
Using Entropy Metrics for Pruning Very Large Graph
Cubes

Dritan Bleco 1, Yannis Kotidis2

Department of Computer Science, Athens University of Economics and Business,
76 Patission Street, Athens GR 10434, Greece

Abstract

Emerging applications face the need to store and analyze interconnected data.

Graph cubes permit multi-dimensional analysis of graph datasets based on at-

tribute values available at the nodes and edges of these graphs. Like the data

cube that contains an exponential number of aggregations, the graph cube re-

sults in an exponential number of aggregate graph cuboids. As a result, they are

very hard to analyze. In this work, we first propose intuitive measures based on

the information entropy in order to evaluate the rich information contained in

the graph cube. We then introduce an efficient algorithm that suggests portions

of a precomputed graph cube based on these measures. The proposed algorithm

exploits novel entropy bounds that we derive between different levels of aggrega-

tion in the graph cube. Per these bounds we are able to prune large parts of the

graph cube, saving costly entropy calculations that would be otherwise required.

We experimentally validate our techniques on real and synthetic datasets and

demonstrate the pruning power and efficiency of our proposed techniques.

Keywords: Graph Cube, Entropy, Big Data

1. Introduction

The data management community has long been interested in problems re-

lated to modeling, storing and querying graph databases [1, 2]. Recently, this

1dritanbleco@aueb.gr
2kotidis@aueb.gr

1

interest has been renewed with the emergence of applications in social network-

ing, location based services, biology and the semantic web, where data graphs

of massive scale need to be analyzed. As a consequence, business intelligence

techniques such as the data cube [3], which have been developed for flat, rela-

tional data, need to be revised in order to accommodate the needs of complex

graph datasets.

Of particular interest in graph data are the relationships between nodes

depicted via the edges of the graph. These relationships should be analyzed

with respect to attribute values available at the nodes and edges. For example,

a data scientist may want to investigate how users of a social network, depending

on their gender, relate to other users based on their nationality. As we will see

this inquiry can be accommodated by aggregating existing relationships (edges)

in the data graph based on gender and nationality attribute values of their

constituent nodes. This process forms a graph cuboid, as is depicted in Figure 1.

Graph cubes have been recently proposed [4, 5, 6, 7, 8] in order to describe

all possible such cuboids. They provide a solid foundation that an analyst may

build upon, in a manner similar to what the data cube is for OLAP analy-

sis [9, 10, 11, 12]. Nevertheless, graph cubes contain an exponential collection

of cuboids. Moreover, a decision maker, familiar with the simpler framework of

data cubes, may be overwhelmed when she tries to navigate not flat records,

but rather complex graph cuboids containing aggregated views of graph nodes

and relationships.

In this work, we first revisit the graph cube framework highlighting the rela-

tionships among the cuboids contained in it. These relationships are modeled as

a graph cube lattice produced by taking the Cartesian product of simpler data

cubes on the attributes of the nodes and edges of the data graph. We utilize the

graph cube lattice as a foundation, where interesting relationships can be re-

vealed using entropy-based calculations. A benefit of the lattice representation

and of the metrics we propose is that certain entropy bounds can be established

between the graph cuboids. This realization permits us to design an efficient

algorithm that prunes significant parts of the graph cube from consideration.

2

Compared to a straightforward evaluation of the entropy metrics on the whole

lattice, the proposed algorithm saves up to 90% of computation time.

Our major contributions are summarized as follows:

• We utilize two novel entropy measures, in particular external and internal

entropy, as the means to evaluate the content of the graph cube. External

entropy weighs a drill-down edge in the graph cube lattice in order to

determine whether the addition of a new attribute that is used to form

the more detailed child cuboid results in non-uniform interactions. In

such cases, the internal entropy is used to examine each cuboid that is

constituent to such a drill-down edge and select subgraphs that exhibit

significant skew.

• A straightforward approach that would evaluate the proposed entropy

metrics over the whole graph cube would be very inefficient. In this work,

we propose a bisection algorithm which, given a precomputed graph cube,

prunes whole cuboids from consideration by exploiting certain bounds

between their entropies. Our results in real and synthetic datasets demon-

strate the effectiveness of our techniques in processing multi-terabyte graph

cubes with tens of billions of records. These results further reveal that of-

ten, only small parts of the graph cube contain interesting aggregations,

with respect to other aggregations available in the graph cube lattice.

• We compare our techniques against an alternative method that prunes

parts of the graph cube based on a minimum support threshold. We

observe that our framework maintains the most varied parts of the data

distribution independently of their frequencies.

1.1. Comparison to Prior Work

The work presented in this manuscript is a consolidation of prior work by the

authors that has appeared in [13] and [14], extended further with new algorith-

mic results that significantly increase the efficiency of the proposed techniques.

More specifically, the work of [13] first introduced the idea of using information

3

entropy in order to prune graph cubes. However, this work offered a limited def-

inition of entropy suitable only for the SUM aggregation function. This article

models the graph data as a probability distribution and extends the definitions

of the entropy metrics so as to be applicable to different functions and not only

SUM. The work of [14] was based on [13] and proposed a graph cube analysis

workflow for identifying and visualizing prominent trends in large graph cubes.

However, neither [13] nor [14] provide an efficient algorithm for computing the

proposed entropy metrics. As a result, their methods are inefficient when used

in very large graph datasets.

In this work, as highlighted above, we first introduce novel theoretical bounds

on the proposed entropy rates. Per these bounds, we are able to present a novel

bisection algorithm that reduces the entropy computation times by up to 90%,

compared to the straightforward evaluation discussed in our prior work. In our

experimental results we evaluate the benefits of this new algorithm compared to

the techniques discussed in [13, 14]. This experimental evaluation is performed

using a new implementation over Spark that permits parallel execution of the

entropy calculations in a distributed system. Moreover, we provide a more

thorough evaluation of our methods that includes additional real and synthetic

datasets. Finally, in this work we further discuss extensions to the entropy

metrics and provide experimental results for datasets that contain attributes on

both their nodes and edges.

1.2. Manuscript Organization

The rest of this paper is organized as follows: Section 2 uses a motiva-

tional example to present our data model and discusses the construction of

the graph cube lattice from the constituent data cubes on the graph nodes.

We then formally introduce in Section 3 the concepts of external and internal

entropy and explain their calculations. Section 4 presents our proposed algo-

rithm for entropy-aware selection of graph cuboids and discusses extensions to

the proposed graph cube framework. In Section 5 we provide qualitative and

quantitative indicators on the effectiveness of our techniques when used on real

4

Figure 1: Three possible cuboids: (gender, profession - nation), (gender - nation) and (gender,

nation - nation). Notice that the drill-down to the more fine-grained cuboid on the right reveals

irregular associations, conditioned to what has been revealed by the cuboid in the middle. In

contrast, the relationships contained on the (gender, profession-nation) cuboid seem to follow

the same patterns as the original top-level cuboid.

and synthetic datasets. Finally, in Section 6 we discuss related work, while in

Section 7 we provide concluding remarks.

2. Data Model

2.1. Motivational Example

We consider a social network which depicts relationships between different

users. Each user profile can be represented as a graph node with three attributes:

gender (male, female), nation (Greece, Italy, USA) and profession (doctor, pro-

fessor, musician). Every edge in the data graph is associated with a numeric

value that indicates the number of interactions between the respective users.

A possible inquiry on this network is to examine how users depending on their

gender, relate to other users based on their nationality. To accommodate this

query we need to perform three different aggregations. First, starting nodes (i.e.

nodes with outgoing edges) are grouped into two aggregate nodes corresponding

to gender values male and female, respectively. Similarly, three aggregate nodes

corresponding to nations Greece, Italy and USA are formed. Finally, each edge

of the network, depending on the gender attribute value of its starting node and

the nation attribute value of its ending node, is aggregated into an edge between

5

the corresponding aggregate nodes created at the previous steps. At this time,

a desired aggregate function can be computed. In this example, we assume that

this function is SUM(). The resulting aggregate graph is depicted in the middle

of Figure 1. Based on its construction we refer to it as the (gender - nation)

cuboid.

Continuing with the running example, the cuboid on the left part of the figure

depicts the outcome of drilling-down from (gender - nation) to the (gender,

profession - nation) cuboid. The intuition is that we would like to explore

whether the profession of the source node, in addition to its gender, affects the

number of observed relationships. In this contrived example, the aggregated

edges from cuboid (gender - nation) are split almost evenly when drilling down

to the (gender, profession - nation) cuboid. Thus, this particular navigation

step does not seem to reveal interesting correlations for this data, conditioned

on what is already observed in the (gender - nation) cuboid.

On the right part of Figure 1, we depict another possible drill-down, this time

to the (gender, nation - nation) cuboid. In this new context, some interesting

irregularities are revealed. First, while female users are linked evenly to users

from USA and Italy, when these links are conditioned based on the nationality

we can see that females from Italy are mainly linked to users from the same

country. Similarly, Greek males are mostly linked to users from Italy. Thus,

while cuboid (gender - nation) suggest a uniform relationship based on the

nationality of the target node, cuboid (gender, nation - nation) reveals that this

is not true for certain members of the user community. It is worth noting that

the majority of the links in the (gender, nation - nation) cuboid still follow the

same uniform pattern suggested by the (gender - nation) cuboid, since most

links emanate from female users in USA and male users in Italy. Thus, the

examples discussed above are exceptions to what is suggested by the (gender -

nation) cuboid. These are depicted in bold red color inside the (gender, nation

- nation) cuboid.

6

2.2. The Graph Cube

We assume that our dataset is depicted by a directed graph. The nodes

and edges of the graph may have several attributes associated with them. In

the data warehouse literature the grouping attributes used in the analysis are

called dimensions and the result-set of a particular grouping on the selected

dimensions is called cuboid. For n attributes there are 2n different groupings

or cuboids. All these cuboids form the data cube [3]. In our running example,

if we only concentrate for the moment on the graph nodes, the resulting data

cube has three dimensions: gender (G), nation (N) and profession (P) and 23=8

possible cuboids.

The data cube framework is extended to work on graph data by consider-

ing also, the relationships between aggregated graph nodes [8]. In particular,

the graph cube is the Cartesian product of two cubes: of the starting- and the

ending-cube, as is depicted in Figure 2. In this example, a graph cuboid can

be ((gender, *,*) - (*,nation,*)) or, for brevity, (gender - nation). The starting

nodes on this cuboid are aggregated graph nodes based on the gender attribute.

Similarly, the ending nodes are aggregations of raw graph nodes based on the

nation attribute. Starting and ending nodes in this cuboid are interconnected

according to the raw graph edges. These raw data edges are consolidated pro-

ducing a graph cube edge along with a measure. The user can choose any

combination of functions based on measure attributes on the constituent nodes

and edges. For instance, in a different example, we may use the age attribute of

users that are connected in a social network in order to compute in a data edge

the absolute age difference of their relationship and aggregate these values using

the AVG() or MAX() functions in the graph cube. In our running example, for

simplicity, we assume that the computed function is the SUM() function over a

single numerical measure on the edges.

Since the graph cube is a Cartesian product of two data cubes that form

lattices containing their corresponding cuboids, it may also represented as a

lattice constructed by the associated graph cuboids. As a result, the graph

cube builds on the solid foundation of multidimensional modeling guaranteeing

7

Figure 2: The Graph Cube

correct summarisability in decision support applications [15, 16]. The full graph

cube lattice for one of the real datasets used in our experiments is depicted in

Figure 3.

Each cuboid in the graph cube is a graph but it may also be represented

(virtually) as a relation the schema of which contains the attributes of the

starting and ending nodes in the cuboid as well as the computed aggregate. We

refer to this relation as the cuboid dual relation.

Definition 1. Cuboid dual relation

Let’s assume a cuboid C from the graph cube that consists of s1, s2,. . . , st

starting attributes, e1, e2, . . . , ew ending attributes and a numerical attribute a.

The cuboid dual representation is a relation DC with schema

DC(s1, s2, . . . , st, e1, e2, . . . , ew, a)

Each edge from the cuboid graph is mapped to a single record whose attribute

values are determined by the attributes of the constituent nodes and the value

of attribute a is the aggregate value associated with the edge, depending on the

selected aggregation function.

In Table 1, we depict the content of the cuboid (gender - nation) dual rela-

tion. Notice that the number of records in the relation is equal to the number

of edges in the cuboid.

3. Using Entropy to Navigate the Graph Cube

8

genders natione a p(a)

female USA 291 12.9%

female Italy 294 13.0%

male Italy 850 37.7%

make Greece 819 36.4%

Table 1: Dual relation of cuboid (gender - nation) from Figure 1. The last column is not

part of the relation but denotes the probability value associated with each record, computed

by normalizing the value of aggregate a (i.e. by dividing with SUM(a) computed over all

records), as in [17].This process is independent of the aggregate function used to compute a.

-

G-* N-* L-**-G*-N *-L

G,N-* G,L-*G-GG-N G-L N,L-*N-GN-N N-LL-GL-N L-L*-G,N *-G,L*-N,L

G,N,L-*G,N-GG,N-N G,N-LG,L-GG,L-N G,L-LG-G,N G-G,LG-N,L N,L-GN,L-N N,L-LN-G,N N-G,LN-N,LL-G,N L-G,LL-N,L*-G,N,L

G,N,L-GG,N,L-N G,N,L-LG,N-G,N G,N-G,LG,N-N,LG,L-G,N G,L-G,LG,L-N,LG-G,N,L N,L-G,N N,L-G,LN,L-N,LN-G,N,L L-G,N,L

G,N,L-G,N G,N,L-G,LG,N,L-N,LG,N-G,N,L G,L-G,N,L N,L-G,N,L

G,N,L-G,N,L

Figure 3: Selected drill-down edges and corresponding cuboids using external entropy rates,

Twitter dataset

3.1. Main concepts

Almost always, the analysts are attracted to data that are far away from

uniformity; data from which they can discover patterns and rules; data that are

hidden in peaks and valleys. In order to explore such cases of data skew, we

revisit the idea of the information entropy (or Shannon entropy [18]), which is

the expected value of the information contained in the data, and transform it in

a manner that is suitable for processing graph cuboids. The entropy captures

the amount of uncertainty; it increases when the data is closer to random or

there is noticeable uniformity and decreases when the data are less random or

there are high peaks. In our model, we look for skewed data distributions within

and across cuboids, in order to steer the user towards interesting parts of the

9

GR

El Fr De Al Ru Ro otherEn

96% 2% 0.4% 0.3% 0.3% 0.3% 0.1% 0.6%

Figure 4: Graph cube slice for the (nation - language) cuboid when the starting node nation

value is “Greece”. We observe that users from Greece communicate mostly with English-

speaking users in the Twitter dataset.

graph cube lattice. As a consequence, data in the graph cube that depict nearly

uniform behavior can be overlooked during exploratory analysis. Our intuition

is that the remaining parts are characterized by a high degree of disorder, and

it is exactly this disorder that an analyst seeks to explore and exploit.

In what follows we introduce two entropy metrics, which we use in our work.

The external entropy and the internal entropy. The first one that we also refer

to as cuboid entropy captures the entropy of a cuboid as a unit. We use this

metric in order to decide whether a cuboid provides interesting information with

respect to other cuboids in the lattice (as in a drill-down or roll-up operation).

The external entropy helps the user navigates the graph cube lattice and may

be used to prune a significant portion of the lattice from consideration.

Figure 3 highlights the pruning power of external entropy on a real dataset

crawled from Twitter. This dataset is discussed and analyzed in more detail in

the experimental section. There are three attributes on the nodes (user profiles)

of this data graph, namely gender (G), nation (N) and language (L), resulting in

64 cuboids depicted in the figure. The solid edges in the lattice denote drill-down

operations that are suggested by our techniques based on the external entropy of

the constituent cuboids, depicted in dark color. A drill-down operation allows

the user to navigate the graph-cube lattice by adding a new attribute in her

10

selection. In the figure we observe that the drill-down from cuboid (nation -

*) to (nation - language) is selected by our framework. This implies that by

grouping the ending nodes of the former cuboid by their language attribute

values we observe non-uniform interactions. This is because, in most nations,

users mainly use the English language to interact. Thus, a drill-down step at

this part of the lattice will help the analyst focus on this behavior.

Each cuboid that is selected based on these external entropy calculations is a

complex graph that can be quite large. The internal entropy helps the decision

worker navigate inside a large cuboid and identify non-uniform interactions.

In our running example, the internal entropy may be utilized in order to pick

portions of the (nation - language) cuboid that are characterized by very skewed

interactions. For example, if we slice the (nation - language) cuboid using Greece

as a starting node, then Figure 4 depicts the distribution of ending nodes based

on their language attribute values. Is it clear that the vast majority of the Greek

users (96%) communicate with English speaking users in this social network.

3.2. External Entropy

Let us consider a cuboid Ci from the graph cube and its dual relation DCi,

as defined in the previous section. Each record in the dual relation is associated

with an aggregate value a that denotes the result of the aggregate function

applied over the measure of the corresponding data edges. As suggested by [17]

each record (s1, . . . st, e1, . . . ew, a) of DCi can be viewed as a discrete probability

distribution P (s1, . . . st, e1, . . . ew) by normalizing the aggregate a value on each

record by the sum of all aggregate values in the instance of the relation. In

Table 1 we demonstrate this process on the (gender - nation) cuboid of our

running example. Thus, each record rj of DCi is associated with a probability

value p(aj) =
aj∑m

i=1(ai)
, as shown in the table (m refers to the number of records

in DCi).

We define the external entropy (eH) of a cuboid as the negative of the loga-

rithm of the probability distribution of the cuboid records in its dual relation.

11

Thus, the external entropy of Ci is calculated as

eH(Ci) = −
m∑
j=1

p(aj) ∗ log2 p(aj) (1)

Based on this formula, one can easily find the maximum and minimum values

that the external entropy can reach. The minimum value is when we have a

cuboid consisting of a single edge resulting in a dual relation that contains only

one record. In this case eHmin(Ci) = −p(a1) ∗ log2p(a1) = 0, where p(a1) = 1.

The maximum entropy value is obtained when all m records in DCi have the

same probability p(ai)=
1
m . In that case eHmax(Ci) = − log2(1

m).

Recall that each cuboid has a certain selection of starting and ending at-

tributes. If we add another attribute (starting or ending) in the cuboid Ci then

we get another cuboid Ck of the lattice. We refer to cuboid Ck as the ”child”

of Ci, while Ci is the ”parent” of Ck.

Let us consider the relationship between the external entropies of these

cuboids. Drilling down from the parent Ci to the child Ck we can calculate

the delta-entropy, i.e. the difference between the two external entropies as:

δ(Ck,Ci) = eH(Ck)− eH(Ci) (2)

This difference equals to the conditional entropy of the child given the parent.

Each record rj from the dual relation DCi of Ci by the drill down process results

in one or more detailed records in the dual relation of DCk. For example, record

(female, USA, 291) from the dual relation of the (gender - nation) cuboid of

Figure 1 results in two more detailed records, namely (female, Italy, USA, 1)

and (female, USA, USA, 290) in the dual relation of cuboid (gender, nation

- nation). Thus, the conditional entropy of the child given the parent can be

computed as

12

δ(Ck,Ci) =

m∑
j=1

p(aij) ∗ eH(Ck|Ci = aij)

= −
m∑
j=1

{p(aij) ∗
dj∑
o=1

p(ako |aij) ∗ log2 p(a
k
o |aij)} (3)

where p(ako |aij) =
ak
o

ai
j
, rko from DCk is a more detailed record of rij from DCi

and there are dj such records in DCk.

The delta entropy is a non-negative number. This is because the external

entropy of the child cuboid Ck is greater or equal to the external entropy of its

parent Ci. For the minimum and the maximum entropy of Ck it holds that

0 ≤ eHmin(Ci) = eHmin(Ck) ≤ eHmax(Ci) ≤ eHmax(Ck) (4)

The minimum entropy value of the child equals to the entropy of its parent,

i.e. when the delta entropy δ(Ck,Ci) = 0. In this case, each record of the dual

relation DCi results in a single more detailed record in DCk.

The maximum external entropy of the child is obtained when the aggregate

a of each record of DCi is distributed evenly among the more detailed records of

DCk and their number is maximized. Let dmax denote the number of possible

values of the attribute on which the drill down process was performed. In order

to maximize the entropy of a child cuboid, a record rij with aggregate value aij

in DCi is replaced during the drill-down with dmax more detailed records rko

(o ∈ [1..dmax]) in DCk with aggregate values ako=
ai
j

dmax
. Thus, the maximum

possible external entropy value of the child cuboid given its parent is

eHi
max(Ck) = −

m∑
j=1

p(aij) ∗ log2

p(aij)

dmax
(5)

Based on these observations, we introduce the external entropy rate in order

to quantify how informative, the process of drilling down from parent Ci to its

child Ck is. We define the external entropy rate as

eHrate(Ck, Ci) =
eH(Ck)− eH(Ci)

eHi
max(Ck)− eH(Ci)

(6)

13

Where 0 ≤ eHrate(Ck, Ci) ≤ 1. When this value is close to 1, the drill-down

process doesn’t change significantly the distribution of the records and, thus, no

new insights are given to the analyst. We can therefore exclude less interesting

navigations in the lattice by defining an external entropy rate threshold value

between zero and one. When the eHrate of a drill down surpasses the threshold,

then this drill down is omitted from consideration, as in Figure 3.

3.3. Internal Entropy

In order to gain insight into the distribution of records within a cuboid, we

introduce an additional type of entropy termed internal entropy. Due to the

fact that we consider directed data graphs, we distinguish between two kinds of

internal entropies namely starting internal entropy and ending internal entropy.

Consider cuboid Ci with s starting attributes and t ending attributes in

its dual relation DCi. Assume there are l distinct combinations of starting

attribute values of the form (sy1, s
y
2, . . . , s

y
s) in DCi and my is the sum of the

aggregate values of all such records, where y ∈ [1, l]. For each such combination

(indicated by parameter y) there are fy records in DCi with different combi-

nations of ending attribute values. Let zqy be sum of their aggregate values as

well. We calculate the starting internal entropy as the conditional entropy of the

ending attributes’ values conditioned from each starting attribute combination

of values. Thus, for the combination of starting attribute values indicated by y,

we define the starting internal entropy as

siH(Cy
i) = −

fy∑
j=1

p(qyj) ∗ log2 p(q
y
j) where p(qyj) =

zqy
my

(7)

The ending internal entropy eiH is defined in an analogous manner. As

in the case of external entropy, we introduce the internal entropy rate (for the

starting or ending internal entropy, respectively) as the fraction between the

(starting/ending) internal entropy and the maximum possible value of internal

14

entropy. For example, the starting internal entropy rate is defined as

siHrate(C
y
i) =

siH(Cy
i)

siHmax(Cy
i)

(8)

The value of the internal entropy rate is between 0 and 1 and can be used

to select the most prominent trends within a cuboid, as will be explained in the

next Section.

4. Entropy-guided Selection on Graph Cubes

4.1. Problem Statement

In our framework, we seek to utilize the proposed entropy metrics in order

select parts of the graph cube that satisfy the following objectives:

External-entropy Objective: Given a graph cube lattice GCL and an

external entropy rate threshold eHr return a set of drill-down navigations

navGCL = {e = (Ck, Ci)|eHrate(Ck, Ci) ≤ eHr}.

Internal Entropy Objective: Given a cuboid Ci and an internal en-

tropy rate threshold iHr, return all edges in Ci whose starting or ending

internal entropy rates are less or equal to iHr.

As we will show in this section, there are certain bounds that we can derive in

the entropy calculations that enable us to skip whole cuboids from consideration,

avoiding this ways computation of their entropy. This is the topic of the next

subsection.

4.2. Pruning Entropy Calculations

We will omit computing certain cuboids by utilizing the following observa-

tions. Consider three cuboids Ci, Ck and Cg where Ci is the parent of Ck and

Ck the parent of Cg. Assume that the external entropies for Ci and Cg have al-

ready been computed. We also note that while calculating the external entropy

of a cuboid we can also compute, at the same time the maximum entropy of its

children, as this computation does not require accessing a child cuboid’s data

15

(Equation 5). Based on the monotonicity of the entropy values we know that

eH(Ci) ≤ eH(Ck) ≤ eH(Cg) and eHi
max(Ck) ≤ eHk

max(Cg). When computing

the external entropy rate for edge (Ck, Ci) the only missing value is that of

eH(Ck) that takes values in the range [eH(Ci), eH(Cg)]. Thus, eHrate(Ck, Ci)

ranges in [0,
eH(Cg)−eH(Ci)

eHi
max(Ck)−eH(Ci)

]. If the upper bound
eH(Cg)−eH(Ci)

eHi
max(Ck)−eH(Ci)

is less or

equal to eHr, the edge would be added to the result of the computation without

calculating Ck and its external entropy.

For the rate of edge (Cg, Ck) it holds that

eHrate(Cg, Ck) =
eH(Cg)− eH(Ck)

eHk
max(Cg)− eH(Ck)

≤ eH(Cg)− eH(Ci)

eHi
max(Ck)− eH(Ci)

(9)

since eHi
max(Ck) ≤ eHk

max(Cg) and eH(Ci) ≤ eH(Ck).

If
eH(Cg)−eH(Ci)

eHi
max(Ck)−eH(Ci)

≤ eHr both edges (Ck, Ci) and (Cg, Ck) can be added

to the result without further calculations. With similar arguments, this bound

holds when Ci is an ancestor of Ck and Cg is a descendant of Ck in the lattice.

In this case, Equation 9 helps us bound the external entropy rates of all edges

in a path from cuboid Ci to cuboid Cg.

Based on this property we introduce in Figure 5 a recursive algorithm that

performs a binary search type of traversal across the levels of the lattice and

seeks paths whose constituent edges can be added immediately to the result set

navGCL, omitting this way the computation of the external entropy of cuboids

that are internal nodes in these paths. The algorithm takes as input the graph

cube lattice, an external rate threshold, and the upper and lower level s and m

of the lattice. In the initial invocation of the algorithm s = 0, indicating the top

level of the lattice that consists of the (∗ − ∗) cuboid and m is the lowest level

that contains the cuboid that includes all attributes for the starting and ending

nodes in the graph. The algorithm considers all pairs of cuboids (Cg(m), Ci(s)),

where cuboid Cg(m) is from level m and Ci(s) is from level s. If this is the first

time one of these cuboids is considered we compute its external entropy and the

maximum entropy of its children (lines 5-10). We then check whether the upper

bound from Equation 9 holds and if this the case, all edges from paths that

16

Input:grapCubeLattice : GCL, threshold : eHr, AscedantLevel :

s,DescendantLevel : m

1: procedure pruneLattice(GCL, eHr, s,m)

2: navGCL← ∅

3: for each Cuboids(Cg(m), Ci(s)) do

4: if Path(Cg(m), Ci(s)).exists

AND Path(Cg(m), Ci(s)).notV isited then

5: if Ci(s).notV isited then

6: (eH(Ci(s)), eH
i
max[])← findEh(Ci(s))

7: end if

8: if Cg(m).notV isited then

9: (eH(Cg(m)), eHg
max[])← findEh(Cg(m))

10: end if

11: eHrate(Cg(m), Ci(s)) ← min(
eH(Cg(m))−eH(Ci(s))
eHi

max(s)[k]−eH(Ci(s))
|k : Ck ∈

Ci(s).children AND Ck ∈ Path(Cg(m), Ci(s)))

12: if eHrate(Cg(m), Ci(s)) ≤ eHr then

13: for each path← Paths(Cg(m), Ci(s)) do

14: navGCL.add(edgespath)

15: end for

16: else

17: if m > s+ 1 then

18: navGCL.add(

19: pruneLattice(GCL,eHr,s,bm+s
2 c)

20:)

21: navGL.add(

22: pruneLattice(GCL,eHr,bm+s
2 c, m)

23:)

24: end if

25: end if

26: end if

27: end for

28: return navGCL

29: end procedure

Figure 5: A bisection algorithm for selecting edges from the graph cube lattice.
17

connect these cuboids are added to the result set, without further calculations

(lines 11-15). In order to obtain the tightest bound, we iterate over all children

of Ci(s) that are in the path to cuboid Cg(m). If the test fails, a recursive

calculation is triggered between levels s, b (m+s)
2 c and bm+s

2 c, m (lines 17-24).

We note that the selection process is over the edges of the lattice. This means

that it is quite possible that a particular cuboid is not suggested (i.e. none of

its adjacent edges is in the result set), while some of its descendant cuboids may

as well be. This is also evident in Figure 3.

We note that the algorithm of Figure 5 operates over the lattice space re-

quiring, in all of our experiments, less than 1 sec for selecting the appropriate

edges (excluding the entropy calculations that would be computed anyway by

a brute-force approach).

4.3. Applying our techniques on Data Cubes

The presented techniques also work for the case of regular (non-graph) data

cubes by modeling its cuboids (aggregate relations) as probability distributions

as well. Thus, the proposed external entropy rate can be used to reduce the

number of aggregations (cuboids) that the analyst should consider in a OLAP

data cube. Of course, in such cases, the internal entropy calculations are not

applicable, unless there is an application-specific way to distinguish between

”starting” and ”ending” attributes in the flat records.

4.4. Aggregation on Edge Attributes

In many applications, edges of the data graph may have attributes that

can be used in the analysis. Attributes on the edges of the data graph can be

aggregated creating a set of cuboids or an edge-cube lattice. For example, in

a social network a connection can have some attributes like the type T of the

relationship (family, friend, sibling etc.) and the date D that this connection was

established. The edge-cube lattice in this example contains four cuboids, namely

(*), (T), (D), and (D,T). These cuboids can participate in the Cartesian product

of our graph cube adding another dimension in the final cube. A cuboid in this

18

Figure 6: The graph cube with edge attributes

extended cube is described as (starting node-aggregation - edge-aggregation -

ending-node-aggregation), for example cuboid (N - T - G) as shown in Figure 6.

Using attributes available at the edges of the data graph does not signifi-

cantly alter the way the external entropy is calculated. Those attributes are

considered during the calculation of external entropy as another dimension of

the cuboid. Consequently, when looking within a cuboid, we can define the

internal edge entropy in an analogous manner as the starting/ending internal

entropies. We calculate the internal edge entropy as the conditional entropy of

the node (starting and ending) attributes’ values conditioned from each edge

attribute combination of values. Similarly, we can use the internal edge en-

tropy rate that takes values between 0 and 1 in order to focus on very skewed

subgraphs, with respect to the edge attribute values selected in the analysis.

5. Experiments

5.1. Experimental Set Up

In this section, we provide an experimental evaluation of the proposed frame-

work.3 We first present results using four real datasets. We then discuss addi-

tional experiments using synthetic datasets in Section 5.4. The first real dataset

consists of data sampled from Twitter. The second dataset is from VKontakte

(VK), the largest European on-line social networking service. The third dataset

3The code and some sample data from the presented experiments are available at

https://github.com/dritanbleco/GraphCubeFilteringUsingInformationEntropy.

19

is from Pokec, the most popular on-line social network in Slovakia. The first two

datasets were crawled by our team while the Pokec dataset is available at [19].

The last dataset contains citation information from U.S. patents [20].

Twitter VK Pokec Patent

Profiles (nodes) 34M 3.9M 1.6M 27.5M

Relations (edges) 910M 493M 31M 16.5M

Number of Attributes 3 5 6 3

Number of Cuboids 64 1024 4096 64

Graph Cube Records 4M 362M 66.3B 4.4M

Graph Cube Size 143MB 235GB 1.58TB 132MB

Graph Cube Computation Time 8 mins 87 mins 232 mins 7.5 mins

Cluster CPUs 30 × 4 Cores

Cluster RAM 30 × 8 GB

Cluster Storage 3 TB

Table 2: Description of real datasets and hardware (VMs) used

Table 2 provides details on these datasets. The Twitter dataset contains

3 attributes on the nodes (profiles): the gender, location and language used

from the profile. The VK dataset contains 5 attributes: birthyear, country,

city, gender and education level of the user. The Pokec dataset uses 6 node

attributes: age, region, gender, registration year, public profile and completion

percentage of the profile. Finally, the Patent dataset uses 3 node attributes:

grant year, country of first inventor and technological category.

All presented experiments were run in a cluster of 30 VMs with 4 low spec

cores each on the Cyclades cloud service for the Greek Research and Aca-

demic Community. All calculations were performed using the popular Apache

Spark [21] framework. In order to compute the graph cube for each dataset we

used a adaptation of the BUC algorithm for graph cubes, described in [13].

20

0

20

40

60

80

100
%

 O
f

R
ec

o
rd

s

1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
0

0

External Entropy Rate (%)

Twitter

VK

Pokec

Patent

0

(a) Scaling external entropy rate

0

20

40

60

80

100

0

1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
0

0

%
 o

f
R

ec
o

rd
s

Starting Internal Entropy Rate (%)

Twitter

Vk

Pokec

Patent

(b) Scaling starting internal entropy rate

0

20

40

60

80

100
0

1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
0

0

%
 o

f
R

ec
o

rd
s

Ending Internal Entropy Rate (%)

Twitter

VK

Pokec

Patent

(c) Scaling ending internal entropy rate

Figure 7: Records remaining in the graph cube using proposed entropy rates

5.2. External and Internal Entropy Statistics

In these experiments we provide evidence on the pruning power of the pro-

posed entropy metrics. In Figure 7a we plot the percentage of records that

are retained in the graph cube (y-axis) for all the datasets when we vary the

threshold for the external entropy rate (x-axis). The absolute sizes of the cor-

responding graph cubes are presented in Table 2. The figure reveals a steep

reduction in the graph cube sizes, when we decrease this threshold below a cer-

tain value. For the Twitter dataset only 14% of the cube remains for a threshold

rate of 3.5%. Moving up this threshold to 4%, the percentage jumps to 50% of

the Twitter graph cube. This suggests that there is skew in the distribution of

values across cuboids that we can investigate further using the internal entropy

rates (discussed next). On the other hand, an increase of the external entropy

rate threshold beyond 4% overwhelms the user with a significant increase in the

result set, as many near-uniform relationships are retained complicating further

analysis. Similar observations hold for the other three datasets.

21

0

2

4

6

8

10

12

14

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Ex
ec

u
ti

o
n

 T
im

e
(m

in
)

External Rate

Brute
Force

Bisection
Algorithm

(a) Pokec Dataset

0

2

4

6

8

10

12

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Ex
ec

u
ti

o
n

 T
im

e
(m

in
)

External Rate

Brute
Force

Bisection
Algorithm

(b) VK Dataset

0

1

2

3

4

5

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Ex
ec

u
ti

o
n

 T
im

e
(m

in
)

External Rate

Brute
Force

Bisection
Algorithm

(c) Twitter Dataset

0

1

2

3

4

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
Ex

ec
u

ti
o

n
 T

im
e

(m
in

)

External Rate

Brute
Force

Bisection
Algorithm

(d) Patent Dataset

Figure 8: Running times varying the external entropy threshold

We next evaluate the effects of using an internal entropy rate thresholding

scheme. Since we wanted to concentrate on the effects of this step, we did not

apply any thresholding on the external entropy (e.g. we used a threshold value

of 100% that retains all cuboids). Figures 7b and 7c illustrate the percentage

of records of the graph cubes retained for the four datasets, scaling the starting

and ending internal entropy rates, respectively. For a starting internal entropy

rate threshold of 10% we are left with just 0.7% of the Twitter graph cube,

0.003% of the VK graph cube, 0.002% of the Pokec graph cube and 0.00007%

of the Patent graph cube records. The same observations hold for the ending

internal entropy rate (Figure 7c). In conclusion, only a small percentage of the

billions of records in these graph cubes reveal interconnections that are far from

uniformity.

22

5.3. Performance Evaluation and Comparison to Alternative Techniques

In our prior work [13, 14], we presented a processing framework that first

computes the external entropy rates for all possible drill-down operations in

the graph cube lattice in order to select those that do not exceed the desired

threshold. In a latter step, the internal entropy rates for all cuboids that par-

ticipated in those drill-downs were examined. The new algorithm of Section 4

utilizes the bounds proposed in this work in order to prune many drill-downs

that can not possible reach the desired threshold. In Figure 8, we depict the

running times of our suggested framework compared to the brute-force method

of [13, 14]. The internal entropy rate threshold used was 20% and we varied

the external entropy rate threshold as shown in the x-axis of each plot. For

all datasets the bisection algorithm proposed in this work provides significant

benefits compared to the prior technique. Depending on the external entropy

rate and the dataset it reduces the running times from 8% up to 90%.

These plots also suggest that using a smaller external entropy rate threshold

results in faster execution because of the increased pruning achieved. One may

wonder whether by utilizing a small external entropy rate in order to prune

whole cuboids from consideration, there is a danger that certain skewed parts

of low entropy within those cuboids may be missed by our technique. In order

to assess this, we first computed the top-10 subgraphs ranked by their internal

entropy rates using the full graph cube of each dataset. This is equivalent to

using a 100% external entropy rate threshold. We then scaled the external

entropy rate and calculated the percentage of those subgraphs retained. Since

the number of target subgraphs is fixed to ten, this percentage can be interpreted

as both a ”recall” and a ”precision” indicator. In Figure 9 we present the results

for the four datasets. In the Twitter dataset, a 40% threshold retains 9 out of

the top-10 subgraphs, while a 20% threshold retains 6/10 of them reducing the

execution time from 1.5 minutes to 0.4 minutes (Figure 8c). For the VK dataset,

a threshold of 20% retains 90% of the subgraphs and reduces the execution time

from 9 minutes to 4 minutes. For the much larger Pokec dataset, a threshold of

only 10% retains 90% of the top subgraphs and reduces the execution time by a

23

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

%
 o

f
tr

en
d

s

External Entropy

Twitter

VK

Pokec

Patent

Figure 9: Percentage of top-10 subgraphs re-

tained by scaling the external entropy thresh-

old. Execution times are depicted in Figure 8

1

10

100

1,000

10,000

100,000

1,000,000

10,000,000

100,000,000

1,000,000,000

10,000,000,000

24,300 113,000 852,000 5,702,000 60,827,000 10,102,812,000 66,352,625,000

Su
m

 o
f

En
tr

o
p

y
fo

r
ea

ch
 c

u
b

o
id

 (
lo

g
1

0
)

Number of Records (as a result of Iceberg or internal entropy filtering)

Iceberg
Threshold

Internal
Entropy

Figure 10: The sum of Entropy (log 10), scal-

ing the number of records given as output

from the internal and iceberg threshold re-

spectively - Pokec dataset

factor of four, from 14 minutes to 3.2 minutes. Finally, for the Patent dataset,

a threshold of 10% retains all the subgraphs reducing the execution time from

1.6 minutes to 0.1 minutes.

The internal entropy rates we introduce in our framework enable us to select

subgraphs from the graph cube at a fine-grain. To our knowledge, there is

no alternative technique in the literature that can achieve the same goal while

using entropy to select portion of the graph cube. Existing techniques like the

iceberg cube [22] can be used to select portions of the graph cube by utilizing a

minimum support threshold. The intuition is that we would like to materialize

cube records that are the result from at least a minimum number of raw data

observations. Of course, this process does not take into consideration data skew,

as we do in our proposal. For comparison, in Figure 10 we compute the iceberg

graph cube in the case of the Pokec dataset, for different values of minimum

support. We then adjust the internal entropy rate threshold so as to retain

the same number of graph cube records (x-axis). In the figure we compare the

resulting subsets of the graph cube in terms of the entropy retained in them.

As expected our method maintains portions of the graph cube we significantly

lower entropy (more skew) than the iceberg method that tends to keep more

uniform associations. Nevertheless, we see of both techniques as complementary.

It is rather straightforward for our method to also utilize a minimum support

24

threshold, while performing the internal entropy calculations.

5.4. Experiments with Synthetic Datasets

In this section, we provide an experimental evaluation of the proposed frame-

work using two synthetically generated datasets. The first one, denoted as

Sedges, was derived from the Twitter dataset by adding two attributes on the

edges of the data graph. Each of these attributes was following the Zipf distri-

bution with parameters s=1.2 and n=1000.

The second dataset, Sskewed, is actually a family of datasets containing 5

attributes on the nodes of the data graph. Each attribute could either follow

the uniform distribution with n=1000 distinct values or the Zipf distribution

with parameters s=1.2 and n=1000. We created five instances of this dataset.

In the first instance, a single attribute was following the Zipf distribution and

the remaining four were uniformly distributed. We then progressively increased

the number of skewed attributes up to the point were all five of them were

following the Zipf distribution. In all instances the data edges between the

graph nodes were randomly constructed. In Figure 11 we show how different

levels of skew affect the total number of records remaining for analysis. The

external and internal entropy rate thresholds were 20%, in all cases. As our

techniques seek skewed interactions, the number of records retained increases

linearly with the number of skewed attributes.

Figure 12 illustrates the percentage of records selected when scaling the

internal edge entropy rate threshold. In order to concentrate on the effects

of this parameter only, we used all cuboids for analysis setting the external

entropy rate threshold to 100%. Similar to the internal entropy computations

on the node attributes, the entropy calculations on the edge attributes provide

significant pruning by selecting the most skewed parts of the data.

Finally, Figures 13 and 14 depict the running times when varying the ex-

ternal entropy threshold for the brute force algorithm of [13, 14] versus our bi-

section algorithm. The comparison is shown for dataset Sskewed (with 3 skewed

25

Dataset Sedges Dataset Sskewed

Profiles (nodes) 34M 4M

Relations (edges) 910M 493M

Number of Attributes 3 (nodes) + 2 (edges) 5

Number of Cuboids 256 (23 ∗ 22 ∗ 23) 1024 (25 ∗ 25)

Graph Cube Records 124M 250M (all skewed) - 392M (all uniform)

Graph Cube Size 143MB 199GB (all skewed) - 290GB (all uniform)

Graph Cube Comp. Time 31 mins 40 - 87 mins

Table 3: Description of synthetic datasets

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 2 3 4 5

%
 o

f
R

e
co

rd
s

Number of Skewed Attributes

Figure 11: The number of records remain us-

ing 20% of both threshold internal and exter-

nal entropy rate using skewed data from 1 to

5 attributes % (Sedge dataset)

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

%
 o

f
R

e
co

rd
s

Edge Internal Entropy Rate (%)

Figure 12: Scaling the edge internal entropy

rate using 100% external threshold rate (

Sedge dataset)

0

1

2

3

4

5

6

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Ex
ec

u
ti

o
n

 T
im

e
(m

in
)

External Rate

Brute
Force

Bisection
Algorithm

Figure 13: Varying the external entropy

threshold, Sskewed dataset

0

1

2

3

4

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Ex
ec

u
ti

o
n

 T
im

e
(m

in
)

External Rate

Brute
Force

Bisection
Algorithm

Figure 14: Varying the external entropy rate

threshold, Sedge dataset

26

attributes) and Sedge. The starting internal entropy threshold was 20%. In all

runs, the bisection algorithm was faster, providing gains up to 67% for Sskewed

and up to 33% for Sedge.

6. Related Work

The data cube operator, introduced in [3] defines a foundational framework

for declaring all possible aggregations along a list of selected domains, often re-

ferred to as ”dimensions”. The cube was proposed for flat, basket-type datasets.

However, it has been recently extended for the case of interconnected datasets.

The work in [8] introduced the graph cube that takes into account both attribute

aggregation and structure summarization of the underlying graphs. This work

mainly focuses on cuboids that aggregate the starting and ending nodes on

the same dimensions, e.g. (nation - nation). More general aggregations that

differentiate between the starting and ending nodes of the graph are not specifi-

cally mentioned but can be addressed under a cross-cuboid computation that is

mentioned as an extension. In our work, we elevate such cuboids as first-class-

citizens in the graph cube framework. As our experiments with real datasets

indicate, such cuboids often hold significant insights for the underlying intercon-

nections. Another distinction is that the work of [8] considers all records in the

proposed graph cube. As we show in our work, only a small part of a complex

graph cube carries interesting information when analyzed under the lens of our

entropy-based navigation framework.

A recent work [23] considers aggregate attributed graphs. The authors name

their model as a hyper graph cube and show how to compute it using MapRe-

duce batches. The hyper graph cubes aggregate separately attributes at vertices

and edges and then calculate the Cartesian product between them. Thus, they

do not exploit and analyze the existing relationships under different levels of

aggregation on the starting and ending nodes of the graph. OLAP-style sum-

marization in the context of RDF graphs has been recently studied in [24]. The

most significant difference from the previous works in graph cubes, is that our

27

techniques address the vast size and complexity of the produced cuboids. To

the best of our knowledge we are the first that utilize the entropy in order to

filter the information of a graph cube.

The authors of [17] propose a novel framework for reconstructing multidi-

mensional data from stored aggregates using the maximum entropy principle.

In a nutshell, the proposed technique finds the model with the least information

(maximum entropy) given a set of constraints that can be the 2n − 2 different

aggregations in the cube (excluding the raw data and the grand total aggregate).

The method uses a multi-pass algorithm called Iterative Proportional Filtering

(IPF) that converges to the maximum entropy solution. IPF assumes that C,

which is the part of the dataset we want to reconstruct, fits in memory. For

the case of graph cubes C can be a whole cuboid that is often much larger than

main memory. In that case, each iteration makes
(
n
k

)
passes over C. Each pass

updates the marginals of order k (the dimensionality of the known aggregates

we use for reconstruction). In our context, these are all cuboids that are ances-

tors of the given cuboid C. In a latter step, reconstructed values based on the

maximum entropy model can be compared to the original data. IPF necessi-

tates access to all ancestor cuboids, while this is not required in our technique

where all calculations are internal in C. For these reasons, we have been able to

execute our entropy calculations on datasets containing billions of records, while

the largest dataset used in [17] has 50K tuples. Thus, the technique of [17] is

suitable for small datasets or when only a small part of a cuboid needs to be re-

constructed or evaluated for possible deviations. Nevertheless, both techniques

are a testimony to the benefits of using an information theoretic approach based

on entropy that is not subjective or application dependent.

The information entropy was first introduced in [18] as a measure of unpre-

dictability of information content. It measures how much information there is

in an event. Entropy is frequently used for splitting decisions when computing

Decision Trees [25] The information gain measures the change in information

entropy from a prior state to new state after a split. Our external entropy rate

measure utilizes the information gain metric in the nominator of its respective

28

formula but differs in that it also takes into consideration the maximum possible

increase in the entropy of a child cuboid in a drill down step. By conditioning

the information gain over this quantity we are able to obtain the bounds that

our selection algorithm utilizes.

Recently, an entropy-based model has been proposed [26] in order to estimate

the strength of social connections by analyzing users’ occurrences in space and

time. This work considers triplets of (user, location, time) data and utilizes

entropy to measure the diversity of user co-occurrences. In our work, we utilize

entropy to measure the diversity within and across graph cuboids. The works

of [27, 28] consider the case of analyzing very large collections of smaller data

graphs, while in this work we consider a singe massive graph that is under

investigation.

Application of graph mining techniques [29, 30, 31, 32, 33, 34, 35, 36] is

orthogonal to our framework and can be used in conjunction. For instance,

the work of [33] looks for structural patterns (or motifs) in the k-hop neighbor-

hood of a node. The work of [32] suggests aggregation of graph nodes scores

on vertices that contain some attribute of interest. Unlike conventional iceberg

queries, the authors propose an aggregation method that is based on random

walks and demonstrate their effectiveness and scalability. The authors of [37] ex-

plore data mining techniques to analyze tagging behavior on social graphs. The

authors of [38] introduce graph-pattern association rules (GPAR). These rules

extend traditional association rules with graph patterns that specify association

between entities in a social graph.

Our techniques can also be used in conjunction with existing graph summa-

rization tools like Perseus [39] that summarizes an input graph using statistics

such as PageRank, radius, degree and flags outlier nodes [40], graph visualization

tools, exploration tools [41], or with systems that recommend promising visual-

izations on aggregated datasets like SEEDB [42]. For example, the work of [43]

takes a collection of input graphs and computes a graph summary where visual

enhancements (colors, edge thicknesses, etc) are used to display relative frequen-

cies of common features or to highlight differences between the input set. In this

29

setting, our techniques can be used to compute interesting subgraphs (using our

internal entropy calculations) that will then feed the interactive visualization en-

gine. The work of [41] proposes a data cube exploration framework that seeks

to provide sub-second levels of interactive cube exploration. This is achieved

via speculative execution of queries based on the observed user workflow. The

authors propose four basic traversal patterns that enable full exploration of the

data cube lattice. Our work can be combined with this technique for prioritizing

certain navigation steps (for instance a roll-up or drill down operation) based

on the entropy bounds we introduce. SEEDB [42] suggests interesting visualiza-

tions if they depict large deviations from some reference (that can be a historical

dataset or the rest of the data). Eventhough their techniques also investigate

grouping operations, they are primarily concerned with selecting sub-sets from a

list of candidate grouping dimensions. In contrast our techniques seek to suggest

drill-down operations that increase the scope of the analysis by introducing new

dimensions to the selected group-bys. Thus, they may complement that work

for the case of OLAP analytics. Our techniques may also be combined with the

work of [44] that seeks intuitive drill-down operations from aggregated views of

data by utilizing the proposed entropy metrics in order to suggest interesting

drill-downs.

7. Conclusions

In this work we first revisited the framework of graph cubes and proposed

an intuitive representation of it as the Cartesian product of independent data

cubes on the starting and ending nodes of the graph and, as an extension, of

available attributes on the edges. We then addressed the enormous size and

complexity of the resulting graph cubes by proposing an efficient algorithm

that selects interesting parts of the aggregate graphs using information entropy

calculations. Key to our algorithm is its ability to skip entropy calculations over

large chunks of the graph cube by utilizing relationships between the cuboids in

the graph cube lattice and some interested entropy bounds we proposed. Our

30

experimental results validate the effectiveness of our techniques in managing

graph cubes containing tens of billions of records.

8. Acknowledgements

This research is financed by the Research Centre of Athens University of

Economics and Business, in the framework of the project entitled “Original

Scientific Publications”.

9. Appendix

Lemma 1. Let us assume that there are two cuboids Ci and Ck and that Ci is

the parent of Ck. Then, the delta entropy δ(Ck,Ci) = eH(Ck) − eH(Ci) can be

calculated as:

δ(Ck,Ci) =

m∑
j=1

p(aij) ∗ eH(Ck|Ci = aij)

= −
m∑
j=1

{p(aij) ∗
dj∑
o=1

p(ako |aij) ∗ log2 p(a
k
o |aij)} (10)

where p(ako |aij) =
ak
o

ai
j
, rko from DCk is a more detailed record of rij from DCi

and there are dj such records in DCk.

Proof. By definition, the two cuboids differ on a single attribute y added in

child cuboid Ck. If there are m records in the dual representation DCi of the

parent cuboid (Section 2.2), these can be described as

DCi(s
1
1, s

1
2, . . . , s

1
t , e

1
1, e

1
2, . . . , e

1
w, a

1)

DCi(s
2
1, s

2
2, . . . , s

2
t , e

2
1, e

2
2, . . . , e

2
w, a

2)

. . .

DCi(s
m
1 , s

m
2 , . . . , s

m
t , e

m
1 , e

m
2 , . . . , e

m
w , a

m)

Also, let us assume that N= a1 + a2 + a3 + + am. We can calculate the

external entropy of cuboid Ci as

eH(Ci) = −
m∑
j=1

p(aj) ∗ log2 p(aj) , where p(aj) =
aj

N
(11)

31

or eH(Ci) = −(a1

N ∗ log2
a1

N + a2

N ∗ log2
a2

N ++ am

N ∗ log2
am

N)

Given the child Ck of cuboid Ci, then for each record in the dual repre-

sentation DCi(s
j
1, s

j
2, . . . , s

j
t , e

j
1, e

j
2, . . . , e

j
w, a

j) of Ci, j ∈ [1 . . .m] there are dj

more detailed records in the dual representation DCk, where dj ∈ [1 . . . d] and

d denotes the number of distinct values of the newly added attribute y in the

drill-down process. Thus, the dual representation of cuboid Ck contains records

of the form (y is the additional attribute in the child)

DCk(s11, s
1
2, . . . , s

1
t , y

1
1 , e

1
1, e

1
2, . . . , e

1
w, a

1
1)

DCk(s11, s
1
2, . . . , s

1
t , y

1
2 , e

1
1, e

1
2, . . . , e

1
w, a

1
2)

. . .

DCk(s11, s
1
2, . . . , s

1
t , y

1
dj
, e11, e

1
2, . . . , e

1
w, a

1
d1

)

. . .

DCk(sm1 , s
m
2 , . . . , s

m
t , y

m
1 , e

m
1 , e

m
2 , . . . , e

m
w , a

m
1)

DCk(sm1 , s
m
2 , . . . , s

m
t , y

m
2 , e

m
1 , e

m
2 , . . . , e

m
w , a

m
2)

. . .

DCk(sm1 , s
m
2 , . . . , s

m
t , y

m
dj
, em1 , e

m
2 , . . . , e

m
w , a

m
dm

)

Since the same number of data edges are aggregated in both cuboids, it holds

that

a1 = a11 + a12 + · · ·+ a1d1
,

a2 = a21 + a22 + · · ·+ a2d2
,

. . .

am = am1 + am2 + · · ·+ amdm

(12)

The external entropy of Ck is calculated as

eH(Ck) =− (
a11
N
∗ log2

a11
N

+
a12
N
∗ log2

a12
N

+ ...+
a1d1

N
∗ log2

a1d1

N

+
a21
N
∗ log2

a21
N

+
a22
N
∗ log2

a22
N

+ ...+
a2d2

N
∗ log2

a2d2

N
+

....

+
am1
N
∗ log2

am1
N

+
am2
N
∗ log2

am2
N

+ ...+
amdm

N
∗ log2

amdm

N
)

32

The delta entropy δ(Ck,Ci) will be computed as

δ(Ck,Ci) =eH(Ck)− eH(Ci)

δ(Ck,Ci) =
a1
N
∗ log2

a1
N
− (

a11
N
∗ log2

a11
N

+
a12
N
∗ log2

a12
N

+ ...+
a1d1

N
∗ log2

a1d1

N
)+

a2
N
∗ log2

a2
N
− (

a21
N
∗ log2

a21
N

+
a22
N
∗ log2

a22
N

+ ...+
a2d2

N
∗ log2

a2d2

N
)+

. . .

am
N
∗ log2

am
N
− (

am1
N
∗ log2

am1
N

+
am2
N
∗ log2

am2
N

+ ...+
amdm

N
∗ log2

amdm

N
)

We observe that (Equation 12)

a1
N
∗ log2

a1
N

=
a11
N
∗ log2

(a11 + a12 + ...+ a1d1
)

N
+
a12
N
∗ log2

(a11 + a12 + ...+ a1d1
)

N
+ ...+

a1d1

N
∗ log2

(a11 + a12 + ...+ a1d1
)

N

a2
N
∗ log2

a2
N

=
a21
N
∗ log2

(a21 + a22 + ...+ a2d2
)

N
+
a22
N
∗ log2

(a21 + a22 + ...+ a2d2
)

N
+ ...+

a2d2

N
∗ log2

(a21 + a22 + ...+ a2d2
)

N

. . .

am
N
∗ log2

am
N

=
am1
N
∗ log2

(am1 + am2 + ...+ amdm
)

N
+
am2
N
∗ log2

(am1 + am2 + ...+ amdm
)

N
+ ...+

amdm

N
∗ log2

(am1 + am2 + ...+ amdm
)

N

Thus,

δ(Ck,Ci) = eH(Ck)− eH(Ci)

a1
1

N ∗ (log2

(a1
1+a1

2+...+a1
d1

)

N − log2
a1
1

N) +
a1
2

N ∗ (log2

(a1
1+a1

2+...+a1
d1

)

N − log2
a1
2

N)

+ · · ·+ a1
d1

N ∗ (log2

(a1
1+a1

2+...+a1
d1

)

N − log2

a1
d1

N) +

33

a2
1

N ∗ (log2

(a2
1+a2

2+...+a2
d2

)

N − log2
a2
1

N) +
a2
2

N ∗ (log2

(a2
1+a2

2+...+a2
d2

)

N − log2
a2
2

N)

+ · · ·+ a2
d2

N ∗ (log2

(a2
1+a2

2+...+a2
d2

)

N − log2

a2
d2

N)+

. . .

+
am
1

N ∗(log2
(am

1 +am
2 +...+am

dm
)

N −log2
am
1

N)+
am
2

N ∗(log2
(am

1 +am
2 +...+am

dm
)

N −log2
am
2

N)

+ · · ·+ am
dm

N ∗ (log2
(am

1 +am
2 +···+am

dm
)

N − log2
am
dm

N)

and since logX − logY = log(X
Y)

δ(Ck,Ci) =

a1
1

N ∗log2

(a1
1+a1

2+...+a1
d1

)

a1
1

+
a1
2

N ∗log2

(a1
1+a1

2+...+a1
d1

)

a1
2

+...+
a1
d1

N ∗log2

(a1
1+a1

2+...+a1
d1

)

a1
d1

+

a2
1

N ∗log2

(a2
1+a2

2+...+a2
d2

)

a2
1

+
a2
2

N ∗log2

(a2
1+a2

2+...+a2
d2

)

a2
2

+...+
a2
d2

N ∗log2

(a2
1+a2

2+...+a2
d2

)

a2
d2

+

. . .

+
am
1

N log2
(am

1 +am
2 +...+am

dm
)

am
1

+
am
2

N ∗log2
(am

1 +am
2 +...+am

dm
)

am
2

+...+
am
dm

N ∗log2
(am

1 +am
2 +...+am

dm
)

am
a

This can be written as (Equation 12)

δ(Ck,Ci) =

a1
1

N ∗ log2
a1

a1
1

+
a1
2

N ∗ log2
a1

a1
2

+ ...+
a1
d1

N ∗ log2
a1

a1
d1

+

a2
1

N ∗ log2
a2

a2
1

+
a2
2

N ∗ log2
a2

a2
2

+ ...+
a2
d2

N ∗ log2
a2

a2
d2

+

. . .

+
am
1

N log2
am

am
1

+
am
2

N ∗ log2
am

am
2

+ ...+
am
dm

N ∗ log2
am

am
dm

Due to the fact that
aj

aj
w
≥ 1 for all j ∈ [1 . . .m] and w ∈ [1 . . . dj] then log2

aj

aw
j
≥

0. This implies that the delta entropy cannot be negative. Moreover we can

write the above equation as

δ(Ck,Ci) =

a1
1

N ∗
a1

a1
1
∗ a1

1

a1
∗ (− log2

a1
1

a1
) +

a1
2

N ∗
a1

a1
2
∗ a1

2

a1
∗ (− log2

a1
2

a1
) + · · ·+

a1
dj

N ∗
a1

a1
d1

∗ a1
d1

a1
∗ (− log2

a1
d1

a1
)+

a2
1

N ∗
a2

a2
1
∗ a2

1

a2
∗ (− log2

a2
1

a2
) +

a2
2

N ∗
a2

a2
2
∗ a2

2

a2
∗ (− log2

a2
2

a2
) + · · ·+

a2
d2

N ∗
a2

a2
d2

∗ a2
d2

a2
∗ (− log2

a2
d2

a2
)+

. . .

am
1

N ∗
am

am
1
∗ am

1

am
∗ (− log2

am
1

am
) +

am
2

N ∗
am

am
2
∗ am

2

am
∗ (− log2

am
2

am
) + · · ·+

am
dm

N ∗ am

am
dm

∗ am
dm

am
∗ (− log2

am
dm

am
)

the above formula can be simplified further resulting in

34

δ(Ck,Ci) =

−(a1

N ∗
a1
1

a1
∗ log2

a1
1

a1
+ a1

N ∗
a1
2

a1
∗ log2

a1
2

a1
+ ...+ a1

N ∗
a1
d1

a1
∗ log2

a1
d1

a1
+

a2

N ∗
a2
1

a2
∗ log2

a2
1

a2
+ a2

N ∗
a2
2

a2
∗ log2

a2
2

a2
+ ...+ a2

N ∗
a2
d2

a2
∗ log2

a2
d2

a2
+

. . .

+ am

N ∗
am
1

am
∗ log2

am
1

am
+ am

N ∗
am
2

am
∗ log2

am
2

am
+ ...+ am

N ∗
am
dm

am
∗ log2

am
dm

am
)

Moreover, it holds that

p(aij) =
ai
j

N

and

p(ako |aij) =
ak
o

ai
j

The above equation can be rewritten using these probabilities as

δ(Ck,Ci) =

−(p(a1) ∗ p(a11|a1) ∗ log2 p(a
1
1|a1) + p(a1) ∗ p(a12|a1) ∗ log2 p(a

1
2|a1) + · · ·+

p(a1) ∗ p(a1d1
|a1) ∗ log2 p(a

1
d1
|a1) +

p(a2) ∗ p(a21|a2) ∗ log2 p(a
2
1|a2) + p(a2) ∗ p(a22|a2) ∗ log2 p(a

2
2|a2) + · · ·+

p(a2) ∗ p(a2d2
|a2) ∗ log2 p(a

2
d2
|a2) +

. . .

p(am)∗p(am1 |am)∗ log2 p(a
m
1 |am)+p(am)∗p(am2 |am)∗ log2 p(a

m
2 |am)+ · · ·+

p(am) ∗ p(amdm
|am) ∗ log2 p(a

m
dm
|am))

and consequently

δ(Ck,Ci) =

−(p(a1) ∗ [p(a11|a1) ∗ log2 p(a
1
1|a1) + p(a12|a1) ∗ log2 p(a

1
2|a1) + · · ·+

p(a1d1
|a1) ∗ log2 p(a

1
d1
|a1)] +

p(a2) ∗ [p(a21|a2) ∗ log2 p(a
2
1|a2) + p(a22|a2) ∗ log2 p(a

2
2|a2) + · · ·+

p(a2d2
|a2) ∗ log2 p(a

2
d2
|a2)] +

. . .

p(am) ∗ [p(am1 |am) ∗ log2 p(a
m
1 |am) + p(am2 |am) ∗ log2 p(a

m
2 |am) + · · ·+

p(amdm
|am) ∗ log2 p(a

m
dm
|am)])

=−(p(a1) ∗
∑d1

o=1 p(a
1
o|a1) ∗ log2 p(a

1
o|a1) +

p(a2) ∗
∑d2

o=1 p(a
2
o|a2) ∗ log2 p(a

2
o|a2) +

. . .

+ p(am) ∗
∑dm

o=1 p(a
m
o |am) ∗ log2 p(a

m
o |am))

35

Which is Equation 3.

References

[1] B. Amann, M. Scholl, Gram: A Graph Data Model and Query Languages,

in: Proceedings of the ACM conference on Hypertext, New York, NY, USA,

1992, pp. 201–211.

[2] R. H. Güting, Graphdb: Modeling and Querying Graphs in Databases, in:

VLDB, 1994, pp. 297–308.

[3] J. Gray, A. Bosworth, A. Layman, H. Pirahesh, Data Cube: A Relational

Aggregation Operator Generalizing Group-By, Cross-Tab, and Sub-Total,

in: ICDE, 1996, pp. 152–159.

[4] C. Chen, X. Yan, F. Zhu, J. Han, P. S. Yu, Graph OLAP: Towards Online

Analytical Processing on Graphs, in: ICDM, 2008, pp. 103–112.

[5] A. Ghrab, O. Romero, S. Skhiri, A. A. Vaisman, E. Zimányi, A Framework

for Building OLAP Cubes on Graphs, in: Proceedings of ADBIS, 2015.

[6] K. Khan, K. Najeebullah, W. Nawaz, Y. Lee, OLAP on structurally signif-

icant data in graphs, CoRR abs/1401.6887.

[7] X. Li, J. Han, H. Gonzalez, High-dimensional OLAP: A minimal cubing

approach, in: (e)Proceedings of the Thirtieth International Conference on

Very Large Data Bases, Toronto, Canada, August 31 - September 3 2004,

2004, pp. 528–539.

[8] P. Zhao, X. Li, D. Xin, J. Han, Graph cube: On warehousing and olap

multidimensional networks, in: Proceedings of ACM SIGMOD, 2011.

[9] W. H. Inmon, Building the Data Warehouse, QED Information Sciences,

Inc., Wellesley, MA, USA, 1992.

36

[10] R. Kimball, M. Ross, The Data Warehouse Toolkit: The Complete Guide

to Dimensional Modeling, 2nd Edition, John Wiley & Sons, Inc., New York,

NY, USA, 2002.

[11] N. Roussopoulos, Y. Kotidis, M. Roussopoulos, Cubetree: Organization of

and Bulk Incremental Updates on the Data Cube, in: Proceedings of the

ACM SIGMOD International Conference on Management of Data, Tucson,

Arizona, USA., 1997, pp. 89–99.

[12] Y. Sismanis, A. Deligiannakis, N. Roussopoulos, Y. Kotidis, Dwarf: Shrink-

ing the PetaCube, in: Proceedings of the 2002 ACM SIGMOD International

Conference on Management of Data, Madison, Wisconsin, June 3-6, 2002,

2002, pp. 464–475.

[13] D. Bleco, Y. Kotidis, Entropy-based Selection of Graph Cuboids, in: Pro-

ceedings of the 5th International Workshop on Graph Data Management

Experiences and Systems (GRADES), 2017.

[14] D. Bleco, Y. Kotidis, Finding the Needle in a Haystack: Entropy Guided

Exploration of Very Large Graph Cubes, in: Proceedings of the Interna-

tional Workshop on Big Data Visual Exploration and Analytics (BigVis),

Vienna, Austria, March 2018, 2017.

[15] H. Lenz, A. Shoshani, Summarizability in OLAP and Statistical Data

Bases, in: Ninth International Conference on Scientific and Statistical

Database Management, Proceedings, August 11-13, 1997, Olympia, Wash-

ington, USA, 1997, pp. 132–143.

[16] J. Mazón, J. Lechtenbörger, J. Trujillo, A survey on summarizability issues

in multidimensional modeling, Data Knowl. Eng. 68 (12) (2009) 1452–1469.

[17] T. Palpanas, N. Koudas, Entropy Based Approximate Querying and Ex-

ploration of Datacubes, in: Proceedings of SSDM, 2001, pp. 81–90.

[18] C. E. Shannon, A mathematical theory of communication, SIGMOBILE

Mob. Comput. Commun. Rev. 5 (1) (2001) 3–55.

37

[19] J. Leskovec, A. Krevl, SNAP Datasets: Stanford large network dataset

collection, http://snap.stanford.edu/data (Jun. 2014).

[20] B. Hall, A. Jaffe, M. Trajtenberg, The NBER Patent Citations Data File:

Lessons, Insights and Methodological Tools, Working papers (2001).

[21] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, I. Stoica, Spark:

Cluster Computing with Working Sets, in: Proceedings of HotCloud, 2010.

[22] K. Beyer, R. Ramakrishnan, Bottom-up computation of sparse and iceberg

cube, in: Proceedings of SIGMOD, 1999, pp. 359–370.

[23] Z. Wang, Q. Fan, H. Wang, K. Tan, D. Agrawal, A. El Abbadi, Pagrol:

Parallel graph olap over large-scale attributed graphs, in: ICDE, 2014.

[24] E. A. Azirani, F. Goasdoué, I. Manolescu, A. Roatis, Efficient OLAP op-

erations for RDF analytics, in: ICDE Workshops, 2015, pp. 71–76.

[25] J. R. Quinlan, Induction of decision trees, Mach. Learn. 1 (1) (1986) 81–

106.

[26] H. Pham, C. Shahabi, Y. Liu, EBM: An Entropy-Based Model to Infer

Social Strength from Spatiotemporal Data, in: Proc. of SIGMOD, 2013.

[27] D. Bleco, Y. Kotidis, Business Intelligence on Complex Graph Data, in:

Proceedings of the 2012 Joint EDBT/ICDT Workshops, Berlin, Germany,

2012, pp. 13–20.

[28] D. Bleco, Y. Kotidis, Graph Analytics on Massive Collections of Small

Graphs, in: Proceedings of the EDBT, Athens, Greece, 2014, pp. 523–534.

[29] A. Arora, M. Sachan, A. Bhattacharya, Mining Statistically Significant

Connected Subgraphs in Vertex Labeled Graphs, in: International Confer-

ence on Management of Data, SIGMOD 2014, Snowbird, UT, USA, June

22-27, 2014, 2014, pp. 1003–1014.

38

[30] M. Elseidy, E. Abdelhamid, S. Skiadopoulos, P. Kalnis, GRAMI: frequent

subgraph and pattern mining in a single large graph, PVLDB 7 (7) (2014)

517–528.

[31] B. Kimelfeld, P. G. Kolaitis, The complexity of mining maximal frequent

subgraphs, ACM Trans. Database Syst. 39 (4) (2014) 32:1–32:33.

[32] N. Li, Z. Guan, L. Ren, J. Wu, J. Han, X. Yan, gIceberg: Towards Iceberg

Analysis in Large Graphs, in: 29th IEEE International Conference on Data

Engineering, ICDE 2013, Brisbane, Australia, April 8-12, 2013, 2013, pp.

1021–1032.

[33] W. E. Moustafa, A. Deshpande, L. Getoor, Ego-centric Graph Pattern

Census, in: Proceedings of ICDE, 2012, pp. 234–245.

[34] G. Qi, C. C. Aggarwal, T. S. Huang, Community Detection with Edge Con-

tent in Social Media Networks, in: IEEE 28th International Conference on

Data Engineering (ICDE 2012), Washington, DC, USA (Arlington, Vir-

ginia), 1-5 April, 2012, 2012, pp. 534–545.

[35] A. Silva, W. M. Jr., M. J. Zaki, Mining Attribute-structure Correlated

Patterns in Large Attributed Graphs, PVLDB 5 (5) (2012) 466–477.

[36] Y. Tao, C. Sheng, J. Li, Finding Maximum Degrees in Hidden Bipartite

Graphs, in: Proceedings of the ACM SIGMOD International Conference

on Management of Data, SIGMOD 2010, Indianapolis, Indiana, USA, June

6-10, 2010, 2010, pp. 891–902.

[37] M. Das, S. Thirumuruganathan, S. Amer-Yahia, G. Das, C. Yu, An Expres-

sive Framework and Efficient Algorithms for the Analysis of Collaborative

Tagging, VLDB J. 23 (2) (2014) 201–226.

[38] W. Fan, X. Wang, Y. Wu, J. Xu, Association Rules with Graph Patterns,

PVLDB 8 (12) (2015) 1502–1513.

39

[39] D. Koutra, D. Jin, Y. Ning, C. Faloutsos, Perseus: An Interactive Large-

Scale Graph Mining and Visualization Tool, PVLDB 8 (12).

[40] J. Sun, H. Qu, D. Chakrabarti, C. Faloutsos, Neighborhood Formation and

Anomaly Detection in Bipartite Graphs, in: Proceedings of ICDM, 2005.

[41] N. Kamat, P. Jayachandran, K. Tunga, A. Nandi, Distributed and Inter-

active Cube Exploration, in: IEEE 30th International Conference on Data

Engineering, Chicago, ICDE 2014, IL, USA, March 31 - April 4, 2014, 2014,

pp. 472–483.

[42] M. Vartak, S. Rahman, S. Madden, A. G. Parameswaran, N. Polyzotis,

SEEDB: Efficient Data-Driven Visualization Recommendations to Support

Visual Analytics, PVLDB 8 (13) (2015) 2182–2193.

[43] D. Koop, J. Freire, C. T. Silva, Visual Summaries for Graph Collections,

in: IEEE Pacific Visualization Symposium, PacificVis 2013, February 27

2013-March 1, 2013, Sydney, NSW, Australia, 2013, pp. 57–64.

[44] M. Joglekar, H. Garcia-Molina, A. G. Parameswaran, Interactive Data Ex-

ploration with Smart Drill-down, in: Proceedings of ICDE, 2016.

40

	Introduction
	Comparison to Prior Work
	Manuscript Organization

	Data Model
	Motivational Example
	The Graph Cube

	Using Entropy to Navigate the Graph Cube
	Main concepts
	External Entropy
	Internal Entropy

	Entropy-guided Selection on Graph Cubes
	Problem Statement
	Pruning Entropy Calculations
	Applying our techniques on Data Cubes
	Aggregation on Edge Attributes

	Experiments
	Experimental Set Up
	External and Internal Entropy Statistics
	Performance Evaluation and Comparison to Alternative Techniques
	Experiments with Synthetic Datasets

	Related Work
	Conclusions
	Acknowledgements
	Appendix

