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a b s t r a c t

Streaming analytics that requires integration and aggregation of heterogeneous anddistributed streaming
and static data is a typical task in many industrial scenarios including the case of industrial IoT where
several pieces of industrial equipment such as turbines in Siemens are integrated into an IoT. The OBDA
approach has a great potential to facilitate such tasks; however, it has a number of limitations in dealing
with analytics that restrict its use in important industrial applications. We argue that a way to overcome
those limitations is to extend OBDA to become analytics, source, and cost aware. In this work we propose
such an extension. In particular, we propose an ontology, mapping, and query language for OBDA, where
aggregate and other analytical functions are first class citizens. Moreover, we develop query optimisation
techniques that allow to efficiently process analytical tasks over static and streaming data.We implement
our approach in a system and evaluate our system with Siemens turbine data.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

Ontology Based Data Access (OBDA) [1,2] is an approach to access
information stored inmultiple data sources via an abstraction layer
that mediates between the data sources and data consumers. On
the one hand, this layer uses an ontology to provide a uniform
conceptual schema that describes the problem domain of the un-
derlying data independently of how and where the data is stored.
On the other hand, this layer uses declarative mappings to specify
how the ontology is related to the data by associating elements of
the ontology to queries over data sources. The ontology and map-
pings are used to transform queries over ontologies, i.e., ontological
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queries, into data queries over data sources. As well as abstracting
away from details of data storage and access, the ontology and
mappings provide a declarative, modular and query-independent
specification of both the conceptual model and its relationship to
the data sources; this simplifies development and maintenance
and allows for easy integration with existing data management
infrastructure.

In Fig. 1 we present a conceptual architecture of classical OBDA
where on the data layer there is static relational data. Mappings
are used to connect the data to the ontology and access to the
data is realised by means of data extraction queries posed over the
ontology.

A number of systems that at least partially implement OBDA
have been recently developed; they include D2RQ [3], Mastro [4],
morph-RDB [5], Ontop [6], OntoQF [7], Ultrawrap [8], Virtuoso,
Spyder, and others [9,10]. Some of them were successfully used in
various applications including cultural heritage [11], governmental
organisations [12], and industry [13–16].

Despite their success, OBDA systems are not tailored towards
analytical tasks that are naturally based on data aggregation and
correlation.Moreover, they offer a limited or no support for queries
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Fig. 1. Conceptual architecture of OBDA.

that combine streaming and static data. At the same time, such
tasks would naturally benefit from OBDA as we illustrate next.

Example 1. A typical scenario that involves analytical tasks and
requires access to static and streaming data is industrial diagnos-
tics and monitoring of equipment. Siemens has several service
centres dedicated to diagnostics of thousands of power-generation
appliances located across the globe [15]. A usual task of a service
centre is to detect in real-time potential faults of a turbine caused
by, e.g., an undesirable pattern in temperature’s behaviour within
various components of the turbine. Consider a (simplified) exam-
ple of such a task:

In a given turbine, report all temperature sensors that are reli-
able (i.e., with the average score of validation tests at least 90%)
and whose measurements within the last 10 min were similar
(i.e., Pearson correlated by at least 0.75) to measurements re-
ported last year by a reference sensor that had been functioning
in a critical mode.

This task requires to extract, aggregate, and correlate static data
about the turbine’s structure, streaming data produced by up to
2000 sensors installed in different parts of the turbine, and histori-
cal operational data of the reference sensor stored in multiple data
sources. Accomplishing such a task currently requires to pose a
collection of hundreds of queries, themajority ofwhich are seman-
tically the same (they ask about temperature), but syntactically
differ (they are over different schemata). This takes up to 80% of the
overall diagnostic time that Siemens engineers aswell as engineers
in other large service companies typically have to spend [15].

ODBA can naturally allow to save a lot of this time since on-
tologies can help to ‘hide’ the technical details of how the data is
produced, represented, and stored in data sources, and to show
only what this data is about. Thus, one would be able to formulate
this diagnostic task using only one ontological query instead of a
collection of hundreds data queries that today have to bewritten or
configured by IT specialists. Clearly, this collection of queries does
not disappear: the OBDA query transformation will automatically

Fig. 2. Conceptual architecture of analytics-enhanced OBDA.

compute them from the high-level ontological query using the
ontology and mappings.

Equipment diagnostics such as the ones in the example scenario
typically make heavy use of aggregation and correlation functions
as well as arithmetic operations. In our running example, the
aggregation functionmin and the comparison operator≥ are used
to specifywhatmakes a sensor reliable and todefine a threshold for
similarity. Performing such operations in OBDA can be done either
on the level of (i) ontological queries or (ii) data queries specified
in the mappings. We argue that both options are unsatisfactory.
Indeed, Option (i) requires that all relevant values should be re-
trieved prior to performing grouping and arithmetic operations.
This can behighly inefficient, as it fails to exploit source capabilities
(e.g., access to pre-computed averages), and value retrieval may be
slow and/or costly, e.g., when relevant values are stored remotely.
Moreover, it adds to the complexity of application queries, and thus
limits the benefits of the abstraction layer.We illustrate this option
in Fig. 1 where a devoted middleware preprocesses analytical
queries by ‘isolating’ in them data extraction queries, and post-
process answers retrieved by the latter queries using the analytical
functions of the original analytical queries. Option (ii) requires that
all aggregation functions and comparison operators are moved to
mapping queries. This is brittle and inflexible, as values such as 90%
and 0.75, which are used to define ‘reliable sensor’ and ‘similarity’,
cannot be specified in the ontological query, but must be ‘hard-
wired’ in the mappings, unless an appropriate extension to the
query language or the ontology are developed. In order to address
these issues, OBDA should become

analytics-aware by supporting declarative representations of
basic analytics operations and using these to efficiently answer
higher level queries.
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In practice this requires enhancing OBDA technology with ontolo-
gies, mappings, and query languages capable of capturing opera-
tions used in analytics, but also extensive modification of OBDA
query preprocessing components, i.e., reasoning and query trans-
formation, to support these enhanced languages.

Moreover, analytical tasks as in the example scenario should
typically be executed continuously in data intensive and highly
distributed environments of streaming and static data. Efficiency of
such execution requires non-trivial query optimisation. However,
optimisations in existing OBDA systems are usually limited to
minimisation of the textual size of the generated queries, e.g. [17],
with little support for distributed query processing, and no support
for optimisation for continuous queries over sequences of numer-
ical data and, in particular, computation of data correlation and
aggregation across static and streaming data. In order to address
these issues, OBDA should become

source and cost aware by supporting both static and streaming
data sources and offering a robust query planning component
and indexing that can estimate the cost of different plans, and
use such estimates to produce low-cost plans.

Note that the existence of materialised and pre-computed sub-
queries relevant to analytics within sources and archived historical
data that should be correlated with current streaming data implies
that there is a range of query plans which can differ dramatically
with respect to data transfer and query execution time.

In this paper wemake the first step to extend OBDA systems to-
wards becoming analytics, source, and cost aware. In particular this
will make such OBDA solution compliant to the Siemens require-
ments for turbine diagnostics. Consider a high level illustration of
our approach in Fig. 2: diagnostic engineers in diagnostic centres
can create analytical queries and workflows over ontologies by
relying on classical and analytical constructs offered by ontologies
(that are analytically enhanced). Such semantic analytical queries
are then rewritten with the help of the enhanced ontology and
unfolded into analytical data queries with the help of enhanced
(analytics-aware) mappings. The resulting data queries are opti-
mised and executed over the underlying data sources.

We see particular benefits of our analytics-aware OBDA for
Internet of Things (IoT). Indeed, in the case of industrial IoT, that
is typically considered in the context of Industry 4.0, various smart
machines that are equipped with sensors exchange messages and
resort to various sources of information to optimise production
outputs and costs. In such IoT context it is critical to have analytical
rather than data access queries that are supported by state-of-the-
art OBDA systems. In Fig. 2 we schematically depict an IoT with
turbines and external data.

The list of our contributions is the following:

• We proposed analytics-aware OBDA components, i.e.,

– the ontology language DL-LiteaggA that extends DL-LiteA
with

∗ attributes that have bag (multiset) extensions and
closed-world semantics, and
∗ concepts that are defined using results of the eval-

uation of aggregate functions;

– the query language STARQL over DL-LiteA ontologies
that combine streaming and static data;

– the analytics-aware relational query language SQL� for
static and streaming data; and

– a mapping language relating DL-LiteaggA vocabulary and
STARQL constructs with SQL� queries over static and
streaming data.

• We developed efficient query transformation techniques for
turning STARQL queries over DL-LiteaggA ontologies into SQL�

queries using our mappings.
• We developed the following source and cost aware query

optimisation techniques:

– Query optimisations on live streams:

∗ in-memory indexing structures and algorithms;
∗ the adaptive stream indexing technique that de-

cides when to build the aforementioned indexes.

– Query optimisations on archived information:

∗ efficient storage of archived streams for hybrid op-
erations (i.e., complex analytics between live and
archived streams);
∗ materialised window signatures that summarise

important features of archived streams;
∗ the Locality Sensitive Hashing technique for fast

computation of complex hybrid operations.

• We developed elastic infrastructure that automatically dis-
tributes analytical computations and data over a computa-
tional cloud for faster query execution.
• We implemented

– the highly optimised engine ExaStream capable of han-
dling complex streaming and static queries;

– a dedicated STARQL2SQL� translator that transforms
STARQL queries into queries over static and streaming
data; and

– an integrated OBDA system that relies on the aforemen-
tioned and third-party components.

• We conducted a performance evaluation of our OBDA system
with large scale Siemens data using analytical tasks.

Delta from previous publications

We reported some ideas on analytics-aware OBDA in our paper
in the emerging applications track of ISWC 2016 [18].Moreover, an
earlier version of the STARQL query language has been presented
in [19] and of ExaStream in [20,21]. However, this work signifi-
cantly extends our previous publications as follows:

• DL-LiteaggA analytics-aware ontology language: In [18] we gave
only a short introduction of DL-LiteaggA . In this submission
we formally introduce its syntax and semantics, study the
computational properties of the associated problems of satis-
fiability and query answering; we also include formal proofs.
• STARQL query language: The version of STARQL presented in

this paper extends the one in [19] with the ability to use
aggregate concepts. Moreover, in [18] we only briefly men-
tioned that this can be done, while in this submission we give
an extended presentation of the STARQL language. Finally, in
this paper we give an operational semantics of STARQLwhich
we did not present previously and that is more practical from
the point of view of implementation.
• OBDA and mappings with bag semantics: In [18] we only gave

examples of mappings connecting predicates of DL-LiteaggA
ontologies to relational queries. In this submission we for-
mally introduce such mappings as a component of extended
OBDA settings. Contrary to the set-based semantics of classical
OBDA settings [1], extended OBDA settings andmappings are
given a semantics that is based on bags, which ismore faithful
to the semantics of SQL and database systems. We also study
conjunctive query answering and rewriting in this setting.
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• ExaStream backend optimisation techniques: In [18] we intro-
duced materialised window signatures for hybrid operations
between live and archived streams. In this submission we
combine materialised window signatures with the Locality
Sensitive Hashing technique, for fast computation of com-
plex analytics between live and archived streams. The com-
bined algorithm requires much less computation. Addition-
ally we introduce some hybrid in-memory indexing struc-
tures specifically tailored for streaming information along
with the adaptive stream indexing technique that decides
when its beneficial to build these indexes on a specific win-
dow.
• ExaStream implementation: The implementation of ExaS-

tream as presented in [18,20,21] is extended in this sub-
mission by implementing the aforementioned optimisation
techniques.
• Evaluation: In [18] we evaluated the effect of distribution

and the effect of materialised window signatures on complex
analytics between live and archived streams.
In this submission we additionally evaluate our novel in-
memory indexing structures and the adaptive stream index-
ing technique.
Furthermorewe evaluate the integration ofmaterialisedwin-
dow signatures with the Locality Sensitive Hashing tech-
nique.

Structure of the paper

In Sections 2–5 we introduce our novel OBDA components, in
Section 6 we discuss howwe implemented a system that accounts
for them, in Sections 7–8 we present backend optimisations and
their evaluations, and in Sections 9–10wediscuss relatedwork and
conclude.

We now give a more detailed structure.
In Section 2we startwith an analytics-aware ontology language

DL-LiteaggA for capturing static aspects of the domain of interest
where ontologies and aggregate functions are treated as first class
citizens. In Section 3 we introduce STARQL that allows to combine
static conjunctive queries over DL-LiteaggA with continuous diag-
nostic queries that involve simple combinations of time aware
data attributes, timewindows, and functions, e.g., correlations over
streams of attribute values. Using STARQL queries one can retrieve
entities (e.g., sensors) that pass two ‘filters’: static and continuous.
In our running example a static ‘filter’ checks whether a sensor is
reliable, while a continuous ‘filter’ checks whether the measure-
ments of the sensor are Pearson correlatedwith themeasurements
of reference sensor. In Section 4 we present an analytics-aware
relational query language for static and streaming data SQL�. In
Section 5 we connect the previous sections: we explain how to
bridge STARQL queries over DL-LiteaggA and SQL� queries.

To this end we review necessary background on the classical
OBDA approach to bridge ontological and data oriented queries
with the help of mappings and a two-stage query transformation
procedure that reformulates ontological queries into data queries.
Then, we explain howwe extend the classical mappings to our set-
ting by definingmappings that relate aggregate and non-aggregate
concepts, properties, and attributes occurring in queries over on-
tologies into database schemata and relate functions and con-
structs of STARQL continuous ‘filters’ into corresponding functions
and constructs over databases, and to extend the two-stage query
transformation procedure. Then, we dive in detailed example-
driven explanations of STARQL query transformation procedures,
and discuss their correctness. In Section 6 we present our system
that combines our novel components: (i) ontology language, (ii)
query language over ontologies, (iii) query language over data, and
(iv)mappings between the ontology and data query languages and

query transformation procedures. In Section 7 we discuss how to
optimise backend queries in SQL�. Then, in Section 8 we present
experimental evaluation of the backend where we emphasise the
effect of the optimisations. Finally, in Section 9 we discuss related
work, and in Section 10 we conclude and present future work.

2. DL-LiteaggA : An ontology language with aggregates

Our ontology language,DL-LiteaggA , is an extension ofDL-LiteA [1]
with concepts that are based on aggregation of attribute values.
The semantics for such concepts adapts the closed-world seman-
tics [22]. The main reason why we rely on this semantics is to
avoid the problem of empty answers for aggregate queries under
the certain answers semantics [23,24]. In DL-LiteaggA we distinguish
between individuals and data values from countable sets Γ and D
that intuitively correspond to the datatypes of RDF. For simplicity
of presentation we assume that D is the set of rational numbers.
We also distinguish between atomic roles P that denote binary
relations between pairs of individuals, and attributes F that denote
binary relations between individuals and data values. In DL-LiteaggA ,
attributes F are allowed to contain the same tuple multiple times
as these duplicates might be produced by the evaluation of the
mappings over the database. Retaining these duplicates is crucial
for applications that employ aggregation and recent works caring
for data aggregation have considered similar settings [25,26].

Before proceeding to the formal definitions, we introduce the
notion of a bag (or multiset) which, informally, is a collection that
allows for multiple repetitions of its elements. A bag over a set M
is a function Ω : M → N0, where N0 is the set of nonnegative
integers. The value Ω(c) is called the multiplicity of c in Ω . A bag
Ω is finite if there are finitely many c ∈ M with Ω(c) > 0. The
empty bag ∅ over M is the bag satisfying ∅(c) = 0 for all c ∈ M .
We also define the binary operation of bag intersection ∩b for such
bags as follows: for every c ∈ M , it holds that (Ω1 ∩b Ω2)(c) =
min{Ω1(c), Ω2(c)}.

2.1. Syntax of DL-LiteaggA

Assume a vocabulary consisting of countably infinite and pair-
wise disjoint sets standing for atomic concepts C, atomic roles R,
and atomic attributes A. Let also agg be an aggregate function
(e.g.,min,max, count, countd, sum, avg), let r be a rational number,
and ◦ be a comparison predicate on rational numbers, e.g., ≥,≤
, <,>,=, or ̸=. The grammar for concepts and roles in DL-LiteaggA
is defined based on the above vocabulary as follows, where A ∈ C,
P ∈ R, F ∈ A:

B→ A | ∃R, C → B | ∃F ,

E → ◦r (agg F ), R→ P | P−.

We call expressions B, C , and E basic, extended, and aggregate
concepts, respectively, and call expression R a basic role.

A DL-LiteaggA ontology O is a finite set of axioms. We consider
the following types of axioms: (i) concept inclusions of the form
E ⊑ B and C ⊑ B, and role inclusions of the form R1 ⊑ R2, (ii)
functionality axioms on roles of the form (funct R), and (iii) concept,
role, and attribute denials of the form B1⊓B2 ⊑ ⊥, R1⊓R2 ⊑ ⊥, and
F1 ⊓ F2 ⊑ ⊥, respectively.

Let a, b ∈ Γ and v ∈ D. A DL-LiteaggA dataset D is a finite
bag over the set of assertions of the form A(a), P(a, b), and F (a, v)
where in addition it is required that assertions of the form A(a) and
P(a, b) occur in D at most once. Intuitively, D allows only multiple
occurrences for attribute assertions.

We require that if (funct R) is in O, then R′ ⊑ R is not in O
for any R′ different from R. This syntactic condition, as well as the
fact that we do not allow concepts of the form ∃F and aggregate
concepts to appear on the right-hand side of inclusions ensure
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good computational properties ofDL-LiteaggA . The former restriction
is inherited from DL-LiteA while the latter can be shown using
techniques of [22] (see following sections).

Example 2. The following concept inclusion comprises aDL-LiteaggA
ontology capturing the notion of reliable sensors as this was intro-
duced in our running example:

≥0.9 (min testScore) ⊑ Reliable. (1)

Here Reliable is an atomic concept, testScore is an atomic attribute,
and ≥0.9 (min testScore) is an aggregate concept that captures
individuals with one or more testScore values whose minimum is
at least 0.9.

2.2. Semantics of DL-LiteaggA

Wedefine the semantics ofDL-LiteaggA in termsof interpretations
I = (∆I, ·I) that assign to individuals in Γ an element of their
domain ∆I , assign to data values in D the corresponding rational
number in Q, and assign to atomic concepts A ∈ C, to atomic roles
P ∈ R, and to atomic attributes F ∈ A, a subset of ∆I , a subset
of ∆I

× ∆I , and a bag over ∆I
× Q, respectively. Moreover, for

an atomic role P ∈ R, a basic role R, and a data value r ∈ D,
interpretation I satisfies:

(P−)I = {(a, b) ∈ ∆I
×∆I

| (b, a) ∈ PI
},

(∃R)I = {a ∈ ∆I
| exists b ∈ ∆I with (a, b) ∈ RI

},

(∃F )I = {a ∈ ∆I
| exists v ∈ Qwith FI(a, v) > 0},

(◦r (agg F ))I = {a ∈ ∆I
|

agg{|v : m | v ∈ Q,m = FI(a, v)|} ◦ rI}.

Here, {|·|} denotes a bag and its meaning is well-defined since bags
over a set M can been seen as sets of elements c : m where c ∈ M
and m ∈ N0. Also, expression agg{|·|} denotes the evaluation of
aggregate agg over the provided bag {|·|}. In our setting, expression
agg{|·|} always evaluates to a rational number.

Please note that although the semantics interprets attributes
F as bags, extended concepts based on attributes, such as ∃F , are
given a classical set-based semantics. This is in contrast to the
recent work in [25] that defined bag interpretations as functions
assigning to concepts and roles bags over∆I and∆I

×∆I , respec-
tively. In the following, we assume the standard name assumption
for interpretations I, which requires that individuals and data
values are interpreted as themselves, i.e., cI = c for each c ∈ Γ ∪D.
This effectively makes ∆I and Q equal to Γ and D, respectively.

The notion of amodel for interpretations I,DL-LiteaggA ontologies
O, and datasets D is defined similarly to [22,25]. We say that an
interpretation I is amodel ofO ∪D, written as I |= O ∪D, if all of
the following hold:

(i) aI ∈ AI if D(A(a)) = 1, (aI, bI) ∈ PI if D(P(a, b)) = 1, and
FI(aI, vI) = D(F (a, v)) for all assertions of the form A(a),
P(a, b), and F (a, v);

(ii) SI1 ⊆ SI2 , for each concept and role inclusion axiom S1 ⊑ S2
in O;

(iii) (a, b) ∈ RI and (a, c) ∈ RI implies b = c , for each
functionality axiom (funct R) in O;

(iv) SI1 ∩ SI2 = ∅, for each denial axiom S1 ⊓ S2 ⊑ ⊥ in O where
S1 and S2 are both concepts or roles;

(v) FI
1 ∩b FI

2 = ∅, for each denial axiom F1 ⊓ F2 ⊑ ⊥ in O.

Requirements (ii)–(iv) are as in the set case, whereas require-
ment (v) is the natural extension of requirement (iv) to bags [25].
Requirement (i) is a mixture of set and closed-world semantics to
reflect the closed-world nature of attributes: models ofO∪D shall
interpret attributes F according to the assertions on F found in the
dataset.

Example 3. Consider the dataset

D = {|Reliable(s0) : 1, testScore(s1, 0.9) : 2,
testScore(s2, 0.95) : 1, testScore(s2, 0.98) : 1,
testScore(s3, 0.5) : 1, testScore(s3, 0.9) : 1|}.

For every model I of D and the ontology in Eq. (1), it holds that
(≥0.9 (min testScore))I = {s1, s2} and s0 ∈ ReliableI; thus
{s0, s1, s2} ⊆ ReliableI .

An important reasoning task in ontologies is satisfiability check-
ing that asks whether an ontology has a model. Given a DL-LiteaggA
ontology O and dataset D, one can easily show that satisfiability
checking for O ∪ D can be decided in polynomial time in the size
of O ∪D provided that computation of aggregate functions can be
done in polynomial time in the size ofD. Indeed, this can be shown
by a reduction to satisfiability checking in DL-LiteA.

Proposition 1. Let O be a DL-LiteaggA ontology with aggregate
functions computable in polynomial time. Let also D be a dataset.
Then, satisfiability checking for O ∪ D can be decided in polynomial
time in the size of O ∪ D.

Proof. GivenO and D we construct in polynomial time in the size
ofO∪D a DL-LiteA ontologyO′ and a datasetD′ such thatO∪D is
satisfiable if and only ifO′∪D′ is satisfiable. Then, the claim follows
from Theorem 4.22 in [1], which shows that satisfiability checking
in DL-LiteA can be done in polynomial time in the size of both the
ontology and the dataset.

In proof of the above claim, let O′ be the DL-LiteA ontology
obtained from O by replacing each aggregate concept of the form
◦r (agg F ) appearing in the axioms ofOwith a fresh atomic concept
U . Let D′ be defined as the set of assertions corresponding to D
extended with the set of assertions {U(a) | agg{|v : m | v ∈

Q,m = D(F (a, v))|} ◦ r}, for each aggregate concept ◦r (agg F ) in
O and concept U introduced in O′ for ◦r (agg F ).

Suppose now that I = (∆I, ·I) is a model of O ∪ D and let
I ′ = (∆I, ·I

′

) be the interpretation such that: (i) SI
′

= SI , for
every S ∈ C ∪ R, (ii) FI′

= {(a, v) ∈ ∆I
× ∆I

| FI(a, v) > 0},
for every F ∈ A, and (iii) UI′

= (◦r (agg F ))I , for every concept U
introduced in O′ for an aggregate concept ◦r (agg F ) in O. It is now
straightforward to check that I ′ is a model of O′ ∪ D′.

For the other direction, assume that I ′ = (∆I′ , ·I
′

) is amodel of
O′∪D′. Observe that conceptsU and∃F appear only in the left-hand
side of concept inclusion axioms in O′, thus, the subinterpretation
I ′′ = (∆I′ , ·I

′′

) of I ′ defined such that SI
′′

= SI
′

, UI′′
= {aI

′

∈

∆I′
| U(a) ∈ D′}, and FI′′

= {(aI
′

, vI′ ) ∈ ∆I′
× Q | F (a, v) ∈ D′},

where S ∈ C ∪ R, F ∈ A, and U is the concept corresponding to
an aggregate concept ◦r (agg F ), is also a model of O′ ∪ D′. Now,
let I = (∆I′ , ·I) be the interpretation such that SI = SI

′′

, for
every S ∈ C ∪ R, and FI′ (a, v) = D(F (a, v)), for every F ∈ A. By
construction, I is a model of O ∪ D. □

2.3. Query Answering in DL-LiteaggA

Our query language for querying DL-LiteaggA ontologies will be
the class of conjunctive queries that consists of all expressions of
the form q(x⃗) :- conj(x⃗), where x⃗ is a tuple of variables of arity
k, conj is a conjunction of atoms of the form A(t), E(t), P(t1, t2),
or F (t, s) with A ∈ C, P ∈ R, F ∈ A, E = ◦r (agg F ), and
t, t1, t2 being either variables or constants from Γ , and s being
either a variable or constant from D. We also assume that every
variable in x⃗ appears in some atom in conj. Following the standard
approach for ontologies, we adopt the semantics of certain answers
for answering conjunctive queries. Informally, the certain answers
cert(q,O,D) to a query q over the union of an ontology O and
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dataset D comprises all tuples of arity k over Γ ∪ D for which the
query is entailed by the ontology. Formally, this set is defined as

cert(q,O,D) = {t⃗ ∈ (Γ ∪ D)k | I |= conj(t⃗) for each
model I of O ∪ D}.

Example 4. Let O be the ontology in Eq. (1) and D be the
dataset specified in Example 3. Consider also the conjunctive query
q(x) :- Reliable(x) that asks for all reliable sensors. Following the
observation made in Example 3, every model I of O ∪ D satisfies
{s0, s1, s2} ⊆ ReliableI , hence, the certain answers to q over O ∪ D
is cert(q,O,D) = {s0, s1, s2}.

We now show that conjunctive query answering in DL-LiteaggA
is tractable, assuming that computation of aggregate functions can
be done in time polynomial in the size of the data. This is proved in
the proposition below by reducing conjunctive query answering
over ontologies with aggregates to the corresponding problem
over aggregate-free ontologies with closed predicates [22]. This
is possible due to the fact that each aggregate concept and each
attribute behaves like a closed predicate in the setting of [22], in
the sense that its interpretation – given an ontologyO and dataset
D– is determined and fixed by D. Before stating the proposition,
we introduce the notion of safety forDL-LiteA ontologies with closed
predicates, where the syntax of such ontologies follows that of
DL-LiteaggA with the exception that concept inclusions are formed
only between extended concepts, whereas the semantics is the
standard one [1].

Definition 1 ([22]). LetO be a DL-LiteA ontology and Σ be a finite
set of predicates from C∪R∪A. We call the pair (O, Σ) an ontology
with closed predicates and say that (O, Σ) is safe if there are no
concepts C1, C2 and no role R such that (i) C1 is satisfiable in O
and different from ∃R′ with O |= R′ ⊑ R, (ii) O |= C1 ⊑ ∃R and
O |= ∃R− ⊑ C2, (iii) C2 mentions a predicate in Σ , and (iv) every
role R′ with O |= C1 ⊑ ∃R′ and O |= R′ ⊑ R mentions a predicate
outside Σ .

The theorem below states that safety of DL-LiteA ontologies
with closed predicates makes conjunctive query answering equiv-
alent to the corresponding problem in DL-LiteA ontologies.

Theorem 1 ([22]). Let (O, Σ) be a DL-LiteA ontology with closed
predicates and let q(x⃗) be a conjunctive query of arity k. If (O, Σ)
is safe, then, for every dataset D satisfiable with (O, Σ), the certain
answers to q(x⃗) over (O, Σ) and D coincide with the certain answers
to q(x⃗) over O ∪ D.

We are now able to prove that query answering in DL-LiteaggA is
tractable.

Proposition 2. Let O be a DL-LiteaggA ontology with aggregate func-
tions computable in polynomial time, let D be a dataset, and let q(x⃗)
be a conjunctive query of arity k and of fixed size. Checking whether
a⃗ ∈ cert(q,O,D) for a tuple a⃗ ∈ (Γ ∪ D)k can be decided in
polynomial time in the size of O ∪ D.

Proof. Given O, D, and q we construct in polynomial time in
the size of O ∪ D a safe DL-LiteA ontology with closed predicates
(O′, Σ), a dataset D′, and a query q′ such that cert(q,O,D) =
certΣ (q′,O′,D′), where certΣ (q′,O′,D′) denotes the set of certain
answers to q′ over (O′, Σ) and D′. By safety of (O′, Σ) and The-
orem 1, we have that certΣ (q′,O′,D′) coincides with the certain
answers to q′ over the DL-LiteA ontology O′ ∪ D′ whenever D′ is
satisfiable with (O′, Σ). Since satisfiability of (O′, Σ) with D′ can
be checked in polynomial time in the size of O′ and D′ [1,22] and
the same is true for checking whether a tuple a⃗ from (Γ ∪ D)k is

a certain answer to q(x⃗) over O′ ∪ D′ [1, Theorem 5.17], the claim
then follows.

In proof of the above claim, let O′ and D′ be defined as in the
proof of Proposition 1. Let also q′ be the query obtained from q
by replacing each aggregate atom E(v) in q with the atom U(v),
where E is ◦r (agg F ) and U is the concept used to replace E in
the derivation of O′ from O. Let also Σ comprise all attributes F
appearing inO′ and all concepts U inO′ for an aggregate concept E
inO. Given that conceptsU and∃F appear only in the left-hand side
of concept inclusion axioms inO′ and that the only predicates inΣ
are exactly the U ’s and all attributes F in O′, this means that there
is no concept C2 that could be employed to satisfy requirements (ii)
and (iii) of Definition 1, thus, O′ is safe.

To show that cert(q,O,D) = certΣ (q′,O′,D′), it suffices to
prove that there is a one-to-one correspondence between the
models of O ∪ D and those of (O′, Σ) and D′ such that if I is a
model of the former ontology and I ′ is the correspondingmodel of
the latter one, then I |= conj(a⃗) if and only if I ′ |= conj(a⃗), for all
tuples a⃗ ∈ (Γ ∪ D)k. Observe that a one-to-many correspondence
between these two sets of models has been already established
in the proof of Proposition 1, which considered the mapping of
the DL-LiteaggA ontology O ∪ D to the DL-LiteA ontology O′ ∪ D′
without the use of closed predicates. Notice, however, that in the
presence of the closed predicates in Σ and for the models I ′′ and
I ′ ofO′∪D′ considered in the last paragraph of that proof, we have
that I ′′ = I ′, thus, this correspondence becomes one-to-one. Note
also that the equivalence I |= conj(a⃗) if and only if I ′ |= conj(a⃗)
holds trivially by construction of I ′ on the basis of I. □

In addition to the tractability of query answering in DL-LiteaggA ,
one can show that the standard query rewriting algorithm of [1]
proposed for DL-LiteA as a part of query transformation procedure
(with an extension discussed in Section 5) also works for DL-LiteaggA
and SQL.

2.4. Discussion

Note that our aggregate concepts can be encoded as aggregate
queries over attributes as soon as the latter are interpreted under
the closed-world semantics. Indeed, the certain answers for the
atomic query q(x) :- (◦r (agg F ))(x) would be the same as for the
following aggregate query:

sql◦r (agg F )(x) = SELECT x FROM F (x, y)

GROUP BY x HAVING agg(y) ◦ r. (2)

Thus, one can reduce conjunctive query answering over our
analytics awareDL-LiteaggA ontologies to aggregate query answering
over classical DL-LiteA ontologies as soon as the closed-world
semantics is exploited for the interpretation of data attributes. At
the same time, we argue that in a number of applications, such
as monitoring and diagnostics at Siemens [15], explicit aggregate
concepts of DL-LiteaggA give us significant modelling and query
formulation advantages over DL-LiteA since in such applications
concepts are naturally based on aggregate values of potentially
many different attributes. For instance, in Siemens the notion of
reliability is naturally based on aggregation over various attributes,
i.e., it should be modelled as Ei ⊑ Reliable for many different
aggregate concepts Ei, and reliability is also commonly exploited in
diagnostic queries. In the case of DL-LiteaggA , in all such diagnostic
queries it suffices to use only one atom Reliable(x). In contrast,
in the case of DL-LiteA, each such diagnostic query would have
to contain the whole union Reliable(x) ∪i sqlEi (x). Thus, Siemens
diagnostics queries over DL-LiteA would be much more complex
than the ones over DL-LiteaggA . Moreover, in the case of DL-LiteA,
the diagnostics queries of the form sqlEi (x) will have to be adjusted
each time the notion of reliability is modified, while, in the case
of DL-LiteaggA , only the ontology and not the queries should be
adjusted.
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Fig. 3. Running example query expressed in STARQL.

3. STARQL: A query language over DL-LiteaggA ontologies for
static and streaming data

In this section we will give an overview of STARQL, illustrate it
on our running example, and then explain its syntax and semantics.
Moreover, we will compare STARQL to state-of-the art query lan-
guages over RDF streams in terms of their syntactic features. We
refer the reader to [27] where we compare STARQL’s implemen-
tation with respect to other systems in terms of architectural and
implementation aspects. We also refer the reader to [28] were we
compare STARQLwith the LTL-based description logic of TCQs [29],
and show that a safe fragment of TCQs is captured by STARQL.

3.1. Overview and example

STARQL is a query language over ontologies that allows to query
both streaming and static data and supports not only standard
aggregates such as count and avg, but also more advanced ag-
gregation functions from our backend system such as Pearson
correlation.

Each STARQL query takes as input a static DL-LiteaggA ontology
and a static dataset (logical view of data stored in a relational DB)
as well as a set of live and historic streams. The output of the
query is a streamof timestampeddata assertions about objects that
occur in the static input data and satisfy two kinds of filters: (i)
static, that is, a conjunctive query over the input static ontology
and data and (ii) streaming, that is, a diagnostic query over the
input streaming data – which can be live and archived (i.e., static)
– that may involve typical mathematical, statistical, and event
pattern features needed in diagnostic scenarios for streaming data.
Therefore, any STARQL query Qstarql is essentially a conjunction of
two queries: a static conjunctive query QStatCQ over DL-LiteaggA , and
a streaming query QStream over DL-LiteA:

Qstarql ≈ QStatCQ ∧ QStream. (3)

The syntax of STARQL is inspired by the W3C standardised
SPARQL query language, allowing for nesting of queries. Moreover,
STARQL has a formal semantics that combines open and closed-
world reasoning and extends snapshot semantics for window op-
erators [30] with sequencing semantics that can handle integrity
constraints such as functionality assertions.

In Fig. 3 we present a STARQL query that captures the diagnos-
tic task from our running example and uses concepts, roles, and
attributes from the Siemens ontology [15,31–36] and Eq. (1). The
query has three parts: declaration of the output stream (Lines 5
and 6); sub-query over the static data (Lines 8 and 9) that, in the
running example, corresponds to ‘return all temperature sensors
that are reliable, i.e., with the average score of validation tests at least
90% ’; and sub-query over the streaming data (Lines 11–17) that, in

the running example, corresponds to ‘whose measurements within
the last 10 min Pearson correlate by at least 0.75 to measurements
reported by a reference sensor last year ’. Moreover, in Line 1 the
namespace that is used in the sub-queries is declared, i.e., the URI
of the Siemens ontology, and in Line 3 the pulse of the streaming
sub-query is defined.

3.2. Syntax and comparison to other languages

We now enumerate the main clauses of STARQL and illustrate
them using the query in Fig. 3:

CREATE PULSE clause declares a global time tick specified by an
update frequency and a starting point (here set to NOW
to specify that the streaming starts with the registration
of the query). The pulse determines the time points NOW
(as referenced in line 6 of 3) at which the stream data are
outputted. This global output time points are necessary as a
STARQL query may refer to multiple streams with different
slides.

CREATE STREAM clause declares the name of the output stream.
In our example the output stream is called StreamOfSen-
sorsInCriticalMode.

SELECT/CONSTRUCT clause defines how the output stream de-
clared in the previous clause should be formed. STARQL
allows for two types of output: the SELECT clause forms
the output as simply the lists of variable bindings, while the
CONSTRUCT clause defines the output as an RDF graph that
further can be stored in an RDF store or sent as input to
another STARQL query. In our example, we form the output
as a set of data assertions of the form A(b), thus making
an RDF graph consisting of all sensors (i.e., ?sensor) that
function in a critical mode (i.e, ex:InCriticalMode) and
are determined by the two sub-queries.

FROM STATIC/STREAM clause declares input static ontology and
data and defines streaming data with window parameters
using the start and end value, e.g., ‘[NOW - 1min, NOW]’,
as well as a slide parameter, e.g., ‘-> 1sec’. In our ex-
ample, we have the static ontology ex:sensorOntology
and data DATA ex:sensorStaticData and two streams:
sensorMeasurements of live sensor measurements and
also referenceSensorMeasurements of recorded mea-
surements of the reference sensor. Note that the recorded
sensor uses a set back time of one year, that is, values from
one year ago are correlated to a live stream.
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USING clause defines the periodic pulse for the input streams,
given by an execution frequency, e.g., 1min and its absolute
start and/or end time, e.g., NOW. The pulse is a global clock
that determines the output times points of the streamquery.
The main purpose of the pulse parameter is to align the dif-
ferent referenced streams which may have different (local)
slide and range parameters.

WHERE clause declares a static conjunctive query expressed as a
SPARQL graph pattern. The output variables of this query
identify possible answers over the static data. In our exam-
ple, the query is Reliable(x)where x corresponds to ?sensor
in the graph pattern ‘?sensor a ex:Reliable’.

SEQUENCE BY clause defines how the input streams should be
merged into one and gives a name to the resulting merged
stream. Using the built-in standard sequencing strategy re-
sults in a merged stream were all and only those stream
data with the same timestamp are put into the same state
(named RDF graph).

HAVING clause declares a streaming query. It can contain vari-
ous constructs, including a conjunctive query expressed as
a graph pattern, applied over all elements of the merged
stream that have a specific timestamp identified by an index.
In our example the query ‘?sensor ex:hasValue ?y.
ex:refSensor ex:hasValue ?z’ which is applied at
the index point ‘i’ of the merged stream and retrieves all
measurements values of the candidate sensor (i.e., ?sen-
sor) and the reference sensor (i.e., ex:refSensor). In the
HAVING clause one can do more than referring to specific
time points: one can also compare themby evaluating graph
patterns on each of the states or just return variables men-
tioned in the graph pattern, while restricting themby logical
conditions or correlations. In our example,we verify that the
live values ?y of the candidate sensor are Pearson correlated
with the archived values ?z of the reference sensor with a
degree greater than 0.75.

We also note that STARQL distinguishes between two kinds
of variables that correspond to either points of time and their
arrangement in the temporal sequence, or to the actual values
definedby graphpatterns of theHAVINGorWHERE clause. Variables
of different kinds cannot be mixed and points in time cannot be
part of the output. Note that the state based relations of theHAVING
clause are safe in the first-order logic sense and can be arranged
by filter conditions on the state variables. This safety condition
guarantees HAVING clauses are domain independent and thus can
be smoothly transformed into domain independent queries in the
languages of CQL [30] and SQL�, which is our extension of SQL for
stream handling (see Section 6 for more details).

For other features of STARQL we refer the reader to [19,28]. A
comparison of STARQLwith state-of-the-art RDF stream languages
and engines is given the Section 9 on related work.

3.3. Semantics

Intuitively, the semantics of STARQL combines open and closed-
world reasoning and extends snapshot semantics for window op-
erators [30] with sequencing semantics that can handle integrity
constraints such as functionality assertions. In particular, the win-
dow operator in combination with the sequencing operator pro-
vides a sequence of datasets on which temporal (state-based) rea-
soning can be applied. Every temporal dataset frequently produced
by the window operator is converted to a sequence of (pure)
datasets. The sequence strategy determines how the timestamped
assertions are sequenced into datasets. In the case of the presented

Fig. 4. Template query for illustration of operational semantics.

example in Fig. 3, the chosen sequencing method is standard se-
quencing assertions with the same timestamp are grouped into
the same dataset. So, at every time point, one has a sequence
of datasets on which temporal (state-based) reasoning can be
applied. This is realised in STARQL by a sorted first-order logic
template inwhich state stamped graph patterns are embedded. For
evaluation of the time sequence, the graph patterns of the static
WHERE clause are mixed into each state to join static and stream-
ing data. Note that STARQL uses semantics with a real temporal
dimension, where time is treated in a non-reified manner as an
additional ontological dimension and not as ordinary attribute as,
e.g., in SPARQLStream [9].

A formal denotational semantics of STARQL can be found in [37].
From the implementation point of view, an operational semantics
is more helpful — at least it gives a different perspective on the
intended semantics of the window. A full operational semantics
along the lines of [38] is planned for future work. We illustrate the
operational semantics of the window in our terminology in order
to make clear two points: Why is the snapshot-semantics of the
window chosen in the way described in [37] and illustrated in the
example before? Why dow we need a pulse declaration?

Consider the query template given in the listing of Fig. 4. Let
timeExp1 = NOW-wr stand for the left end of the window, where
wr is a constant denoting the window range, and timeExp2 = NOW
stand for the right end. We distinguish between a pulse time tpulse
and a stream time tstr . (For more than one stream one would have
more local stream times.) The pulse time tpulse evolves regularly
according to the frequency specification,

tpulse = st −→ st + fr −→ st + 2fr −→ . . . .

In contrast, the stream time tstr is jumping/sliding and is deter-
mined by the trace of endpoints of the sliding window. More con-
cretely, the evolvement of tstr , which can be easily implemented, is
specified as follows:

tstr tstr +m× sl.
IF tstr +m× sl ≤ tpulse

(form ∈ Nmaximal)

The window contents at tpulse is given by:

{triple⟨t⟩ ∈ Sin | tstr − wr ≤ t ≤ tstr}.

Note that the following always holds: tstr ≤ tpulse. This is a cru-
cial point since it enables STARQL to be used for both historical
reasoning and stream reasoning. Indeed, having always tstr ≤
tpulse guarantees that applying the window on real-time streams
does not give different stream elements than when applying the
window on a simulated stream from a DB with historical data. In
other words, if tstr > tpulse, then the window in a historical query
would contain future elements from [tpulse, tstr ] whereas in the
real-time case the window cannot contain future elements from
[tpulse, tstr ].

We now illustrate tpulse and tstr on our running example.

Example 5. For the STARQLquery in the listing of Fig. 5 one gets the
following evolvement of the pulse time and the streaming time:

tpulse : 0s→ 2s→ 4s→ 6s→ 8s→ 10s→ 12s→
tstr : 0s→ 0s→ 3s→ 6s→ 6s→ 9s → 12s→
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Fig. 5. Query illustrating operational semantics on one stream.

Fig. 6. Query illustrating operational semantics on two streams.

The example query in the listing of Fig. 6 refers to multiple
streams and is intended to illustrate the synchronisation effect of
the pulse:

tpulse : 0s→ 2s→ 4s→ 6s→ 8s→ 10s→ 12s→
tstr1 : 0s→ 0s→ 3s→ 6s→ 6s→ 9s → 12s→
tstr2 : 0s→ 2s→ 4s→ 6s→ 8s→ 10s→ 12s→

4. SQL�: Ananalytics-aware relational query language for static
and streaming data

We introduced SQL� language as an extension of SQL with
operators for handling streaming data and for combining stream-
ing and static data. SQL� contains a number of important pre-
defined functions for data analysis and allows to introduce new
such functions defined by users. SQL� relies on the semantics of
Continuous Query Language (CQL) [30], an expressive SQL-based
declarative language for registering continuous queries against
streams and updatable relations. Both SQL� and CQL adopt specific
operators formapping streams of information to finite relations via
a windowing mechanisms.

4.1. Data model and execution architecture

We define our data model and execution architecture follow-
ing the terminology that has been presented in the bibliography,
e.g. Storm’s data model and execution architecture [39] as well as
the computational model presented in [40].

Within the SQL� data model, a topology describes the flow of
streaming and static records between computational nodes. Com-
putational nodes are logical processing units that have one ormore
live-streamor static-data inputs and one output. They execute a set
of operations on their input to produce the corresponding output.
Computational nodes can be classified as either having exclusively
live-stream inputs, exclusively static-data inputs, and hybrid inputs.
Similarly they can be classified to being streaming or static, based
on the form of their output.

A special type of computational nodes are those responsible for
communicating external sources to our topology, similar to Storm’s
spouts. These input nodes:

(i) access external sources, e.g. access live streams from OPC
and HTTP servers

Fig. 7. A simple SQL� topology, its corresponding dataflow, and its syntactical
representation.

(ii) associate each external source to a time-sliding window
mechanism, i.e. a mechanism of forming (possibly overlap-
ping) sub-sequences of tuples (windows) at pre-determined
time instances;

(iii) associate each record accessed from some external source to
a temporal identifier and window identifiers.

Example 6. Fig. 7(a) shows a simple topology. The input node
receives information from a stream of temperature measurements
acquired from a single sensor on some power generating turbine.
The initial data contain the temperature measurement in Celsius
degrees and the time that this measurement was acquired. The
input node processes the records arriving from the source, ac-
knowledges the temporal identifier indicated by the source, and
relates each measurement to a time-sliding window mechanism
that assumes a window of size 10 s is produced every 10 s. Then
a second computational node calculates the average temperature
value grouped by windows. The result is stored in the table as in
Fig. 7(b).

4.2. A declarative language for computations

ExaStream takes advantage of existing Database Management
technologies and optimisations by providing a declarative lan-
guage, namely SQL�, extending the SQL syntax and semantics
for querying live streams and relations. In contrast to popular
distributed DSMSs, such as Storm,1 Flink,2 Kafka,3 Heron,4 and

1 Apache Storm. http://storm.apache.org.
2 Apache Flink. http://flink.apache.org.
3 Apache Kafka. https://kafka.apache.org.
4 Twitter Heron. https://apache.github.io/incubator-heron.

http://storm.apache.org
http://flink.apache.org
https://kafka.apache.org
https://apache.github.io/incubator-heron
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Spark Streaming5 that offer an API that allows the user to submit
dataflows of user defined operators, the user can define complex
dataflows using a declarative language. The system’s query planner
is responsible for choosing an optimal plan depending on the
query, the available stream/static data sources, and the execu-
tion environment. It should be noted that several state-of-the-art
systems for Big Data processing are adopting a similar approach,
providing for declarative SQL-like languages for data processing.
Apache Spark allows to query structured data inside Spark pro-
grams using SQL queries,while KSQL is a streaming SQL engine that
enables real-time data processing against Apache Kafka. The query
optimiser makes it possible to process SQL� queries that blend
streams with static and historical data (e.g., archived streams).

In order to incorporate the algorithmic logic for extending SQL
into SQL� several operators and statements have been imple-
mented:

Create Stream: The create stream statement allows to add a
new computational node to our topology that outputs a live
stream. The create stream statement always contains a Select
subquery that determines the operations that are performed
on the input records. Input records are identified in the From
clause of the subquery.

TimeSlidingWindow: The specific operator is implemented as
a user defined function, groups tuples from the same time
window and associates them with a unique window iden-
tifier corresponding to the Wid attribute. The timeSliding-
Window operator produces results in the order of Wid and
Time attributes. The operator is used by input computa-
tional nodes to create the corresponding window identifier.

WCache: WCache is an SQL� operator that when applied between
two streams it is translated to an equality join between the
two streams on their corresponding Wid attribute. WCache
also creates the indexing structures for answering efficiently
equality constraints on the Wid and Time attributes when
processing infinite streams. The WCache operator, its re-
lated indexes and corresponding optimisations are pre-
sented in Section 7.1.1.

It should be noted that the aforementioned SQL� operators are
based on the semantics of the CQL language [30].

Example 7. In Fig. 7(c) we see an example of the SQL� lan-
guage. The presented query correspond to the topology shown in
Fig. 7(a). The create stream statement creates the two differ-
ent computational nodes responsible for reading from the data
source (read_from_source) and computing the average value
per window (avg_value). As we see the read_from_source
computational node uses two user defined functions: http reads
the stream data that are pushed from an HTTP server; and times-
lidingwindow is responsible for creating the windows based on
the windowing mechanism expressed by the timewindow and
frequency parameters. The frequency attribute defines that a
window will be created every 3 secs and the timewindow defines
that the length of the window is 3 secs. The avg_value compu-
tational node has read_from_source as its input and outputs a
new stream that contains the average value per window. Finally
the select query is the one that shows the results of the avg_value
stream.

5 Spark Streaming. https://spark.apache.org/streaming.

5. Bridging STARQL over DL-LiteaggA and SQL�: mapping lan-
guage and query transformation

In this section we explain how to bridge STARQL and SQL�. To
this end we start in Section 5.1 by reviewing the classical OBDA
approach to bridge ontological and data oriented queries with the
help of mappings (we give their syntax and semantics) and a two-
stage query transformation procedure (we also review correctness
of this procedure). Then, in Section 5.2 we explain how we extend
the classical mappings and the query transformation procedure to
account for the features of STARQL queriesQstarql ≈ QStatCQ∧QStream

(recall Equation (3)) and aggregate concepts of DL-LiteaggA . Subse-
quently, we give an example-driven but formal explanation of the
query transformation procedure for static queries QStatCQ in Sec-
tion 5.3 and of streaming queries QStream in Section 5.4. Afterwards,
in Section 5.5 we discuss correctness of the query transformation
procedures. Finally, in Section 5.6 we discuss practical advantages
of aggregate concepts.

5.1. Background on OBDA

We now present notions from traditional OBDA and refer the
reader to [1,41] for further details. A database schema S is a finite
set of relational symbols P with associated arities and associated
attribute domains given by ar(P) and domP (i), i ∈ [1, ar(P)],
respectively. For simplicity, we assume that S is fixed and that the
only attribute domains are the set of individuals Γ and the set of
data values D introduced in Section 2. A database instance B is a
finite set of assertions of the form P(d1, . . . , dar(P)), where P is a
relation symbol in S and each di is from domP (i), i ∈ [1, ar(P)]. We
view a SQL query sql of arity k as a function that assigns to every
database instance B a finite subset ans(sql,B) of (Γ ∪ D)k.

Let L be an ontology language and O and ontology from L.
Following the practice of OBDA we rely on the so-called global-
as-view (GAV) mappings [1] that relate each (atomic) ontological
term fromO (i.e., concept, relation, or attribute) to a query over S.
Formally, a GAV mapping is of the form

S(x⃗)← sql(x⃗), (4)

where S is an atomic concept, an atomic role, or an atomic attribute,
sql is a SQL query over relation symbols in S with appropriate
arity and attribute domains, and x⃗ is a tuple of variables with no
repetitions. We denote with M a set of GAVmappings.

An OBDA setting is a triple of the form (B,M,O), where B is
a database instance, M is a set of GAV mappings, and O is an
ontology from L. The semantics of an OBDA setting is defined on
the basis of first-order interpretations. An interpretation I is a
model of (B,M,O) if I |= O and for every mapping S(x⃗)← sql(x⃗)
in M and every tuple t⃗ of elements from Γ ∪ D, if t⃗ ∈ ans(sql,B),
then t⃗I ∈ SI .

The semantics of query answering in OBDA is based on the
notion of certain answers. Let q(x⃗) :- conj(x⃗) be a conjunctive query
of arity k over the vocabulary of O. The set of certain answers to q
over an OBDA setting (B,M,O) is defined as

cert(q, (B,M,O)) = {t⃗ ∈ (Γ ∪ D)k | I |= conj(t⃗)
for each model I of (B,M,O)}.

Query answering in OBDA is realised by a two-stage transfor-
mation procedure that reformulates the input query q to a query q̂
so that the answers to the latter over B coincides with the certain
answers to q over (B,M,O). This transformation is graphically
depicted below.

q
rewrite
−−−→

O
q̄

unfold
−−−→

M
q̂ (5)

In the first stage of the transformation, query q is reformulated
using the ‘rewrite’ procedure to a query q̄ over O that incorporates

https://spark.apache.org/streaming
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the knowledge expressed in O; in the second stage, q̄ is further
reformulated using the ‘unfold’ procedure to a query q̂ over B
that additionally incorporates the mappingsM. The correctness of
such a reformulation is usually shown on the basis of the virtual
dataset DM,B , which is the dataset obtained from B and M by
materialising the answers t⃗ in ans(sql,B) as assertions S(t⃗), for
each mapping S(x⃗) ← sql(x⃗) in M. The virtual dataset allows
to cast the problem of computing the certain answers to q over
(B,M,O) as the problem of computing the certain answers to q
over the ontology defined by the union of O and DM,B , that is,
cert(q, (B,M,O)) = cert(q,O,DM,B). Then, to show correctness
of the reformulation procedure depicted in Eq. (5), one shows that
the answers to the rewriting q̄ over the datasetDM,B coincidewith
cert(q,O,DM,B), and, subsequently, that these answers coincide
with the answers to the unfolding q̂ over the database instance B.
This is summarised symbolically in the following equations:

cert(q, (B,M,O)) = cert(q,O,DM,B) (6)
= ans(q̄,DM,B)
= ans(q̂,B).

In [1] itwas shown that the query transformation procedure de-
scribed above for conjunctive queries is correctwhenL isDL-LiteA.
In the following we show how we extend this result to DL-LiteaggA
and STARQL queries.

5.2. Extending OBDA for DL-LiteaggA and STARQL

We now discuss howwe extendmappings and give a high level
overview of an extended two stage transformation procedure.

Mappings. STARQL queries are defined over DL-LiteaggA ontologies
and have complex constructs related to stream processing. Thus,
the classical mappings should be extended to account for these
features and we consider two types of mappings:

• schema-mappings: from atomic concepts, roles, attributes, as
well as fromaggregate concepts to SQL queries over relational
schemas of static, streaming, or historical data, and
• construct-mappings: from the constructs of the streaming

queries of STARQL into SQL� queries over streaming and his-
torical data. These are built on the basis of schema-mappings
by compiling in the pulse, slide, and the sequencing con-
structs into them.

For the syntax of construct-mappingswe refer the reader to [28,
42], while here we will exemplify them as follows and sketch how
they are compiled n the basis of schema mappings in Section 5.4.

Example 8.

GRAPH i {?sensor ex:hasVal ? y} ←
SELECT sid as ?sensor, sval as ? y, wid as i
FROM

[ SELECT ∗ FROM

( TIMESLIDINGWINDOW

timewindow:r
frequency : sl
SELECT ∗ FROM (http ip−of−Msmt)

)
];

In this example, a named graph template is mapped to an SQL�

query. The mapping relies on parameters r and s from STARQL
queries to accomplish the correctmapping of states i to time points
in SQL�.

The syntax of schema-mappings is the same as the syntax of
GAV mappings given in Eq. (4) with the additional restriction
that query sql in Eq. (4) mentions a top-level DISTINCT specifier
whenever S is a concept or a role. The reason for imposing this
restriction stems from the fact that DL-LiteaggA interprets concepts
and roles as sets, while it interprets attributes as bags. In the
followingwe describe how the syntax and semantics of OBDAneed
to be extended to account for bags.

Semantics of extended OBDA. A bag database instance B is a finite
bag over the set of assertions of the form P(d1, . . . , dar(P)), where P
is a relation symbol in S and each di is from domP (i), i ∈ [1, ar(P)].
We view a SQL query sql of arity k as a function assigning to
every bag database instance B a finite bag ans(sql,B) over the
set of tuples in (Γ ∪ D)k. An extended OBDA setting is now a
triple (B,M,O), where B is a bag database instance, M is a set of
schema-mappings and of construct-mappings, andO is aDL-LiteaggA
ontology.

We now define the semantics of extended OBDA settings for
schema-mappings and refer the reader to [28,43] for the semantics
of construct-mappings. Let (B,M,O) be an extendedOBDA setting
where M is a set of schema-mappings. We say that a DL-LiteaggA
interpretation I is a model of (B,M,O) if I |= O and I satisfies
the following two conditions, where S ranges over atomic concepts
and atomic roles, and F ranges over atomic attributes:

1. For every S(x⃗) ← sql(x⃗) in M and every t⃗ over Γ , if
ans(sql,B)(t⃗) = 1, then t⃗I ∈ SI;

2. For every t⃗ in Γ × D it holds that FI(t⃗I) ≥
∑

F (x⃗)←sql(x⃗)∈M
ans(sql,B)(t⃗).

Let us clarify now the above definition. Recall that when B is
a bag database instance, ans(sql,B) is defined as a bag of tuples;
thus expression ans(sql,B)(t⃗) denotes the multiplicity of t⃗ in bag
ans(sql,B). Condition 1 above then stipulates that if M contains
a mapping S(x⃗) ← sql(x⃗) and tuple t⃗ appears in the answers to
query sql over B, then (the interpretation of) t⃗ must also appear
in the extension of S under I. Therefore, this condition together
with the requirement that I must be a model of O constitute
only a reformulation of the definition of models in standard OBDA
settings. The difference in the two definitions stems from Condi-
tion 2, which stipulates that the multiplicity of (the interpretation
of) a tuple t⃗ in the extension of an attribute F under I must be
at least as large as the sum of the multiplicities of t⃗ in the bags
ans(sql1,B), . . . , ans(sqln,B), where F (x⃗) ← sql1(x⃗), . . . , F (x⃗) ←
sqln(x⃗) are all mappings inM populating attribute F . The intuition
behind this definition is to simulate the semantics of SQL according
to which the multiplicity of a tuple in the result of a query corre-
sponds to the number of different proofs for that tuple.

Given the definition of models above, the definition of cer-
tain answers for conjunctive queries over extended OBDA settings
coincide with the one over standard OBDA settings modulo the
notion of (virtual) datasets. We now extend the notion of virtual
datasets to extended OBDA settings. The virtual dataset DM,B
corresponding to an extended OBDA setting (B,M,O) is defined
as the bag satisfying the following two conditions, where t⃗ ranges
over tuples of elements in Γ ∪ D, S ranges over atomic concepts
and roles, and F ranges over attributes:

DM,B(S(t⃗)) = max
S(x⃗)←sql(x⃗)∈M

{ans(sql,B)(t⃗)},

DM,B(F (t⃗)) =
∑

F (x⃗)←sql(x⃗)∈M

ans(sql,B)(t⃗).

Given the similarity in the definitions of models and virtual
datasets for extended OBDA settings, it is straightforward to show
that Eq. (6) holds for extended OBDA settings or, in other words,
that the certain answers to conjunctive queries q over (B,M,O)
coincides with the certain answers to q over the union of the
DL-LiteaggA ontology O and the virtual dataset DM,B .
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Proposition 3. For any extended OBDA setting (B,M,O) and any
conjunctive query q, we have cert(q, (B,M,O)) = cert(q,O,DM,B).

We now give an example illustrating query answering over
extended OBDA settings.

Example 9. Let S be a database schema comprising the rela-
tions S(TRB, SNS, OP, TMP) and T(SNS, RT), where S records the
operational temperature of sensors and T records the fraction of
measurements the system has received from a sensor. Thus, an
assertion S(t, s, 1, 50) means that sensor s, which is attached to
the turbine t , is operational and has temperature 50 ◦C at some
time point, whereas an assertion T(s, 0.3) means that only 30%
of the total number of measurements sensor s transmitted over a
predefined period of time were eventually recorded in the system.
Let B be the bag database instance over S

B = {|S(t0, s0, 0, 0) : 1,S(t1, s1, 1, 50) : 1,
S(t2, s2, 1, 25) : 1,S(t3, s3, 1, 50) : 1,
T(s0, 0) : 1, T(s1, 0.9) : 1, T(s2, 0.98) : 1, T(s3, 0.9) : 1|}.

Let also M comprise the mappings

Reliable(x)← sql1(x),
testScore(x, y)← sql2(x, y),
testScore(x, y)← sql3(x, y),

where the SQL queries sql1, sql2, sql3 are defined as

sql1(x) : SELECT DISTINCT SNS AS x
FROM S WHERE OP = 0,

sql2(x, y) : SELECT SNS AS x, (1− TEMP/500) AS y
FROM S WHERE OP = 1,

sql3(x, y) : SELECT SNS AS x, RT AS y
FROM T WHERE RT > 0.

Last, let O be the DL-LiteaggA ontology given in Eq. (1) of Example 2.
Then, the triple (B,M,O) defines an extended OBDA setting that
populates the role Reliable with non-operational sensors and pop-
ulates attribute testScorewith operational sensors assigned a score
that either denotes how far the temperature of the turbine, asmea-
sured by the sensor, is from its maximum operational temperature
(currently assigned to 500 ◦C) or the fraction of themeasurements
of the sensor successfully recorded in the system.

We next employ the correspondence between the OBDA set-
ting (B,M,O) and the virtual dataset DM,B in computing the
certain answers to query q(x) :- Reliable(x) (see Proposition 3).
Observe that ans(sql1,B) = {|s0 : 1|}, ans(sql2,B) = {|(s1, 0.9) :
1, (s2, 0.95) : 1, (s3, 0.5) : 1|}, and ans(sql3,B) = {|(s1, 0.9) :
1, (s2, 0.98) : 1, (s3, 0.9) : 1|}, thus, by definition of virtual
datasets, DM,B corresponds to the dataset defined in Example 3.
By Example 4, we have that cert(q,O,DM,B) = {s0, s1, s2}, thus,
we derive that cert(q, (B,M,O)) = {s0, s1, s2}.

Query transformation procedure: Overview. Due to the separation
property (Equation (3)) of STARQL queries we can define a trans-
formation procedure for STARQL queries as follows:

Qstarql ≈QStatCQ ∧ QStream
rewrite
−−−→

O
Q ′StatUCQ ∧ Q ′Stream

unfold
−−−→

M
Q ′′AggSQL ∧ Q ′′Stream ≈ Qsql� . (7)

During the transformation process the static conjunctive QStatCQ

and streamingQStream parts ofQstarql, are first independently rewrit-
ten using the ‘rewrite’ procedure that relies on the input ontology
O into the union of static conjunctive queries Q ′StatUCQ and a new
streaming query Q ′Stream, and then unfolded using the ‘unfold’ pro-
cedure that relies on the input mappingsM into an aggregate SQL
query Q ′′AggSQL and a streaming SQL� query Q ′′Stream that together

give an SQL� query Q�
sql, i.e., Q

�
sql = unfold(rewrite(Qstarql)). In this

transformationprocedurewe rely on the rewriting procedure of [1]
while unfolding is different in that it relies on the two new types
of mappings.

In what follows we exemplify the transformation procedures
for static and streaming queries, discuss their correctness and also
discuss practical benefits of aggregate concepts.

5.3. Transformation of static queries

In realising the first stage of the query transformation, we rely
on the rewriting procedure of [1], called PerfectRef, for which we
assume familiarity. As a reminder, recall that PerfectRef takes as
input a conjunctive query q and a DL-LiteA ontology and outputs a
union of conjunctive queries q̄ satisfying cert(q,O,D) = ans(q̄,D),
for every dataset D. Each conjunctive query in q̄ is derived from
q by applying to q a series of (i) rewriting or (ii) unification steps
according to which (i) either an atom α1 is replaced by an atom
α2 whenever there is an inclusion axiom C2 ⊑ C1 in O such that Ci
unifieswithαi or (ii) two atoms are unified into onewith the goal of
enabling a rewriting step that would otherwise not be applicable.
For conjunctive queries over DL-LiteaggA both of these steps are
required and are indeed performed in the same fashion. The only
exception is the treatment of atoms based on aggregate concepts
and of attributes for which DL-LiteaggA adopts a closed-world se-
mantics, and thus, PerfectRef must leave them intact. Indeed, due
to the imposed syntactic restrictions on DL-LiteaggA , such constructs
can occur only on the left-hand side of inclusion axioms, hence,
the rewriting step is never applicable, whereas the unification step,
which can be only applied to two atoms mentioning an attribute,
does not enable further applications of a rewriting step either.

To illustrate the above discussion, we apply PerfectRef to the
example ontology in (1) and the query q(x) :- Reliable(x) to obtain
query

q̄(x) = Reliable(x) ∨ (≥0.9 (min testScore))(x). (8)

Before stating the correctness of the rewriting,we introduce the
class of unions of conjunctive queries of arity k as the set of all
queries of the form q(x⃗) = q1(x⃗) ∨ · · · ∨ qn(x⃗) where each qi is a
conjunctive query of arity k qi(x⃗) :- conji(x⃗). We define the answers
to q over a dataset D as the set

ans(q,D) = {t⃗ ∈ (Γ ∪ D)k | I |=
n⋁

i=1

conji(t⃗)

for all DL-LiteaggA models I of D}.

Proposition 4. For any DL-LiteaggA ontology O, any dataset D, and
any conjunctive query q, where q̄ is the output of PerfectRef on inputs
q and O, we have cert(q,O,D) = ans(q̄,D).

In realising the second stage of the query transformation,
namely, the unfolding of q̄, we define the output of procedure
unfold onquery atoms S(t⃗) and F (t, s),where S is an atomic concept
or role and F is an atomic attribute, and then extend it to atoms of
the form (◦r (agg F ))(t) and to (unions of) conjunctive queries.

For a fixed set of schema-mappings M and any atom T (t⃗) with
T ∈ C ∪ R ∪ A, we define

unfold(T (t⃗)) = op
T (y⃗)←sql(y⃗)∈M

sql(θ (y⃗)), (9)

where op = UNION if T ∈ C ∪ R and op = UNION ALL if T ∈ A,
and θ is a substitution unifying atom T (t⃗) with the atoms T (y⃗)
appearing in the left-hand side of mappings in M. Given an atom
(◦r (agg F ))(t), we define

unfold
(
(◦r (agg F ))(t)

)
= sql◦r (agg unfold(F (t,y)))(t), (10)
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where y is a fresh variable and expression sql◦r (agg ⋆)(t) is the query
defined in (2). Last, given a conjunctive query q(x⃗) :- conj(x⃗), we de-
fine unfold(q(x⃗)) to be the query obtained from q by replacing every
atom α in conj(x⃗) with unfold(α), while for a union of conjunctive
queries q(x⃗) = q1(x⃗) ∨ · · · ∨ qn(x⃗), we define

unfold(q(x⃗)) = unfold(q1(x⃗)) UNION · · ·

UNION unfold(qn(x⃗)). (11)

To illustrate the case of unfolding of an aggregate atom, consider
the set of mappings M given in Example 9 and the atom (≥0.9
(min testScore))(x). By (10), to obtain unfold

(
(≥0.9 (min testScore))

(x)
)
, we first need to obtain unfold(testScore(x, y)), where y is a

fresh variable. By (9), this latter expression corresponds to the
union of the SQL queries in M defining testScore, that is,

unfold(testScore(x, y)) = sql2(x, y)UNION ALLsql3(x, y).

Letting now E = ≥0.9(min unfold(testScore(x, y)))(x), we obtain the
unfolding unfold

(
(≥0.9 (min testScore))(x)

)
as the SQL query sqlE(x)

defined in (2):

sqlE(x) = SELECT x FROM
(sql2(x, y)UNION ALLsql3(x, y))

GROUP BY x HAVING min(y) ≥ 0.9.

Finally, the reformulation of query q(x) :- Reliable(x) over the
database schema defined with respect to the ontologyO andmap-
pings M specified in Example 9 corresponds to query q̂(x) below
that is obtained from q(x) by unfolding its rewriting q̄(x) specified
in (8):

q̂(x) = unfold(q̄(x))
= unfold(Reliable(x))UNION

unfold
(
(≥0.9 (min testScore))(x)

)
= sql1(x) UNION sqlE(x).

Let us now stress the distinction between the SQL operators
UNION and UNION ALL. The former computes the set union of its
operands and removes duplicate tuples. The latter computes the
so-called arithmetic union of its operands resulting in a bag that
assigns to each tuple a multiplicity corresponding to the sum of
the multiplicities that this tuple has in the bag operands. Given
that we care for aggregating over attributes, the use of operator
UNION ALL is crucial in unfolding an attribute. On the other hand,
the operator of UNION is more appropriate for interpreting the
connective of disjunction appearing in rewritings of queries, where
the semantics is set-based.

The following example verifies the correctness of the transfor-
mation described above.

Example 10. Recall the extendedOBDA setting (B,M,O) specified
in Example 9 and the certain answers to query q(x) :- Reliable(x)
over (B,M,O). We next compute the answers to q̂ over the bag
database instance B. Recall that the answers to queries sql1, sql2,
and sql3 overB have already been computed in Example 9.Wenext
compute the answers to the subquery sql2(x, y) UNION ALL sql3
(x, y) mentioned in the FROM clause of query sqlE . These cor-
respond to the bag {|(s1, 0.9) : 2, (s2, 0.95) : 1, (s2, 0.98) :
1, (s3, 0.5) : 1, (s3, 0.9) : 1|}; thus sqlE evaluates to bag {|s1 : 1, s2 :
1|}. Combining the above results, the answers to q̂ over B are given
by the bag {|s0 : 1, s1 : 1, s2 : 1|}.

We are now ready to prove correctness of the reformulation
procedure for conjunctive queries over extended OBDA settings.

Proposition 5. For any extended OBDA setting (B,M,O), any
conjunctive query q of arity k, and any tuple t⃗ from (Γ ∪ D)k, where

q̄ is the output of PerfectRef on inputs q and O while q̂ is the result of
unfolding q̄ with M, we have that t⃗ ∈ cert(q, (B,M,O)) if and only
if ans(q̂,B)(t⃗) = 1.

Proof (Sketch). By Propositions 3 and 4, we have cert(q, (B,M,O))
= cert(q,O,DM,B) = ans(q̄,DM,B), thus, it suffices to show
that t⃗ ∈ ans(q̄,DM,B) if and only if ans(q̂,B)(t⃗) = 1, for every
t⃗ in (Γ ∪ D)k. Given the one-to-one correspondence between the
conjunctive queries in qi in q̄ and the SQL queries sqli in the union of
SQL queries in q̂ aswell as the one-to-one correspondence between
an atomα in qi and its unfoldingunfold(α) in sqli, it suffices to show
that t⃗ ∈ ans(α,DM,B) if and only if ans(unfold(α),B)(t⃗) = 1,
for each such atom. This can be shown easily by contrasting the
definition of virtual datasets with Eqs. (9), (10), and (2). □

5.4. Transformation of streaming queries

The streaming part of a STARQL query may involve ‘static’
concepts and roles such as Rotor and testRotor, that is, concepts
and roles that are mapped into static data, and ‘dynamic’ ones
such as hasValue that are mapped into streaming data.6 Mappings
for the static ontological vocabulary are classical and discussed
above. Mappings for the dynamic vocabulary are composed from
themappings for attributes and themapping schemata for STARQL
query clauses and constructs. The mapping schemata rely on user
defined functions of SQL� and involve windows and sequencing
parameters specified in a given STARQL query which make them
dependent on time-based relations and temporal states. Note that
the latter kind of mappings is not supported by traditional OBDA
systems.

For instance, a mapping schema for the ‘GRAPH i’ STARQL
construct (see Line 16, Fig. 3) can be defined based on the following
classical mapping that relates a dynamic attribute ex:hasVal to the
tableMsmt about measurements that among others has attributes
sid and sval for storing sensor IDs and measurement values:

ex:hasVal(Msmt.sid, Msmt.sval)←
SELECT Msmt.sid, Msmt.sval FROM Msmt.

The actual mapping schema for ‘GRAPH i’ extends this mapping as
follows:

GRAPH i {?sensor ex:hasVal ? y} ←
SELECT sid as ?sensor, sval as ? y
FROM Slice(Msmt, i, r, sl, st),

where the left part of the schema contains an indexed graph triple
pattern and the right part extends the mapping for ex : hasVal by
applying a macro function Slice that describes the relevant finite
slice of the streamMsmt fromwhich the triples in the ith RDF graph
in the sequence are produced and uses the parameters such as the
window range r , the slide sl, the sequencing strategy st and the
index i. (See [43] for further details.) Due to the various possible
sequencing strategies st , the representation of the r.h.s. in a closed
pure SQL� form (not using any macro function) would become
bulky. However, if the sequencing strategy is standard sequencing,
then the neat representation as given in Example 8 results. Note
that now the mapping has a pure SQL� r.h.s.

GRAPH i {?sensor ex:hasVal ? y} ←
SELECT sid as ?sensor, sval as ? y, wid as i
FROM

[ SELECT ∗ FROM

6 Note that we refer here to elements of ontological vocabulary as ‘static’ and
‘dynamic’ in order to emphasise that it is mapped to static or dynamic data.
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( TIMESLIDINGWINDOW

timewindow:r
frequency : sl
SELECT ∗ FROM (http ip−of−Msmt)

)
];

More details on the whole transformation process can be found in
our paper [28] which concerns the completeness and correctness
of the rewriting step, and in [43], which describes the unfolding
and implementation step.

5.5. Correctness of query transformation procedures

Due to the separation property (Equation (3)) of STARQL queries
Qstarql ≈ QStatCQ ∧ QStream we define semantics of STARQL queries
over DL-LiteaggA queries over OBDA settings by separately defin-
ing the semantics of first static queries QStatCQ then of streaming
queries QStream and then combining them in the epistemic fashion
by making the join between the certain answers. Note that the
epistemic approach has been already considered for classical OBDA
settings [44] when one defines semantics of query answering for
queries that are more expressive than the class of conjunctive
queries.

Therefore, in order to show correctness of the query transfor-
mation procedure in Eq. (7) it is enough to show correctness of two
transformations: of the query QStatCQ and of QStream. Correctness
of the transformation for QStatCQ follows from Proposition 5. The
main reason for correctness of the rewriting process for QStream

relies in the semantics theHAVINGclause: TheGRAPH triples in the
internal state, which are constructed in the window, are answered
independently. This guarantees the local rewriting in each state.
In this aspect of separated consideration of states, STARQL is quite
similar to the language of TCQs in [29].Moreover, in [28] it is shown
that the additional step of abstraction induced by the sequencing
step poses no problem in the rewriting process. Considering the
unfolding process, [43] argues for its completeness and correctness
using the fact that the HAVING clauses of STARQL implement a safe
fragment of first-order logic, as shown in [37], and hence enable a
translation into SQL.

5.6. Discussion: Practicality of aggregate concepts

Despite the fact that one can encode aggregate concepts as
atomic with the help of mappings as discussed above, we argue,
that this encoding has practical disadvantages compared to aggre-
gate concepts.

Indeed, in the case of aggregate concepts, the SQL query
sql◦r (agg unfold(F ))(x) that maps E = ◦r (agg F ) to data is computed on
the fly during query transformation by ‘composing’ the mapping
for the unfolded attribute F and the query for the ‘aggregate
context’ of F , ◦r (agg ⋆), in E. Thus, sql◦r (agg unfold(F ))(x) is not actually
stored by the query transformation system as it depends on the
definition of F in the ontology and some relevant mappings and
may change when the ontology or mappings are modified. At the
same time, if one encodes E with a fresh concept AE and amapping
AE(x) ← sql◦r (agg unfold(F ))(x) and stores them, then one would
have to ensure that each further modification in the ontology and
mappings relevant to F are propagated in sql◦r (agg unfold(F ))(x).

Another benefit of using aggregate concepts instead of aggre-
gate queries in mappings is that the former approach offers more
flexibility in terms of modelling. Indeed, consider a data property
HasTemperature. One can map it to data sources with potentially
many non-aggregate mappings and then a knowledge engineer
can define various aggregate concepts required by applications

(i.e., with avg or max temperatures) over this property using only
ontological terms. This approach does not require to write map-
pingswith complex SQL queries for each new aggregation required
by applications.

6. System

In this sectionwediscuss our system that implements theOBDA
extensions proposed in Section 3. In Fig. 8 (Left), we present the
overall architecture of our system. On the application level one
can formulate STARQL queries over analytics-aware ontologies
and pass them to the query compilation module that performs
query rewriting, unfolding, and optimisation. Query compilation
components can access relevant information in the ontology for
query rewriting, mappings for query unfolding, and source spec-
ifications for optimisation of data queries. Compiled data queries
are sent to a query execution layer that performs distributed query
evaluation over streaming and static data, post-processes query
answers, and sends them back to applications. In the following
we will discuss two main components of the system, namely, our
dedicated STARQL2SQL� translator that turns STARQL queries to
SQL� queries, and our native data-stream management system
ExaStream that is in charge of data query optimisation and dis-
tributed query evaluation.

6.1. STARQL to SQL� translator

Our translator consists of several modules for transformation
of various query components and we now give some highlights
on how it works. The translator starts by turning the window
operator of the input STARQL query and this results in a sliding-
WindowView on the backend system that consists of columns for
defining windowID (as in Fig. 10) and dataGraphID based on the
incoming data tuples. Our underlying data-stream management
system ExaStream already provides user defined functions (UDFs)
that automatically create the desired streaming views, e.g., the
timeSlidingWindow function as discussed below in the ExaStream
part of the section.

The second important transformation step that we
implemented is the transformation of the STARQL HAVING clause.
In particular, we normalise the HAVING clause into a relational
algebra normal form (RANF) and apply the described slicing tech-
nique illustrated in Section 5, where we unfold each state of the
temporal sequence into slices of the slidingWindowView. For the
rewriting and unfolding of each slice, we make use of available
tools using the OBDA paradigm in the static case, i.e., the Ontop
framework [6]. After unfolding, we join all states together based
on their temporal relations given in the HAVING sequence.

6.2. ExaStream Data-Stream Management System

Data queries produced by the STARQL2SQL� translation, are
handled by ExaStream a Data Stream Management System (DSMS)
which is embedded in Exareme,7 a system for elastic large-scale
dataflow processing in the cloud [20,21].

ExaStream is built as a streaming extension of the SQLite
database engine, taking advantage of existing Database Manage-
ment technologies and optimisations. It provides the declarative
language SQL� (Section 4) for querying data streams and rela-
tions. The user can define complex dataflows in SQL� and the
system’s query planner is responsible for choosing an optimal plan
depending on the query, the available stream/static data sources,
and the execution environment. ExaStream’s optimiser makes it

7 http://madgik.github.io/exareme/.

http://madgik.github.io/exareme/
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Fig. 8. (Left) Overall architecture. (Right) Distributed stream engine of ExaStream.

possible to process SQL� queries that blend streams with static
and historical data (e.g., archived streams).

ExaStream’s processing engine is built as a streaming extension
of SQLite being able to execute relational operations on worker
nodes. SQLite has some distinctive features that fit our objec-
tives [45,46]: (i) Manifest typing: instead of static attribute typing,
SQLite allows to manifest typing where the datatype is a property
of the value itself. This is the most beneficial for the stream pro-
cessing case, sincewe cannot know a priori a stream’s datatype. (ii)
Single Database File and Variable-length records: an SQLite database
stores data in ordinary disk files that can be located anywhere
in the directory hierarchy. These files can be easily shared in
a distributed environment. Also the fact that SQLite allows for
variable-length records, which results in smaller database files,
makes the database run faster and allows tominimise data transfer
between ExaStream’s worker nodes. (iii) The APSW Python wrap-
per8 allows to easily extend the SQLite database engine with UDFs
implemented in python. We are able to use python to implement
virtual tables, aggregate and row functions. (iv) Compactness: the
whole SQLite library with everything enabled is less than 500 KB
in size. This feature facilitates the elastic model of ExaStream by
allowing to initialise new VMs running SQLite with minimum data
transfer.

ExaStream supports parallelism by allocating processing across
different workers in a distributed environment. Its architecture is
shown in Fig. 8(Right). Queries are registered through the Gateway
Server. Each registered query passes through the ExaStream Parser
and then is send to its Query Planner. The Query planner decides
for an efficient order to execute SQL operators, i.e. optimal query
plan, and feeds it to the Scheduler module. The Scheduler places
data and compute operators (including UDFs and relational plans)
onworkers nodes based on eachworker’s load. These operators are
executed by an SQLite9 database engine instance running on each
worker.

ExaStream offers different types of parallelism depending on
the type of operations performedwithin a query. Inter-query paral-
lelism is supported for querieswith an exclusively streaming input.
This means that all the operations of a single query are executed
on the same worker, while parallelism is achieved by distributing
queries across workers. For example, for a set of queries q1, . . . , qn

8 https://github.com/rogerbinns/apsw.
9 https://www.sqlite.org.

on streaming input and a set of workers w1, . . . , wk, the query
planner assigns each query to a specific worker. For computational
nodes with a static input, ExaStream provides intra-query paral-
lelism. This means that each operation of a query is distributed
on multiple workers. E.g., for an hybrid operation that refers to an
analytical task involving live-stream and static data: (i) the query
planner will have the static data distributed across workers; (ii)
each consecutive window of the live-stream will be sent to all
workers; (iii) the operation will be executed on each worker for a
different part of the static information and latter combined to form
the final answer.

ExaStream offers query planners that allow to efficiently exe-
cute queries in a declarative language, such as SQL, without any
concern for low-level execution details. Our query planner extends
the one provided by SQLite in order to handle stream-processing
continuous queries. It should be noted that the stream query plan-
ner is responsible for handling local node computations.

SQLite computes joins adopting nested loops, using one loop
for each table in the join. One or more indices might be used on
the inner loops to accelerate the search, or a loop might be a full-
table scan that reads every row in the table. Thus, query planning
decomposes into two main subtasks: picking the nested order of
the various loops; choosing good indices for each loop.

When a query accesses streaming data, SQLite should not make
a full scan over an inner stream, or build a B-tree index on it.
This is because streams are a relational representation of infinite
records and therefore the two previous operations would never
end, making the resulting plans non-terminating. Therefore we
always push streams to the top of query plan trees, i.e. when
joining one stream with a static table, the static table is forced to
be in the inner loop.

The indexing structures and optimisations presented in Sec-
tion 7.1.1 are integrated to the ExaStream’s query planner.

7. Backend query optimisations for SQL�

Since a STARQL query consists of analytical static and streaming
parts, the result of its transformation by the rewrite and unfold
procedures is an analytical data query that also consists of two
parts and accesses information from both live streams and static
data sources. A special form of static data are archived-streams
that, though static in nature, accommodate temporal information
that represents the evolution of a stream in time. Therefore, our
analytical operations can be classified as:

https://github.com/rogerbinns/apsw
https://www.sqlite.org
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(i) live-stream operations that refer to analytical tasks involving
exclusively live streams;

(ii) static-data operations that refer to analytical tasks involving
exclusively static information;

(iii) hybrid operations that refer to analytical tasks involving live-
streams and static data that usually originate from archived
stream measurements.

For static-data operations we rely on standard database optimisa-
tion techniques for aggregate functions. For live-stream and hybrid
operations we developed a number of optimisation techniques
and execution strategies. These have been incorporated in the
ExaStream systemdescribed in Section 6. In Section 7.1wepresent
optimisations regarding live streams;while in Section 7.2we focus
on the system’s optimisations for hybrid queries.

7.1. Query optimisations on live streams

SQL� queries access information from both live streams and
static data sources. For static-data operations we rely on standard
database optimisation techniques. This paragraph focuses on the
live-stream optimisations we have developed.

7.1.1. Indexing structures
Considering the particularities of live-streams with infinite

records, we have developed hybrid in-memory indexing structures
and algorithms dedicated to accelerating stream-processing. For
visualisation purposes, we will assume a 3D space describing each
stream and corresponding to the attributes (Wid, Time, Measure-
ment). The corresponding structures can be applied for higher
dimensional spaces.

Our technique considers two levels of indexing: (i) the first
level, namely WCacheL1, is for performing fast equality operations
on theWid attribute based on anhybridmerge/hash-join algorithm
(ii) the second level, namely WCacheL2, is for accelerating oper-
ations on the rest of the attributes, i.e. Time and Measurement
for our description, and is based on a KD-tree structure [47]. KD-
trees are in-memory data structures that are very useful for join,
range, and nearest neighbour searches. The specific indexing struc-
tures were proved to be the most beneficial for the Siemens sce-
narios that assume join and range operation on non-overlapping
windows. For other use cases, different indexing structures can
combined with the Adaptive Indexing Technique that is presented
in Section 7.1.2. We now discuss the indexing structures in more
detail.

WCacheL1 Index. The WCacheL1 index related to a stream is used
for efficiently answering equality constraints on its Wid attribute.
In particular, we use the WCacheL1 in-memory hash-index with
Wid as key and the list of tuples that belongs to that specific
Wid as values. Each bucket on WCacheL1 stores Wids in a sorted
order, while records on the live stream also appear sorted on the
Wid attribute — this property of live streams is credited to the
timeslidingWindow operator.

Example 11. The left hand side of Fig. 9 shows the WCacheL1 level
of indexing. Bucket 0 contains in sorted order all thewids that have
appeared till now and are mapped to the value of 0, as we can see
both wids in buckets and in the actual stream, are sorted on the
Wid attribute.

Because a stream is infinite, we need a mechanism to ensure
that our hash-structure moves forward in time. This mechanism
adds wids to the WCacheL1 index, as soon as they appear in the
stream. Since live streams arrive sorted on the Wid attribute, the
WCacheL1 related to it can be easily updated by inserting each new
wid to the bottom of its corresponding hash-bucket.

Fig. 9. The WCacheL1 and WCacheL2 index structures. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version
of this article.)

Example 12. In Fig. 9 the wids 17 and 18 are added to the 0 and 1
buckets, as soon as they appear as records into our stream.

Wewill demonstrate how our algorithm exploits the WCacheL1
structure for a simple equi-join on two streams. The outer stream
of the join operation makes a scan to its data and visits the
WCacheL1 of the inner one. If the outer stream scans the wid w
and WCacheL1 contains the finite set of wids denoted with W the
following cases may occur:

(i) w ≤ max(W) and w ̸∈ W: In that case w does not appear as
a value in the WCacheL1-index and consequently in the Wid
attribute of Streaminner .
Since values in Streaminner are ordered in Wid, we can safely
assume that the window w will never appear as part of the
inner stream and therefore the joining condition will never
be satisfied for the w window.

(ii) w ∈ W: In that case we search the corresponding bucket of
WCacheL1 that contains the value of w.
Since windows are stored in a sorted order per bucket,
the algorithm searches for w using a merge-join algorithm.
When w is found, our algorithm will return all the tuples in
Streaminner that belong to the specific window.

(iii) max(W) < w: In that case our algorithm will pull more
tuples from the inner stream until we get a wid that is
greater than the outer tuple’s wid and then operate as in one
of the previous cases.

It should be noted that the joining algorithmonwindow identifiers
is hybrid hash/merge-join since it takes advantage of a hash-index
and the ordering of elements per hash-bucket.

Example 13. Suppose that two streams contain a Wid, a Time, and
a Measurement attribute and an equi-join is performed between
the measurement attributes. Let us also assume that the record
of the outer stream that is being examined has a Wid value of 9
and a Measurement value of 450 ◦C . In order to find if the same
temperature appears within the 9th window of the inner stream,
the value of the window id 9 is hashed to the Bucket 2 in Fig. 9.
Since the value appears in the Bucket 2 of the inner stream, we
examine if the corresponding temperature appears in the second
level of storage, i.e. WCacheL2, that hold all the information about
Wid 9within aKD-tree structure. Using theKD-treewe can decided
if the latter is the case.
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WCacheL2 Index. The second level of indexing ensures the accel-
eration of data retrieval operations for attributes other than Wid.
This index is nested on each window and we have adopted a KD-
tree structure [47] for indexing in the rest of the dimensions that
participate in a join between two streams. Each level of a KD-
tree partitions the space into two subspaces. The partitioning is
done along one dimension at the node at the top level of the tree,
along another dimension in nodes at the next level, and so on,
cycling through the dimensions. The partitioning proceeds in such
a way that, at each node, approximately one-half of the points
stored in the subtree fall on one side and one-half fall on the other.
Partitioning stops when a node has less than a given maximum
number of points. Since KD-trees are linear in the size of the data,
the memory consumption will also be linear in the size of the
incoming information.

Example 14. The right part of Fig. 9 shows how a two level KD-tree
partitions the (Time,Measurement) space. The red line performs
a data partitioning on the Time-axis, each partition containing
6 records. Then the blue lines perform data partitioning on the
Measurement-axis, each partition containing exactly 3 records.

It should be noted that the second level of indexing is dynami-
cally created based on the Adaptive Stream Indexing technique that
is described next.

7.1.2. Adaptive stream indexing
The Adaptive Stream Indexing technique is responsible for cre-

ating on the fly the appropriate WCacheL2 structures that will
accelerate execution of live-stream operations. This means that a
KD-tree structure will only be created if the system’s optimiser
decides it beneficial for the query execution on the specificwindow
of a stream. Formally, let us assume a set of stream-join operations
that all have stream s as the inner relation of the join computation:
ν⋃

i=1

{si ▷◁θi s}.

Moreover each join condition θi contains the conjunct Widsi =
Wids.10 Our problem constitutes in finding whether it is beneficial
for the query execution speed to build a secondary level of KD-tree
index on the attributes of s that appear in all θi conditions.

The adaptive indexing algorithm operates in two steps:

Step 1. With each new window w appearing in stream s, our
algorithm first estimates the number of records that have a Wid of
valuew for all streams under consideration. The function recs(t, w)
that makes the estimation takes as input a stream t and the wid w.
If all the records of stream t with awid ofw have already appeared,
i.e. a record with a wid w + 1 exists, our algorithm returns the
actual number of records in window w. Otherwise, the number
of records during the wth window is estimated based on what
happened during the last n windows (where n has a default value
of 10 but can be altered depending on the use case).

Step 2. The second step of the algorithm estimates whether it is
beneficial to build a KD-tree index on the new window of stream
s. If we assume that (i) the cost of computing the join operation
between si and s on the wth window without any KD-tree index
is denoted with cost(si ▷◁θi s), (ii) the cost of performing the join
operation on the wth window when having a KD-tree structure
is denoted with costKD(si ▷◁θi s), (iii) and the cost of building the
actual KD-tree on the wth window of stream s is denoted with

10 Our algorithm also works forWidsi = Wids + di conditions.

Fig. 10. Schema for storing archived streams andMWSs.

costKD(s), then the algorithm decides that creating a KD-tree index
is beneficial whenever:

ν∑
i=1

cost(si ▷◁θi s) >

ν∑
i=1

costKD(si ▷◁θi s)+ costKD(s).

With k the dimensionality of the s stream, ni the number of tu-
pleswithin thewthwindowof stream si and n the number of tuples
within thewthwindowof stream s, the cost of building the KD-tree
is O(k · n · log(n)), while the cost of performing a join operation
using a multidimensional KD-tree index is O(ni · k · n1− 1

k ). Details
on KD-trees and their corresponding cost functions can be found
in [47].

7.2. Query optimisations on archived information

This section focuses on optimisations we have developed on
hybrid operations between streaming and static data.

7.2.1. Efficient storage of archived streams for hybrid operations
Our approach for storing archived streams and performing hy-

brid operations on them, separates the actual stream from the
windowing mechanisms that are applied on it. Consider the re-
lational schema depicted in Fig. 10 for storing archived streams
and performing hybrid operations on them. The relational table
Measurements represents the archived part of the stream and
stores the temporal identifier (Time) of each measurement and
the actual values (attribute Measurement). The relational table
Windows identifies the windows that have appeared up till now
based on the existing window-mechanism. It contains a unique
identifier for eachwindow (Wid) and the attributes that determine
its starting and ending points (Window_Start, Window_End). The
necessary indices that will facilitate the complex analytic compu-
tations are materialised.

Example 15. In Fig. 10 for six measurements we created two
windows and for each of them we computed the average of the
corresponding measurements.

The schema that we proposed and illustrated in the exam-
ple: (i) is flexible to query changes since it separates the win-
dowing mechanism – which is query dependent – from the ac-
tual measurements; (ii) permits execution of multiple queries
on the same dataset without the need to replicate the archived
streaming data between different windows. Indeed, the flexibility
is guaranteed sine each time that the windowing mechanism
changes only the Window table will be updated and not the, much
larger, Archived_Stream table that stores the actual stream.
Moreover, if we have n queries on the same dataset we need
Window1, . . . , Windown to identify thewindowmechanismof each
query. Ideally, if Windowi, Windowj share the same windowing
mechanism, we only need to keep one of the tables.
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Fig. 11. Pearson Correlation coefficient between live and archived streams with
embedding the LSH technique inMWSs.

7.2.2. Materialised window signatures
In order to accelerate analytical tasks that include hybrid op-

erations over archived streams, we facilitate precomputation of
frequently requested aggregates on each archived window. We
name these precomputed summarisations asMaterialised Window
Signatures (MWS). TheseMWSs are calculated when past windows
are stored in the backend and are later utilised while performing
complex calculations between these windows and a live stream.
The summarisation values are determined by the analytics under
consideration. E.g., for the computation of the Pearson correlation,
we precompute the avg value and standard deviation on each
archivedwindowmeasurements; for the cosine similarity, we pre-
compute the Euclidean norm of each archived window; for finding
the absolute difference between the average values of the current
and the archived windows, we precompute the average value, etc.

The selectedMWSs are stored in theWindows relationwith the
use of additional columns. In Fig. 10 we see the MWS summary
for the avg aggregate function being included in the relation as an
attribute termed MWS_Avg. The application can easily modify the
schema of this relation in order to add or dropMWS, depending on
the analytical workload.

When performing hybrid operations between the current and
archived windows, some analytic operations can be directly com-
puted based on their MWS values with no need to access the
actual archived measurements. This provides significant benefits
as it removes the need to perform a costly join operation between
the live stream and the, potentially very large, Measurements
relation. On the opposite, for calculations such as the Pearson
correlation coefficient and the cosine similaritymeasures, we need
to perform calculations that require the archived measurements
as well, e.g., for computing cross-correlations or inner-products.
Nevertheless, the MWS approach allows us to avoid recomputing
some of the information on each archived window such as its
avg value and deviation for the Pearson correlation coefficient,
and the Euclidean norm of each archived window for the cosine
similarity measure. Moreover, in case when there is a selective
additional filter on the query (such as the avg value exceeds a
threshold), by creating an index on the MWS attributes, we can
often exclude large portions of the archived measurements from
consideration, by taking advantage of the underlying index.

Locality sensitive hashing. For more complex similarity measures
such as the Pearson correlation coefficient and the cosine similarity,
the problem of finding relationship between a live and several
archived streams cannot be efficiently solved with the plain use
of MWSs . That concern motivates the use of the locality-sensitive
hashing (LSH) technique and the embedding of LSH information
intoMWSs.

The premise of the LSH technique is that in many cases it is not
necessary to insist on the exact answer; instead, determining an

Fig. 12. Query V expressed in STARQL.

approximate answer with strong accuracy bounds should suffice.
The above argument relies on the assumption that approximate
similarity search can be performed much faster than the exact
one. The key idea is to hash the streams using several hash func-
tions which are chosen so as to ensure that, for each function,
the probability of collision is much higher for streams which are
similar to each other than for those which are far apart. Then,
one can determine similar streams by hashing the query point
and retrieving elements stored in buckets containing that point.
The LSH technique [48,49] was introduced for the purposes of
devising main memory algorithms for nearest neighbour search.
Detailed studies of LSH for live streams and its extensions have
been presented in the literature [50,51].

The combination ofMWS and the LSH technique allows to build
a smaller summary on what happened during a specific period of
time. This summary needs to be build only once for each archived
window, while it can be used to compute the similarity between
the archived and the current window without the need to access
the actual information of the archived data stream. This accelerates
similarity operations several orders of magnitude.

We extend MWSs to incorporate LSH information as it is il-
lustrated in Fig. 10. For complex similarity measures, the table
Windows of Fig. 10 will be extended to incorporate information
related to the LSH hash-values of archived windows by adding the
attribute MWS_LSH. For each new window arriving from the live-
stream the same information is calculated and the live window is
only compared to the archived ones that fall into the same bucket,
i.e. that are most possible to be similar.

Example 16. Fig. 11 illustrates a correlation example between the
currentwindowof a live streamand several archivedwindows. The
LSH algorithmhashes archivedwindows into twodifferent buckets
illustrated with the orange and cyan colours. Since the current
window of the stream falls under the orange bucket, there is a
high probability to correlatewith archivedwindowmeasurements
that are hashed under the same bucket and a low probability
to correlate with all other window measurements. Therefore, it
will only be correlated with the archived measurements that are
hashed to the orange bucket.

8. Experimental evaluation of the backend

The aim of our evaluation is to study how our optimisation
techniques and query distribution to multiple workers accelerate
the overall execution time of different analytic queries that involve
live-stream and hybrid operations.

8.1. Evaluation setting

We deployed our system to the Okeanos Cloud Infrastructure11
and used up to 16 virtual machines (VMs) each having a 2.100 GHz

11 www.okeanos.grnet.gr/.

http://www.okeanos.grnet.gr/
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Fig. 13. Effect of adaptive indexing.

Fig. 14. Effect of MWS optimisation.

Fig. 15. Effect of intra-query parallelism and the LSH technique.

Fig. 16. Effect of inter-query parallelism on live-stream.

processor with two cores and 4GB of main memory. We used
streaming and static data that contain measurements produced
by 100,000 thermocouple sensors installed in 950 Siemens power
generating turbines.

8.2. Test queries

For the experimental evaluation, the following queries were
adopted:

Query I: The first query computes an equality join on the Wid and
Time attributes between two live-streams.

Query II: This query computes the Pearson correlation of a live
stream with a varying number of archived streams.

Queries III &IV: These two queries are variations of Query II but,
instead of the Pearson correlation, they compute similarity
based on either the average or theminimum values within a
window.

We defined such similarities between vectors (of measure-
ments) w⃗ and v⃗ as follows: |avg(w⃗)− avg(v⃗)|< 10◦C and |min(w⃗)−
min(v⃗)|< 10 ◦C . The archived stream windows are stored in
the Measurements relation, against which the current stream is
compared.

Query V: This query calculates the Pearson correlation between
two live streams. The STARQL formulation of this query is
given in Fig. 12.

In the remaining part of the sectionwepresent the results of our
experimental evaluation for each of our optimisations techniques:
Adaptive indexing optimisation, MWS Optimisation, Parallelism
between live and archived streams, and Parallelism between live
streams.

8.3. Adaptive indexing optimisation

This experiment is devised to show how the adaptive indexing
optimisation and the related indexing structures affect query-
response times. We execute Query I as follows:

(i) on a single VM-worker;
(ii) processing is performed on windows of 100 secs;
(iii) the evaluation is performed on the live streams A and B (A

being the inner relation of the join operation), building an
index on stream A whenever appropriate;

(iv) stream A has a velocity of 10 tuples/sec, while we vary the
velocity of stream B from 1 tuple/sec to 28 tuples/sec.

In Fig. 13, we measured the processing time for computing the
join between a pair of windows of stream A and B with and
without enabling the adaptive indexing technique that creates
the necessary WCacheL2 structures. The horizontal axis displays
the velocity of stream B and the vertical axis the window pro-
cessing time measured as the average of 100 consecutive live-
stream execution cycles. We observe that for high throughput, the
adaptive indexing techniques performs substantially better then
simple join, i.e. in our experiment the adaptive indexing technique
performs 12 times faster for a 28 tuples/sec throughput.

For the Adaptive Indexing optimisation, we did not perform an
experiment dedicated to the size of the corresponding window,
since, increasing the window size has a similar effect to changing
the velocity of each stream.
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8.4. MWS optimisation

This set of experiments is devised to show how the MWS
optimisation affects the query’s response time. We executed test
Queries II, III, and IV :

(i) on a single VM-worker;
(ii) for a fixed live-stream velocity of 1 tuple/min;
(iii) for a fixed window size of 1 hour which corresponds to 60

tuples of measurements per window;
(iv) and the current live stream window was measured against

100,000 archived ones.

We measured the window processing time with and without the
MWS optimisation. In Fig. 14 we present the results of our exper-
iments. The reported time is the average of 15 consecutive live-
stream execution cycles. The horizontal axis displays the three test
querieswith andwithout theMWS optimisation, while the vertical
axis measures the time it takes to process 1 live-stream window
against all the archived ones. This time is divided to the time it
takes to join the live stream and the Measurements relation and
the time it takes to perform the actual computations. Observe that
the MWS optimisation reduces the time for the Pearson query by
8.18%. This is attributed to the fact that some computations (such
as the avg and standard deviation values) are already available in
the Windows relation and are, thus, omitted. Nevertheless, the join
operation between the live stream and the very large Measure-
ments relation that takes 69.58% of the overall query execution
time cannot be avoided. For the other two queries, we not only
reduce the CPU overhead of the query, but the optimiser further
prunes this join from the query plan as it is no longer necessary.
Thus, for these queries, the benefits of the MWS technique are
substantial.

It should be noted that for hybrid operations the effect of the
MWS optimisation becomes more substantial for larger window
sizes. Therefore, increasing the size of the window would further
improve the contribution of the MWS technique on hybrid oper-
ations, especially for the cases when the archived streams are not
accessed, e.g. when computing the minimum or average aggregate
functions or when using the LSH technique to compute similarity
measures (see Section 8.7 for the corresponding experiments using
LSH optimisations).

8.5. Parallelism between live and archived streams

Since theMWS optimisation substantially accelerates query ex-
ecution for the two test queries that rely on average andminimum
similarities, query distribution would not offer significant benefit,
and thus these queries were not used in the third experiment. For
complex analytics such as the Pearson correlation that necessitates
access to the archived windows, the ExaStream backend permits
us to accelerate queries by distributing the load among multiple
worker nodes. In the third experiment we use the same setting as
before for the Pearson computation without the MWS technique,
but we vary this time the number of available workers from 1 to
16. In Fig. 15, one can observe a significant decrease in the overall
query execution time as the number of VM-workers increases.
ExaStream distributes the Measurements relation between dif-
ferent worker nodes. Each node computes the Pearson coefficient
between its subset of archived measurements and the live stream.
As the number of archived windows is much greater than the
number of available workers, intra-query parallelism results in
significant decrease of the time required to perform the join op-
eration.

8.6. Parallelism between live streams

This experiment focuses on the effect of accelerating live-
stream operations by distributing the load to multiple worker
nodes via inter-query parallelism. We executed Query V (Pearson
correlation)

(i) for a varying number of 1 to 1024 of concurrent queries
between different pairs of live streams;

(ii) for a fixed window size of 60 tuples;
(iii) on non-overlapping windows;
(iv) using 128 ExaStreamworker nodes.

Wemeasured thewindow throughput, as the number of stream
tuples that are processed per sec. Recall that each node is equipped
with a two-core processor. We can see from Fig. 16 that initially,
the overall throughput of the system increases linearly with the
number of queries. This is because ExaStream utilises the available
workers and distributes the load evenly among them. When the
number of queries reaches the number of cores available (256) we
observe themaximumthroughput of 4, 250, 226 tuples/sec. From that
point onward, the additional queries injected in Exareme result in
multiple queries sharing the same core and, as a result, the cumu-
lative throughput decreases. It should be noted that the Adaptive
Indexing Technique creates the corresponding indexing structures
whenever it is beneficial for the aforementioned operations. For a
larger number of concurrent queries/streams, we can obtain even
better performance by utilising the LSH technique, discussed next.

8.7. LSH optimisation

Our final experiment focuses on the LSH technique and how
the intermix of MWSs, LSH buckets, and parallelism accelerates
the computation of complex similarity measures between live
and archived streams. We perform the same experiment as in
Section 8.5 for parallelism between live & archived streams, only this
time we employ the LSH variation of MWSs. For the interested
reader in the LSH parameterisation we used a combination of 7
AND-constructors and 6 OR-constructors. The results of this ex-
periment are also displayed in Fig. 15 that compares performance
with and without our optimisation. One can observe a significant
decrease in the overall query execution time when we adopt the
combination of the MWS and LSH techniques for computing cor-
relation between live and archived streams. The price we have to
pay for this increase in performance is 3% of false negative results
for finding all Pearson correlations with an equality degree above
0.7.

9. Related work

OBDA system. Our proposed approach extends existing OBDA sys-
tems since they either assume that data is in (static) relational
DBs, e.g [6,12], or streaming, e.g., [9,10], but not of both kinds.
Moreover, we are different from existing solutions for unified
processing of streaming and static semantic data, e.g. [52], since
they assume that data is natively in RDF while we assume that
the data is relational and mapped to RDF. An extension of OBDA
tailored towards equipment diagnostics has been recently pre-
sented in [53,54]. They rely on the standard OWL 2 QL ontologies
and define a rule-based language over them that has a sort of
fixed-point semantics. In contrast, we propose an analytics-aware
ontology language DL-LiteaggA and a query language STARQL that
has a different expressive power and semantics. Finally, we focus
on backend optimisations while they rely on the standard backend
solutions for evaluation of diagnostic programs.
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Ontology language. The semantic similarities of DL-LiteaggA to other
works have been covered in Section 3. Syntactically, the aggregate
concepts of DL-LiteaggA have counterpart concepts, named local
range restrictions (denoted by ∀F .T ) in DL-LiteA [55–57]. How-
ever, for purposes of rewritability, these concepts are not allowed
on the left-hand side of inclusion axioms as we have done for
DL-LiteaggA , but only in a very restrictive semantic/syntactic way.
Consequently, most of the results of [55–57] regarding rewritabil-
ity of ontology satisfiability and query answering are very relevant
for DL-LiteaggA as well.

The semantics of DL-LiteaggA for aggregate concepts is very sim-
ilar to the epistemic semantics proposed in [23] for evaluating
conjunctive queries involving aggregate functions. A different and
more intuitive semantics for evaluating conjunctive queries with
aggregate functions has been considered in [24] based on minimal
models relative to a query, but query answering has been shown
to be intractable, while it covers only the aggregate functions count
and countd. Interpretations assigning a bag extension to predicates
has been considered recently in the context of OBDA [25] and data
exchange [26]. In both of these works, the motivation is based on
the need for performing aggregation over the integrated database
for which duplicates influence the answers and must be retained.
The semantics ofDL-LiteaggA follows this spirit, but only for the pred-
icates corresponding to attributes, over which aggregation may be
performed as a result of the definition of an aggregate concept,
which, nonetheless, is given a set extension. In contrast to [25],
where satisfaction of TBox axioms is defined based on an extension
of the subset relation to bags, DL-LiteaggA retains the more standard,
set-based semantics for satisfaction. In this respect, DL-LiteaggA is
closer to [24], which adopts standard set-based semantics for TBox
axioms.

Last, query answering in DL-LiteaggA is closer to that in DL-LiteA
rather than the ontology languages in [24,25]. This is because the
latterworks are concerned about the computation of theminimum
number of matches of the query across all models of the ontology,
whereas in DL-LiteaggA we care only for the existence of a match.
Closing the discussion on DL-LiteaggA , concepts based on aggregates
functions were considered in [58] for the description logics ALC
and EL equippedwith concrete domains, but the problem of query
answering was not studied there.

Query language. While already several languages and engines for
RDF stream reasoning exist, e.g.,C-SPARQL [66],RSP-QL [38], SPAR-
QLStream [9], or CQELS [67], only SPARQLStream supports an
ontology based data access approach in the classical sense: It uses
(pure) query rewriting of the queries in a preprocessing process
w.r.t. a DL-Lite TBox —without knowledge of the input data (static
data and streaming data). The system described in [68] also ex-
ploits rewriting of queries, but uses a differentDL language, namely
ELHIO. In general, FOL rewritability is not guaranteed for this DL,
but the authors consider rewriting for the non-recursive fragment
of ELHIO. Unfolding is not relevant for the approach in [68] as the
authors considermaterialised RDF streams. In comparison to these
OBDA approaches, STARQLoffersmore advanceduser defined func-
tions from the backend system like Pearson correlation. ([9] at least
uses a native inclusion of aggregation functions).

In Tables 1 and 2 we use the setting of features of [63] in
order to compare STARQL with the state-of-the-art RDF stream
query languages, namely, Streaming SPARQL [59], C-SPARQL [60,
60,61], CQELS [52], SPARQLStream [9,62,63], EP-SPARQL [64], TEF-
SPARQL [65], and RSP-QL [38]. Observe that except for Property
Paths, a new feature of SPARQL 1.1, and Triple Windows, STARQL
supports all constructors of the languages reported in the tables.
In particular, STARQL supports the basic operators such as Union,
Join, Optional, and Filter that are supported by all other languages
in the tables. STARQL also supports the If Expression, an SPARQL 1.1
function form that evaluates some boolean condition and outputs

one or other expression depending on the outcome of testing the
boolean condition. This is supported by C-SPARQL, SPARQLStream,
and RSP-QL only. Also, STARQL supports value Aggregation and
Time Windowing as most of the other systems reported in the
tables. STARQL supports W-to-S Operator on RStreams, that is,
it outputs the whole content of the window. Moreover, STARQL
allows to declare Named Streams, that is, it is possible to define a
new stream by a STARQL query that can be referenced by other
STARQL queries. This feature is important for our diagnostics use
case, because named streams enable a pipe-lined query building
methodologywhich is required to handle in amodularisedmanner
those aspects of various streams that are relevant for diagnostics.
Note that among the languages reported in the tables, only C-
SPARQL, EP-SPARQL and RSP-QL support named streams.

Observe that STARQL supports a rear feature of Intra window
time (which is supported only by C-SPARQL, SPARQLStream, and
EP-SPARQL), that is, the users can distinguish between different
states within a window and order them. This adds the useful
abstraction of state-based reasoning on the window contents. An-
other rear feature of STARQL is Sequencing, that is, a user can
build a sequence of stream elements within a window, which is
also supported by EP-SPARQL and TEF-SPARQL. Finally, the last
rare feature of STARQL is a pulse declaration which handles the
synchronisation of outputs frommultiple streams. C-SPARQL is the
only other query languagewhich offers a pulse declaration— using
the keyword EVERY.

RSP-QL [38] is the most recent suggestion for an RDF query
language on streams. It defines an operational semantics for a
streaming extension of SPARQL. As such, in principle, it also
supports property paths of SPARQL 1.1. But as the language is
not explicitly stated in [38] and property paths are not discussed
there, the ‘‘yes’’ entry holds under the condition that the add-
on stream semantics is separable from the semantics of property
paths for ordinary (non-streaming) RDF graphs. Triple windows
are not explicitly discussed by [38] and hence we wrote ‘‘No’’ for
this feature slot, though a slight adaptation of RSP-QL should also
cover these. Regarding the pulse declaration, we add the remark
that there is no explicit construct for specifying a pulse in RSP-
QL. At the same time, they discuss a different construct to handle
the synchronisation of different sliding windows: they describe
the semantics using an evaluation policy and w.r.t. a starting time
t0 not specified by the query designer but by the implementing
system.

EP-SPARQL [64] plays a unique role under the RDF stream
languages as it relies on the paradigms of event processing and
logic programming. The sequence operator is quite different from
that of STARQL. EP-SPARQLuses the sequence operator to identify a
sequence pattern in the event stream, whereas in STARQL it is used
to build a sequence of RDF graphs from a stream of timestamped
RDF elements.

We described with an example the operational semantics of
the window operator of STARQL. A full operational model for the
STARQL query language and a comparison with the SECRET model
described in [69] or with the model of RSP-QL of [38] is saved for
future work.

Data stream management system. One of the leading edges in
database management systems is to extend the relational model
to support for continuous queries based on declarative languages
analogous to SQL. Following this approach, systems such as Tele-
graphCQ [70], STREAM [71], and Aurora [72] take advantage of
existing Database Management technologies, optimisations, and
implementations developed over 30 years of research. In the era
of big data and cloud computing, a different class of DSMS has
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Table 1
Comparison of RDF-stream query languages (Part 1)
Name Data Model Union, Join, Optional, Filter IF Expression Aggregate Property Paths Time Windows Triple Windows

Streaming SPARQL [59] RDF streams Yes No No No Yes Yes
C-SPARQL [60,60,61] RDF streams Yes Yes Yes Yes Yes Yes
CQELS [52] RDF streams Yes No Yes No Yes No
SPARQLStream [9,62,63] (virtual) RDF streams Yes Yes Yes Yes Yes No
EP-SPARQL [64] RDF streams Yes No Yes No No No
TEF-SPARQL [65] RDF streams Yes No Yes No Yes Yes
RSP-QL [38] RDF streams Yes Yes Yes Yesa Yes No a

STARQL [18,19,28,37] (virtual) RDF streams Yes Yes Yes No Yes No

aSee explanation in main text.

Table 2
Comparison of RDF-stream query languages (Part 2)
Name W-to-S Operator Named Streams Intra window time Sequencing Pulse

Streaming SPARQL RStream No No No No
C-SPARQL RStream Yes Yes No Yes
CQELS IStream No No No No
SPARQLStream RStream, IStream, DStream No Yes No No
EP-SPARQL RStream Yes Yes Yes No
TEF-SPARQL RStream No No Yes No
RSP-QL [38] RStream, IStream, DStream Yes Yes No Noa

STARQL RStream Yes Yes Yes Yes

aSee explanation in main text.

emerged. Systems such as Storm,12 Flink,13 Kafka,14 Heron,15 and
Spark Streaming16 offer an API that allows the user to submit
dataflows of user defined operators. ExaStream unifies these two
different approaches by allowing to describe in a declarative way
complex dataflows of (possibly user-defined) operators. It should
be noted that several state-of-the-art systems for Big Data pro-
cessing are adopting a similar approach, providing for declarative
SQL-like languages for data processing. Apache Spark allows to
query structured data inside Spark programs using SQL queries,
while KSQL is a streaming SQL engine that enables real-time data
processing against Apache Kafka. In Section 10 we explain how to
take advantage of recent advances in Big Data processing systems.

In Section 7.1 we have adapted existing indexing structures to
accelerate query processing in actual industrial diagnostics and
monitoring of equipment in Siemens. We have additionally pre-
sented the Adaptive Indexing technique that creates on the fly the
appropriate structures for indexing. The specific indexing struc-
tures were proved to be the most beneficial for the Siemens sce-
narios that assume join and range operation on non-overlapping
windows. We chose KD-trees [47] because they are in-memory
data structures that are very useful for join, range, and nearest
neighbour searches. Additionally building KD-tree indexes ismuch
faster compared to other multidimensional indexes such as R-
trees [73] and their variations. For scenarios that these condi-
tions do not apply, other indexing structures can be examined in
combination with the Adaptive Indexing Technique. Index mate-
rialisation strategies have been examined in the current bibliog-
raphy, e.g. in [74] a methodology for automatically selecting an
appropriate set ofmaterialised views and indexes is presented. Our
Adaptive Indexing Technique, contrary to other indexing strategies
that are focus on static data processing, takes advantage of what
happened in the latest windows of a stream in order to decide
when to build the corresponding KD-tree index. A similar method-
ology for a different problem has been presented in [75]. In [75] a
query processing mechanism reorders operators in a query plan as
it runs.

12 Apache Storm. http://storm.apache.org.
13 Apache Flink. http://flink.apache.org.
14 Apache Kafka. https://kafka.apache.org.
15 Twitter Heron. https://apache.github.io/incubator-heron.
16 Spark Streaming. https://spark.apache.org/streaming.

The Materialised Window Signature summarisation, imple-
mented in ExaStream, is inspired from data warehousing tech-
niques for maintaining selected aggregates on stored datasets [76,
77]. Though the idea of Materialise Window Signatures (MWS)
appears to be intuitive, the only similarmethodology thatwe found
in the bibliography is presented by the state of the art Data Canopy
system [78]. The Data Canopy system stores basic aggregates
within an in-memory data structure and reuses them for overlap-
ping data parts and for various statistical measures. Consider that
the work on the Data Canopy was presented subsequently to the
our introduction of Materialise Window Signatures [18].

10. Conclusion and future work

We see our work as a first step towards the development of a
solid theory and new full-fledged systems in the space of analytics-
aware ontology-based access to data that is stored in different
formats such as static relational, streaming, etc. To this end we
proposed ontology, query, and mapping languages that are not
only capable of supporting analytical tasks common for Siemens
turbine diagnostics, but alsowe believe to other industrial settings.
Moreover, we developed a number of backend optimisation tech-
niques that allow such tasks to be accomplished in reasonable time
as we have demonstrated on large scale Siemens data.

We believe that our work will be interesting for a wide range
of researchers and practitioners in the area of data integration,
semantic data access, and Internet of Things. We also believe that
our results will be inspiring for the Semantic Web community in
developing new fundamental research as well as efficient algo-
rithms for light-weight ontology languages enhancedwith analyti-
cal operators. Finally, we believe that the next generation Semantic
Systems such as OBDA-based should be in a tight integration with
analytics and our work contributes in this direction.

Finally, there is a number of important further research and
practical directions that we plan to explore.

From the practical perspective, we plan to extend our OBDA
systemwith several important modules. First, in order to facilitate
ontology and mapping development and maintenance we plan
to work on novel ontology and mapping bootstrapping [79–84]
and rule learning techniques [85,86]. Second, in order to facilitate
formulation of analytical queries over analytics-aware ontologies

http://storm.apache.org
http://flink.apache.org
https://kafka.apache.org
https://apache.github.io/incubator-heron
https://spark.apache.org/streaming
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Table A.3
SQL� Generated Query.

we plan to work on end-user oriented query formulation inter-
faces, e.g., visual query systems [87–91] or faceted search query
interfaces [92–99]. Third, we plan to investigate access control
policies for analytics-aware OBDA [100,101]

On the side of analytics-aware ontologies, since bag semantics
is natural and important in analytical tasks, we see a need in

exploring bag instead of set semantics for ontologies as it has been
considered recently in OBDA and data exchange [25,26]. Besides,
we plan to study how the semantics and results of [55,56,58] and
queries of [23] can be adapted to our setting.

On the side of analytics-aware queries, an important further
direction is to align them with the terminology of the W3C RDF
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Data Cube Vocabulary17 and to provide additional optimisations
after the alignment. This direction is important since this will im-
prove the integration of analytical data, produced by other queries
with analytical and non-analytical data stemming from further
streams or repositories. Moreover, we plan to conduct empirical
evaluations to compare STARQLwith other such languages. Finally,
we plan to investigate extensions of analytics-aware queries with
recursion, e.g., following the approach of semantic diagnostic lan-
guages [53,102–105]

For backend optimisations, our future work involves the adap-
tive adjustment of ExaStream’s topology into the cloud’s demands.
The rate of input streams may change drastically from time to
time. ExaStream’s future goal is to keep the utilisation of the cloud
always to hight percentages using only the resources that are
needed. This affects both the data distribution and ExaStream’s
streamprocessing engine. For example our optimisermust support
stream join reordering on the fly. The optimiser must take into
account the rate of the input tuples and change the order without
damaging the adaptive indexing technique and the creation of the
related structures. Another interesting backend optimisation re-
lates to the pre-computation of the appropriate structures thatwill
accelerate the aggregate-query execution, e.g. materialised views
and database indexes. We intend to examine refined optimisa-
tion techniques that combine information on the OBDA layer with
building of the appropriate structures on our DSMS (or database
engine). With the recent advances in stream processing engines
and the adoption of declarative languages from several Big Data
frameworks, we intend to examine Polystore architectures [106]
for data integration of streaming and static information via OBDA
solutions.
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Appendix. Data analysis example

In Table A.3 we illustrate the shape of SQL� queries that were
used during our experimental evaluation.

The query corresponding to the one in the table computes the
Pearson correlation of a live stream with a varying number of
archived streams. Each new stream record provides information
related to a temperature sensor such as: (i) the time when the
measurement was made: the timestamp attribute; (ii) the id of
the sensor that took the measurement: the sensor attribute; (iii)
the feature that was measured: the feature attribute; (iv) the
value of the measurement: the value attribute. Archived streams
also contain one additional attribute next to each of their records
corresponding to the window id Wid of the measurement.

References

[1] D. Calvanese, G. Giacomo, D. Lembo, Ontologies and databases: The DL-lite
approach, in: Reas. Web, 2009.

[2] I. Horrocks, M. Giese, E. Kharlamov, A.Waaler, Using semantic technology to
tame the data variety challenge, IEEE Internet Comput. 20 (6) (2016) 62–66.

[3] C. Bizer, A. Seaborne, D2RQ-treating non-RDF databases as virtual RDF
graphs, in: ISWC, 2004.

[4] D. Calvanese, G. De Giacomo, D. Lembo,M. Lenzerini, A. Poggi, M. Rodriguez-
Muro, R. Rosati, M. Ruzzi, D.F. Savo, The MASTRO system for ontology-based
data access, Semantic Web 2 (1) (2011) 43–53.

17 https://www.w3.org/TR/2014/REC-vocab-data-cube-20140116/.

[5] F. Priyatna, O. Corcho, J. Sequeda, Formalisation and experiences of R2RML-
based SPARQL to SQL query translation using morph, in: WWW, 2014, pp.
479–490.

[6] M. Rodriguez-Muro, R. Kontchakov, M. Zakharyaschev, Ontology-based data
access: ontop of databases, in: ISWC, 2013, pp. 558–573.

[7] K.Munir,M.Odeh, R.McClatchey, Ontology-driven relational query formula-
tion using the semantic and assertional capabilities of owl-dl, Knowl.-Based
Syst. 35 (2012) 144–159.

[8] J. Sequeda, D.P. Miranker, Ultrawrap: SPARQL execution on relational data,
JWS 22 (2013) 19–39.

[9] J. Calbimonte, Ó. Corcho, A.J.G. Gray, Enabling ontology-based access to
streaming data sources, in: ISWC, 2010, pp. 96–111.

[10] L. Fischer, T. Scharrenbach, A. Bernstein, Scalable linked data streamprocess-
ing via network-aware workload scheduling, in: SSWKBS@ISWC, 2013, pp.
81–96.

[11] D. Calvanese, P. Liuzzo, A.Mosca, J. Remesal,M. Rezk, G. Rull, Ontology-based
data integration in epnet: production and distribution of food during the
roman empire, Eng. Appl. AI 51 (2016) 212–229.

[12] C. Civili, M. Console, G. De Giacomo, D. Lembo, M. Lenzerini, L. Lepore,
R. Mancini, A. Poggi, R. Rosati, M. Ruzzi, V. Santarelli, D.F. Savo, MASTRO
STUDIO: Managing ontology-based data access applications, PVLDB 6 (12)
(2013) 1314–1317.

[13] E. Kharlamov, D. Hovland, E. Jiménez-Ruiz, D. Lanti, H. Lie, C. Pinkel, M.
Rezk, M.G. Skjæveland, E. Thorstensen, G. Xiao, D. Zheleznyakov, I. Horrocks,
Ontology based access to exploration data at statoil, in: ISWC, 2015, pp. 93–
112.

[14] E. Kharlamov, D. Hovland, M.G. Skjæveland, D. Bilidas, E. Jiménez-Ruiz, G.
Xiao, A. Soylu, D. Lanti, M. Rezk, D. Zheleznyakov, M. Giese, H. Lie, Y.E.
Ioannidis, Y. Kotidis, M. Koubarakis, A. Waaler, Ontology based data access
in statoil, J. Web Sem. 44 (2017) 3–36.

[15] E. Kharlamov, N. Solomakhina, Ö.L. Özçep, D. Zheleznyakov, T. Hubauer, S.
Lamparter,M. Roshchin, A. Soylu, S.Watson, How semantic technologies can
enhance data access at siemens energy, in: ISWC, 2014.

[16] E. Kharlamov, M.G. Skjæveland, T. Mailis, E. Jiménez-Ruiz, G. Xiao, A. Soylu,
H. Lie, A. Waaler, Finding data should be easier than finding oil, in: BigData,
2018.

[17] M. Rodrıguez-Muro, D. Calvanese, High performance query answering over
DL-lite ontologies, in: KR, 2012.

[18] E. Kharlamov, Y. Kotidis, T. Mailis, C. Neuenstadt, C. Nikolaou, Ö.L. Özçep, C.
Svingos, D. Zheleznyakov, S. Brandt, I. Horrocks, Y.E. Ioannidis, S. Lamparter,
R. Möller, Towards analytics aware ontology based access to static and
streaming data, in: ISWC, 2016, pp. 344–362.

[19] Ö. L.. Özçep, R. Möller, Ontology based data access on temporal and stream-
ing data, in: M. Koubarakis, G. Stamou, G. Stoilos, I. Horrocks, P. Kolaitis, G.
Lausen, G.Weikum (Eds.), ReasoningWeb. Reasoning and theWeb in the Big
Data Era, in: Lecture Notes in Computer Science, vol. 8714, 2014.

[20] M.M. Tsangaris, G. Kakaletris, H. Kllapi, G. Papanikos, F. Pentaris, P. Polydoras,
E. Sitaridi, V. Stoumpos, Y.E. Ioannidis, Dataflowprocessing and optimization
on grid and cloud infrastructures, IEEE Data Eng. Bull. 32 (1) (2009) 67–74.

[21] H. Kllapi, P. Sakkos, A. Delis, D. Gunopulos, Y. Ioannidis, Elastic processing of
analytical query workloads on IaaS clouds, in: arXiv, 2015.

[22] C. Lutz, I. Seylan, F. Wolter, Ontology-based data access with closed predi-
cates is inherently intractable(sometimes), in: IJCAI 2013, Proceedings of the
23rd International Joint Conference on Artificial Intelligence, Beijing, China,
August 3–9, 2013, pp. 1024–1030.

[23] D. Calvanese, E. Kharlamov, W. Nutt, C. Thorne, Aggregate queries over
ontologies, in: ONISW, 2008, pp. 97–104.

[24] E.V. Kostylev, J.L. Reutter, Complexity of answering counting aggregate
queries over DL-lite, J. Web Sem. 33 (2015) 94–111.

[25] C. Nikolaou, E.V. Kostylev, G. Konstantinidis, M. Kaminski, B. Cuenca Grau, I.
Horrocks, The bag semantics of ontology-based data access, in: IJCAI, 2017,
pp. 1224–1230.

[26] A. Hernich, P.G. Kolaitis, Foundations of information integration under bag
semantics, in: LICS, 2017, pp. 1–12.

[27] E. Kharlamov, T. Mailis, G. Mehdi, C. Neuenstadt, Ö.L. Özçep, M. Roshchin,
N. Solomakhina, A. Soylu, C. Svingos, S. Brandt, M. Giese, Y.E. Ioannidis, S.
Lamparter, R. Möller, Y. Kotidis, A.Waaler, Semantic access to streaming and
static data at siemens, J. Web Sem. 44 (2017) 54–74.

[28] Özgür.L. Özçep, R. Möller, C. Neuenstadt, Stream-Query compilation with
ontologies, in: B. Pfahringer, J. Renz (Eds.), Poceedings of the 28th Aus-
tralasian Joint Conference on Artificial Intelligence 2015, AI 2015, in: LNAI,
vol. 9457, Springer International Publishing, 2015.

[29] S. Borgwardt, M. Lippmann, V. Thost, Temporal query answering in the
description logic DL-lite, in: FroCoS, 2013, pp. 165–180.

[30] A. Arasu, S. Babu, J. Widom, The CQL continuous query language: semantic
foundations and query execution, VLDBJ 15 (2) (2006) 121–142.

[31] E. Kharlamov, S. Brandt, M. Giese, E. Jiménez-Ruiz, Y. Kotidis, S. Lamparter,
T. Mailis, C. Neuenstadt, Ö.L. Özçep, C. Pinkel, A. Soylu, C. Svingos, D.
Zheleznyakov, I. Horrocks, Y.E. Ioannidis, R. Möller, A. Waaler, Enabling
semantic access to static and streamingdistributeddatawith optique: demo,
in: DEBS Demo, 2016, pp. 350–353.

http://refhub.elsevier.com/S1570-8268(19)30001-0/sb1
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb1
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb1
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb2
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb2
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb2
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb3
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb3
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb3
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb4
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb4
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb4
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb4
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb4
https://www.w3.org/TR/2014/REC-vocab-data-cube-20140116/
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb5
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb5
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb5
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb5
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb5
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb6
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb6
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb6
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb7
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb7
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb7
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb7
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb7
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb8
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb8
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb8
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb9
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb9
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb9
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb10
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb10
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb10
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb10
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb10
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb11
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb11
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb11
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb11
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb11
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb12
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb12
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb12
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb12
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb12
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb12
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb12
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb13
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb13
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb13
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb13
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb13
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb13
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb13
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb14
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb14
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb14
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb14
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb14
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb14
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb14
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb15
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb15
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb15
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb15
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb15
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb16
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb16
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb16
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb16
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb16
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb17
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb17
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb17
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb18
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb18
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb18
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb18
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb18
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb18
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb18
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb19
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb19
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb19
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb19
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb19
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb19
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb19
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb20
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb20
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb20
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb20
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb20
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb21
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb21
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb21
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb23
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb23
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb23
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb24
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb24
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb24
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb25
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb25
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb25
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb25
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb25
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb26
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb26
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb26
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb27
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb27
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb27
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb27
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb27
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb27
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb27
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb28
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb28
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb28
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb28
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb28
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb28
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb28
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb29
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb29
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb29
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb30
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb30
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb30
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb31
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb31
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb31
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb31
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb31
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb31
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb31
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb31
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb31


Please cite this article as: E. Kharlamov, Y. Kotidis, T. Mailis et al., An ontology-mediated analytics-aware approach to support monitoring and diagnostics of static and
streaming data, Web Semantics: Science, Services and Agents on the World Wide Web (2019), https://doi.org/10.1016/j.websem.2019.01.001.

E. Kharlamov, Y. Kotidis, T. Mailis et al. / Web Semantics: Science, Services and Agents on the World Wide Web xxx (xxxx) xxx 25

[32] E. Kharlamov, S. Brandt, E. Jimenez-Ruiz, Y. Kotidis, S. Lamparter, T. Mailis,
C. Neuenstadt, O. Özçep, C. Pinkel, C. Svingos, D. Zheleznyakov, I. Horrocks,
Y. Ioannidis, R. Möller, Ontology-based integration of streaming and static
relational data with optique, SIGMOD Demo (2016).

[33] E. Kharlamov, S. Brandt, M. Giese, E. Jiménez-Ruiz, S. Lamparter, C. Neuen-
stadt, Ö.L. Özçep, C. Pinkel, A. Soylu, D. Zheleznyakov, M. Roshchin, S. Wat-
son, I. Horrocks, Semantic access to siemens streaming data: the optique
way, in: ISWC, 2015.

[34] E. Kharlamov, E. Jiménez-Ruiz, C. Pinkel, M. Rezk, M.G. Skjæveland, A. Soylu,
G. Xiao, D. Zheleznyakov,M. Giese, I. Horrocks, A.Waaler, Optique: ontology-
based data access platform, in: ISWC P&D, 2015.

[35] E. Kharlamov, E. Jiménez-Ruiz, D. Zheleznyakov, D. Bilidas, M. Giese, P.
Haase, I. Horrocks, H. Kllapi, M. Koubarakis, Ö.L. Özçep, M. Rodriguez-Muro,
R. Rosati, M. Schmidt, R. Schlatte, A. Soylu, A.Waaler, Optique: towards obda
systems for industry, in: ESWC (Selected Papers), 2013, pp. 125–140.

[36] E. Kharlamov, M. Giese, E. Jiménez-Ruiz, M.G. Skjæveland, A. Soylu, D.
Zheleznyakov, T. Bagosi, M. Console, P. Haase, I. Horrocks, S. Marciuska, C.
Pinkel, M. Rodriguez-Muro, M. Ruzzi, V. Santarelli, D.F. Savo, K. Sengupta, M.
Schmidt, E. Thorstensen, J. Trame, A. Waaler, Optique 1.0: semantic access
to big data: the case of norwegian petroleum directorate factpages, in: ISWC
Posters & Demos, 2013.

[37] Özgür. Özçep, R. Möller, C. Neuenstadt, A stream-temporal query language
for ontology based data access, in: Proceedings of the 37th German Confer-
ence on AI, KI 2014, 2014, pp. 183–194.

[38] D. Dell’Aglio, E.D. Valle, J. Calbimonte, Ó. Corcho, RSP-QL Semantics: A
unifying query model to explain heterogeneity of RDF stream processing
systems, Int. J. Semantic Web Inf. Syst. 10 (4) (2014) 17–44.

[39] A. Toshniwal, S. Taneja, A. Shukla, K. Ramasamy, J.M. Patel, S. Kulkarni, J.
Jackson, K. Gade, M. Fu, J. Donham, et al., Storm@ twitter, in: Proceedings
of the 2014 ACM SIGMOD international conference onManagement of data,
ACM, 2014, pp. 147–156.

[40] T. Akidau, R. Bradshaw, C. Chambers, S. Chernyak, R.J. Fernández-
Moctezuma, R. Lax, S. McVeety, D. Mills, F. Perry, E. Schmidt, et al., The
dataflow model: a practical approach to balancing correctness, latency, and
cost in massive-scale, unbounded, out-of-order data processing, Proceed-
ings of the VLDB Endowment 8 (12) (2015) 1792–1803.

[41] D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, R. Rosati, Tractable
reasoning and efficient query answering in description logics: The DL-lite
family, JAR 39 (3) (2007).

[42] C. Neuenstadt, R. Möller, Ö.L. Özçep, OBDA for temporal querying and
streams, in: D. Nicklas, Ö.L. Özçep (Eds.), Proceedings of the 1stWorkshop on
High-Level Declarative Stream Processing co-located with the 38th German
AI conference (KI 2015), Dresden, Germany, September 22, 2015, in: CEUR
Workshop Proceedings, vol. 1447, CEUR-WS.org, 2015, pp. 70–75, http://
ceur-ws.org/Vol-1447/paper6.pdf.

[43] C. Neuenstadt, R. Möller, Özgür.L. Özçep, OBDA for temporal querying and
streams with starql, in: D. Nicklas, Özgür.L. Özçep (Eds.), Proceedings of the
1st Workshop on High-Level Declarative Stream Processing co-located with
the 38th German AI conference (KI 2015), Dresden, Germany, September 22,
2015, HiDeSt’15, in: CEUR Proceedings, 1447, 2015.

[44] D. Calvanese, G. De Giacomo, D. Lembo,M. Lenzerini, A. Poggi, M. Rodriguez-
Muro, R. Rosati, M. Ruzzi, D.F. Savo, The MASTRO system for ontology-based
data access, Semantic Web 2 (1) (2011) 43–53.

[45] M. Owens, Embedding an sql databasewith sqlite, Linux J. 2003 (110) (2003)
2.

[46] M. Owens, G. Allen, SQLite, Springer, 2010.
[47] J.L. Bentley, Multidimensional binary search trees used for associative

searching, Commun. ACM 18 (9) (1975) 509–517.
[48] P. Indyk, R. Motwani, Approximate nearest neighbors: towards removing

the curse of dimensionality, in: Proceedings of the Thirtieth Annual ACM
Symposium on Theory of Computing, ACM, 1998, pp. 604–613.

[49] A. Gionis, P. Indyk, R. Motwani, et al., Similarity search in high dimensions
via hashing, in: VLDB, vol. 99, 1999, pp. 518–529.

[50] K. Georgoulas, Y. Kotidis, Distributed similarity estimation using derived
dimensions, VLDB J. 21 (1) (2012) 25–50.

[51] N. Giatrakos, Y. Kotidis, A. Deligiannakis, V. Vassalos, Y. Theodoridis, In-
network approximate computation of outliers with quality guarantees, Inf.
Syst. 38 (8) (2013) 1285–1308.

[52] D.L. Phuoc, M. Dao-Tran, J.X. Parreira, M. Hauswirth, A native and adaptive
approach for unified processing of linked streams and linked data, in: ISWC,
2011, pp. 370–388.

[53] G. Mehdi, E. Kharlamov, O. Savkovic, G. Xiao, E.G. Kalaycı, S. Brandt, I.
Horrocks, M. Roshchin, T.A. Runkler, Semantic rule-based equipment diag-
nostics, in: ISWC, 2017, pp. 314–333.

[54] E. Kharlamov, O. Savkovic, G. Xiao, R. Penaloza, G. Mehdi, I. Horrocks, M.
Roshchin, Semantic rules for machine diagnostics: execution and manage-
ment, in: CIKM, 2017.

[55] O. Savkovic, D. Calvanese, Introducing datatypes in DL-lite, in: ECAI, 2012,
pp. 720–725.

[56] A. Artale, V. Ryzhikov, R. Kontchakov, DL-lite with attributes and datatypes,
in: ECAI, 2012, pp. 61–66.

[57] F. Baader, S. Borgwardt, M. Lippmann, Query rewriting for DL-lite with n-ary
concrete domains, in: IJCAI, 2017, pp. 786–792.

[58] F. Baader, U. Sattler, Description logics with aggregates and concrete do-
mains, IS 28 (8) (2003) 979–1004.

[59] A. Bolles, M. Grawunder, J. Jacobi, Streaming sparql extending sparql to
process data streams, in: Proceedings of the 5th European Semantic Web
Conference on The Semantic Web: Research and Applications, Springer-
Verlag, 2008, pp. 448–462.

[60] D.F. Barbieri, D. Braga, S. Ceri, E. Della Valle, M. Grossniklaus, C-SPARQL:
SPARQL for continuous querying, in: Proceedings of the 18th International
Conference on World Wide Web, ACM, 2009, pp. 1061–1062.

[61] D.F. Barbieri, D. Braga, S. Ceri, M. Grossniklaus, An execution environment
for C-SPARQL queries, in: Proceedings of the 13th International Conference
on Extending Database Technology, ACM, 2010, pp. 441–452.

[62] J.P. Calbimonte, H. Jeung, O. Corcho, K. Aberer, Enabling query technologies
for the semantic sensorweb, Int. J. Semant.Web Inf. Syst. 8 (1) (2012) 43–63.

[63] J.P. Calbimonte, Ontology-based Access to Sensor Data Streams (Disserta-
tion), Universidad Politecninca de Madrid, 2013, http://oa.upm.es/15320/1/
JEAN_PAUL_CALBIMONTE.pdf.

[64] D. Anicic, P. Fodor, S. Rudolph, N. Stojanovic, EP-SPARQL: a unified language
for event processing and stream reasoning, in: WWW, 2011, pp. 635–644.

[65] J. Kietz, T. Scharrenbach, L. Fischer, A. Bernstein, K. Nguyen, TEF-SPARQL: The
DDIS query-language for time annotated event and fact triple-streams, Tech.
rep., Technical report, University of Zurich, Department of Informatics, 2013.

[66] D.F. Barbieri, D. Braga, S. Ceri, E.D. Valle, M. Grossniklaus, C-SPARQL: a
continuous query language for RDF data streams, Int. J. Sem. Comput. 4 (1)
(2010) 3–25.

[67] D. Le-Phuoc, M. Dao-Tran, M.D. Pham, P. Boncz, T. Eiter, M. Fink, Linked
stream data processing engines: facts and figures, in: ISWC, 2012, pp. 300–
312.

[68] J.P. Calbimonte, J. Mora, O. Corcho, Query rewriting in RDF stream process-
ing, in: Proceedings of the 13th International Conference on The Semantic
Web, in: Latest Advances and NewDomains, vol. 9678, Springer-Verlag New
York, Inc., New York, NY, USA, 2016, pp. 486–502.

[69] N. Dindar, N. Tatbul, R.J. Miller, L.M. Haas, I. Botan, Modeling the execution
semantics of stream processing engines with SECRET, VLDB J. 22 (4) (2013)
421–446.

[70] S. Chandrasekaran, O. Cooper, A. Deshpande, M.J. Franklin, J.M. Hellerstein,
W. Hong, S. Krishnamurthy, S.R. Madden, F. Reiss, M.A. Shah, TelegraphCQ:
continuous dataflow processing, in: SIGMOD, 2003, 668–668.

[71] A. Arasu, B. Babcock, S. Babu, M. Datar, K. Ito, I. Nishizawa, J. Rosenstein, J.
Widom, STREAM: The stanford stream data manager, in: SIGMOD, 2003, p.
665.

[72] D. Abadi, D. Carney, U. Cetintemel, M. Cherniack, C. Convey, C. Erwin, E.
Galvez, M. Hatoun, A. Maskey, A. Rasin, et al., Aurora: A data stream man-
agement system, in: SIGMOD, 2003, 666–666.

[73] A. Guttman, R-trees: A dynamic index structure for spatial searching, in:
SIGMOD’84, Proceedings of Annual Meeting, Boston, Massachusetts, USA,
June 18–21, 1984, pp. 47–57.

[74] S. Agrawal, S. Chaudhuri, V.R. Narasayya, Automated selection of material-
ized views and indexes in SQL databases, in: VLDB, vol. 2000, 2000, pp. 496–
505.

[75] R. Avnur, J.M. Hellerstein, Eddies: Continuously adaptive query processing,
ACM Sigmod Record 29 (2) (2000) 261–272.

[76] Y. Kotidis, N. Roussopoulos, DynaMat: a dynamic viewmanagement system
for data warehouses, in: SIGMOD, 1999, pp. 371–382.

[77] J. Gray, S. Chaudhuri, A. Bosworth, A. Layman, D. Reichart, M. Venkatrao, F.
Pellow, H. Pirahesh, Data cube: a relational aggregation operator general-
izing group-by, cross-tab, and sub-totals, Data Mining Knowl. Discov. 1 (1)
(1997) 29–53.

[78] A. Wasay, X. Wei, N. Dayan, S. Idreos, Data canopy: Accelerating exploratory
statistical analysis, in: Proceedings of the 2017 ACM International Confer-
ence on Management of Data, ACM, 2017, pp. 557–572.

[79] E. Jiménez-Ruiz, E. Kharlamov, D. Zheleznyakov, I. Horrocks, C. Pinkel, M.S.
veland, E. Thorstensen, J.Mora, BootOX: practicalmapping of RDBs toOWL2,
in: ISWC, 2015.

[80] C. Pinkel, C. Binnig, E. Jiménez-Ruiz, E. Kharlamov, W. May, A. Nikolov,
A.S. Bastinos, M.G. Skjæveland, A. Solimando, M. Taheriyan, C. Heupel, I.
Horrocks, RODI: Benchmarking relational-to-ontology mapping generation
quality, Semantic Web 9 (1) (2018) 25–52.

[81] C. Pinkel, C. Binnig, E. Jiménez-Ruiz, E. Kharlamov, A. Nikolov, A. Schwarte,
C. Heupel, T. Kraska, IncMap: a journey towards ontology-based data inte-
gration, in: BTW, 2017, pp. 145–164.

[82] E. Jiménez-Ruiz, E. Kharlamov, D. Zheleznyakov, I. Horrocks, C. Pinkel, M.G.
Skjæveland, E. Thorstensen, J. Mora, BootOX: Bootstrapping OWL 2 ontolo-
gies and R2RML mappings from relational databases, in: ISWC Posters &
Demonstrations Track, 2015.

[83] C. Pinkel, C. Binnig, E. Jiménez-Ruiz, W. May, D. Ritze, M.G. Skjæveland,
A. Solimando, E. Kharlamov, RODI: A benchmark for automatic mapping
generation in relational-to-ontology data integration, in: ESWC, 2015, pp.
21–37.

http://refhub.elsevier.com/S1570-8268(19)30001-0/sb32
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb32
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb32
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb32
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb32
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb32
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb32
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb33
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb33
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb33
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb33
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb33
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb33
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb33
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb34
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb34
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb34
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb34
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb34
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb35
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb35
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb35
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb35
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb35
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb35
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb35
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb36
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb36
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb36
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb36
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb36
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb36
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb36
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb36
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb36
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb36
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb36
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb38
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb38
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb38
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb38
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb38
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb39
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb39
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb39
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb39
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb39
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb39
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb39
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb40
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb40
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb40
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb40
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb40
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb40
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb40
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb40
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb40
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb41
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb41
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb41
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb41
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb41
http://ceur-ws.org/Vol-1447/paper6.pdf
http://ceur-ws.org/Vol-1447/paper6.pdf
http://ceur-ws.org/Vol-1447/paper6.pdf
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb43
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb43
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb43
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb43
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb43
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb43
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb43
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb43
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb43
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb44
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb44
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb44
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb44
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb44
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb45
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb45
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb45
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb46
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb47
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb47
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb47
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb48
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb48
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb48
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb48
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb48
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb49
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb49
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb49
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb50
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb50
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb50
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb51
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb51
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb51
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb51
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb51
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb52
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb52
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb52
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb52
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb52
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb53
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb53
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb53
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb53
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb53
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb54
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb54
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb54
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb54
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb54
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb55
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb55
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb55
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb56
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb56
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb56
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb57
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb57
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb57
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb58
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb58
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb58
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb59
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb59
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb59
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb59
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb59
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb59
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb59
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb60
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb60
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb60
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb60
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb60
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb61
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb61
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb61
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb61
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb61
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb62
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb62
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb62
http://oa.upm.es/15320/1/JEAN_PAUL_CALBIMONTE.pdf
http://oa.upm.es/15320/1/JEAN_PAUL_CALBIMONTE.pdf
http://oa.upm.es/15320/1/JEAN_PAUL_CALBIMONTE.pdf
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb64
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb64
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb64
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb65
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb65
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb65
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb65
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb65
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb66
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb66
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb66
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb66
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb66
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb67
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb67
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb67
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb67
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb67
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb68
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb68
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb68
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb68
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb68
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb68
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb68
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb69
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb69
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb69
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb69
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb69
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb70
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb70
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb70
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb70
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb70
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb71
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb71
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb71
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb71
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb71
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb72
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb72
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb72
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb72
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb72
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb74
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb74
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb74
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb74
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb74
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb75
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb75
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb75
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb76
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb76
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb76
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb77
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb77
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb77
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb77
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb77
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb77
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb77
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb78
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb78
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb78
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb78
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb78
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb79
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb79
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb79
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb79
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb79
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb80
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb80
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb80
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb80
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb80
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb80
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb80
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb81
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb81
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb81
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb81
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb81
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb82
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb82
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb82
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb82
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb82
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb82
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb82
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb83
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb83
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb83
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb83
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb83
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb83
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb83


Please cite this article as: E. Kharlamov, Y. Kotidis, T. Mailis et al., An ontology-mediated analytics-aware approach to support monitoring and diagnostics of static and
streaming data, Web Semantics: Science, Services and Agents on the World Wide Web (2019), https://doi.org/10.1016/j.websem.2019.01.001.

26 E. Kharlamov, Y. Kotidis, T. Mailis et al. / Web Semantics: Science, Services and Agents on the World Wide Web xxx (xxxx) xxx

[84] C. Pinkel, C. Binnig, E. Kharlamov, P. Haase, Pay as you go matching of
relational schemata to OWL ontologies with IncMap, in: ISWC Posters &
Demonstrations, 2013, pp. 225–228.

[85] V.T. Ho, D. Stepanova, M.H. Gad-Elrab, E. Kharlamov, G. Weikum, Rule
learning from knowledge graphs guided by embedding models, in: ISWC,
2018, pp. 72–90.

[86] V.T. Ho, D. Stepanova, M.H. Gad-Elrab, E. Kharlamov, G. Weikum, Learning
rules from incomplete KGs using embeddings, in: ISWC Posters & Demon-
strations, 2018.

[87] A. Soylu, M. Giese, E. Jiménez-Ruiz, E. Kharlamov, D. Zheleznyakov, I. Hor-
rocks, Ontology-based end-user visual query formulation: Why, what, who,
how, and which? Univ. Access Inform. Soc. 16 (2) (2017) 435–467.

[88] A. Soylu, M. Giese, R. Schlatte, E. Jiménez-Ruiz, E. Kharlamov, Ö.L. Özçep,
C. Neuenstadt, S. Brandt, Querying industrial stream-temporal data: An
ontology-based visual approach, JAISE 9 (1) (2017) 77–95.

[89] A. Soylu, E. Kharlamov, D. Zheleznyakov, E. Jiménez-Ruiz, M. Giese, M.G.
Skjæveland, D. Hovland, R. Schlatte, S. Brandt, H. Lie, I. Horrocks, Op-
tiqueVQS: A visual query system over ontologies for industry, SemanticWeb
9 (5) (2018) 627–660.

[90] A. Soylu, E. Kharlamov, D. Zheleznyakov, E. Jiménez-Ruiz, M. Giese, I. Hor-
rocks, Ontology-based visual query formulation: an industry experience, in:
ISVC, 2015, pp. 842–854.

[91] A. Soylu, M. Giese, E. Jiménez-Ruiz, E. Kharlamov, D. Zheleznyakov, I. Hor-
rocks, Why not simply google? in: NordiCHI, 2014, pp. 1039–1042.

[92] E. Kharlamov, L. Giacomelli, E. Sherkhonov, B.C. Grau, E.V. Kostylev, I. Hor-
rocks, SemFacet: making hard faceted search easier, in: CIKM, 2017, pp.
2475–2478.

[93] E. Kharlamov, L. Giacomelli, E. Sherkhonov, B.C. Grau, E.V. Kostylev, I. Hor-
rocks, Ranking, aggregation, and reachability in faceted search with sem-
facet, in: ISWC Posters & Demonstrations, 2017.

[94] E. Sherkhonov, B.C. Grau, E. Kharlamov, E.V. Kostylev, Semantic faceted
search with aggregation and recursion, in: ISWC, 2017, pp. 594–610.

[95] M. Arenas, B.C. Grau, E. Kharlamov, S. Marciuska, D. Zheleznyakov, Faceted
search over RDF-based knowledge graphs, J. Web Sem. 37–38 (2016) 55–74.

[96] B.C. Grau, E. Kharlamov, S.Marciuska, D. Zheleznyakov,M. Arenas, SemFacet:
faceted search over ontology enhanced knowledge graphs, in: ISWC Posters
& Demonstrations, 2016.

[97] M. Arenas, B.C. Grau, E. Kharlamov, S. Marciuska, D. Zheleznyakov, Faceted
search over ontology-enhanced RDF data, in: CIKM, 2014, pp. 939–948.

[98] M. Arenas, B.C. Grau, E. Kharlamov, S. Marciuska, D. Zheleznyakov, E.
Jiménez-Ruiz, SemFacet: semantic faceted search over yago, in: WWW,
2014, pp. 123–126.

[99] M. Arenas, B.C. Grau, E. Kharlamov, S. Marciuska, D. Zheleznyakov, Towards
semantic faceted search, in: WWW, 2014, pp. 219–220.

[100] B.C. Grau, E. Kharlamov, E.V. Kostylev, D. Zheleznyakov, Controlled query
evaluation for datalog and OWL 2 profile ontologies, in: IJCAI, 2015, pp.
2883–2889.

[101] B.C. Grau, E. Kharlamov, E.V. Kostylev, D. Zheleznyakov, Controlled query
evaluation over OWL 2 RL ontologies, in: ISWC, 2013, pp. 49–65.

[102] E. Kharlamov, O. Savkovic, G. Xiao, R. Peñaloza, G.Mehdi,M. Roshchin, I. Hor-
rocks, Semantic rules for machine diagnostics: execution and management,
in: CIKM, 2017, pp. 2131–2134.

[103] G. Mehdi, E. Kharlamov, O. Savkovic, G. Xiao, E.G. Kalayci, S. Brandt, I. Hor-
rocks, M. Roshchin, T.A. Runkler, SemDia: semantic rule-based equipment
diagnostics tool, in: CIKM, 2017, pp. 2507–2510.

[104] G. Mehdi, E. Kharlamov, O. Savkovic, G. Xiao, E.G. Kalayci, S. Brandt, I. Hor-
rocks,M. Roshchin, T.A. Runkler, Semantic rule-based equipment diagnostic,
in: ISWC Posters & Demonstrations, 2017.

[105] E. Kharlamov, O. Savkovic, M. Ringsquandl, G. Xiao, G. Mehdi, E.G. Kalayci,
W. Nutt, M. Roshchin, I. Horrocks, T.A. Runkler, Diagnostics of trains with
semantic diagnostics rules, in: ILP, 2018, pp. 54–71.

[106] J. Duggan, A.J. Elmore, M. Stonebraker, M. Balazinska, B. Howe, J. Kepner, S.
Madden, D.Maier, T.Mattson, S. Zdonik, The bigdawgpolystore system, ACM
Sigmod Record 44 (2) (2015) 11–16.

http://refhub.elsevier.com/S1570-8268(19)30001-0/sb84
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb84
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb84
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb84
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb84
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb85
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb85
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb85
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb85
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb85
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb86
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb86
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb86
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb86
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb86
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb87
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb87
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb87
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb87
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb87
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb88
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb88
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb88
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb88
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb88
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb89
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb89
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb89
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb89
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb89
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb89
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb89
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb90
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb90
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb90
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb90
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb90
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb91
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb91
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb91
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb92
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb92
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb92
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb92
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb92
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb93
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb93
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb93
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb93
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb93
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb94
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb94
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb94
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb95
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb95
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb95
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb96
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb96
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb96
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb96
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb96
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb97
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb97
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb97
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb98
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb98
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb98
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb98
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb98
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb99
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb99
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb99
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb100
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb100
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb100
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb100
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb100
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb101
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb101
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb101
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb102
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb102
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb102
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb102
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb102
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb103
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb103
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb103
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb103
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb103
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb104
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb104
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb104
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb104
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb104
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb105
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb105
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb105
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb105
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb105
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb106
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb106
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb106
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb106
http://refhub.elsevier.com/S1570-8268(19)30001-0/sb106

	An ontology-mediated analytics-aware approach to support monitoring and diagnostics of static and streaming data
	Introduction
	Delta from Previous Publications
	Structure of the Paper

	DL-LiteAagg: An ontology language with aggregates
	Syntax of DL-LiteAagg
	Semantics of DL-LiteAagg
	Query Answering in DL-LiteAagg
	Discussion

	STARQL: A query language over DL-LiteAagg ontologies for static and streaming data
	Overview and Example
	Syntax and Comparison to other Languages
	Semantics

	SQL⊕: An analytics-aware relational query language for static and streaming data
	Data Model and Execution Architecture
	A Declarative Language for Computations

	Bridging STARQL over DL-LiteAagg and SQL⊕: Mapping Language and Query Transformation
	Background on OBDA
	Extending OBDA for DL-LiteAagg and STARQL
	Transformation of Static Queries
	Transformation of Streaming Queries
	Correctness of Query Transformation Procedures
	Discussion: Practicality of Aggregate Concepts

	System
	STARQL to SQL⊕ translator
	ExaStream Data-Stream Management System

	Backend Query Optimisations for SQL⊕
	Query Optimisations on Live Streams
	Indexing Structures
	Adaptive Stream Indexing

	Query Optimisations on Archived Information
	Efficient Storage of Archived Streams for Hybrid Operations
	Materialised Window Signatures


	Experimental Evaluation of the Backend
	Evaluation Setting
	Test Queries
	Adaptive Indexing Optimisation
	MWS Optimisation
	Parallelism Between Live and Archived Streams
	Parallelism Between Live Streams
	LSH optimisation

	Related Work
	Conclusion and Future Work
	Acknowledgements
	Appendix Data analysis example
	References


