J. Heider-

mann, Impact of network density on data aggregation in

wireless sensor networks, in: ICDCS, 2002.

[6] M.A. Sharaf, J. Beaver, A. Labrinidis, P.K. Chrysanthis,

TiNA: a scheme for temporal coherency-aware in-network

aggregation, in: Proceedings of ACMMobiDEWorkshop,

September 2003.

[7] Y. Yao, J. Gehrke, The Cougar approach to in-network

query processing in sensor networks, SIGMOD Rec. 31 (3)

(2002) 9–18.

[8] C. Olston, J. Jiang, J. Widom, Adaptive filters for

continuous queries over distributed data streams, in:

ACM SIGMOD Conference, 2003, pp. 563–574.

[9] A. Cerpa, D. Estrin, ASCENT: adaptive self-configuring

sensor network topologies, in: INFOCOM, 2002.

[10] J. Heidermann, F. Silva, C. Intanagonwiwat, R. Govinda-

nand, D. Estrin, D. Ganesan, Building efficient wireless

sensor networks with low-level naming, in: SOSP, 2001.

[11] A. Demers, J. Gehrke, R. Rajaraman, N. Trigoni, Y. Yao,

The Cougar project: A WorkIn Progress report, ACM

SIGMOD Rec. 32 (4) (2003) 53–59.

[12] A. Ghose, J. Grossklags, J. Chuang, Resilient data-centric

storage in wireless ad-hoc sensor networks, in: Mobile

Data Management, 2003, pp. 45–62.

[13] S. Ratnasamy, B. Karp, L. Yin, F. Yu, D. Estrin, R.

Govindan, S. Shenker, GHT: a geographic hash table for

data-centric storage, in: Proceedings of the First ACM

International Workshop on Wireless Sensor Networks and

Applications, 2002, pp. 78–87.

[14] J.-H. Chang, L. Tassiulas, Energy conserving routing in

wireless ad-hoc networks, in: INFOCOM, 2000, pp. 22–31.

[15] S. Singh, M. Woo, C.S. Raghavendra, Power-aware

routing in mobile ad hoc networks, in: Proceedings

of the Fourth Annual ACM/IEEE International

Conference on Mobile Computing and Networking,

1998, pp. 181–190.
[16] Y. Kotidis, Snapshot queries: towards data-centric sensor

networks, in: Proceedings of ICDE, 2005.

[17] J. Considine, F. Li, G. Kollios, J. Byers, Approximate

aggregation techniques for sensor databases, in: Proceed-

ings of ICDE, 2004.

[18] J. Chen, D.J. Dewitt, F. Tian, Y. Wang, Niagara CQ: a

scalable continuous query system for internet databases,

in: ACM SIGMOD Conference, 2000.

[19] J.M. Hellerstein, M.J. Franklin, S. Chandrasekaran, A.

Descpande, K. Hildrum, S. Madden, V. Raman, M.A.

Shah, Adaptive query processing: technology in evolution,

IEEE Data Eng. Bull. 23 (2) (2000).

[20] R. Motwani, J. Widom, A. Arasu, B. Babcock, S. Babu,

M. Datar, G. Manku, C. Olston, J. Rosenstein, R. Varma,

Query processing, resource management, and approxima-

tion in a data stream management system, in: CIDR,

January 2003, pp. 245–256.

[21] C. Olston, B.T. Loo, J. Widom, Adaptive precision setting

for cached approximate value, in: ACM SIGMOD

Conference, 2001.

[22] C. Olston, J. Widom, Offering a precision-performance

tradeoff for aggregation queries over replicated data, in:

VLDB Conference, 2000, pp. 144–155.

[23] C. Olston, J. Widom, Best-effort cache synchronization

with source cooperation, in: ACM SIGMOD Conference,

2002, pp. 73–84.

[24] D. Barbará, H. Garcia-Molina, The demarcation protocol:

a technique for maintaining linear arithmetic constraints in

distributed database systems, in: Proceedings of EDBT,

1992, pp. 23–27.

[25] N. Soparkar, A. Silberschatz, Data-value partitioning and

virtual messages, in: Proceedings of PODS, Nashville,

Tennessee, April 1990, pp. 357–367.

[26] R. Cheng, D.V. Kalashnikov, S. Prabhakar, Evaluating

probabilistic queries over imprecise data, in: ACM

SIGMOD Conference, 2003, pp. 551–562.

[27] A. Deligiannakis, Y. Kotidis, N. Roussopoulos, Compres-

sing historical information in sensor networks, in: Pro-

ceedings of ACM SIGMOD Conference, 2004.

[28] V. Paxson, S. Floyd, Wide-area traffic: the failure of

Poisson modeling, IEEE/ACM Trans. Networking 3 (3)

(1995) 226–244.

	Processing approximate aggregate queries in wireless �sensor networks
	Introduction
	Related work
	In-network data aggregation
	Data aggregation process
	Challenges and opportunities during in-network data aggregation
	Hierarchical structure of nodes
	Nodes with different characteristics
	Negative correlations in neighboring areas

	Existing techniques and their drawbacks
	Burden-based adjustment of node filters
	Drawbacks of the BBA algorithm
	Hierarchical structure of nodes
	Nodes with different characteristics
	Negative correlations in neighboring areas

	Our algorithms
	A new framework for approximate in-network data aggregation
	Operation of nodes
	Calculating the potential gain of each node
	Computation of cumulative gains

	Adjusting the filters
	The AdjRootalgorithm
	The AdjLocalalgorithm

	Experiments
	Description of data sets
	Synthetic data sets
	Real data sets

	Network topology
	Benefits of residual mode of operation
	Sensitivity analysis
	Experiments with real data

	Conclusions and future directions
	References

