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Abstract

Query processing in sensor networks is emergirayfeantier area in data management research. his i
exemplified by a flurry of research and vision papi& premium database journals and international
conferences. While we are still years away from ghmart dust vision, there is a consensus that our
future will incorporate a plethora of sensing degichat will participate and help us in our daily
activities. In the DBSENSE proposal we seek to vstdad the fundamental principles in designing a
scalable data processing infrastructure in suppogmerging applications that utilize wireless sgns
node technology. We have identified four major saglat we pursed in order to accomplish this goal.
The first involves exploiting in-network processitgghniques in order to leverage the large number o
nodes available in such networks and reduce unsa&geslata movement. The second objective is to
explore distributed compression schemes that wiltdilored to the types of multi-valued data stream
produced by the sensing nodes. The third objeddive explore new query models that are emerging in
applications of sensor networks and differ sigaifity from those considered in traditional inforioat
management systems. Finally, we investigate resii@ery processing algorithms that can tolerage th

amount of dirty data and failures that are frequesensor networks deployments.

1. Introduction

Recent advances in wireless technologies and nhémtoenics have made feasible, both from a
technological as well as an economical point ofwiéhe deployment of densely distributed sensor
networks. These networks are increasingly beingpdhiced in diverse applications such as habitat
monitoring, article tracking in warehouses, homtmanation, earthquake disaster area monitoring, etc.
Sensor networks typically consist of primitive viegs nodes that are able to “sense” their enviromme
produce readings, perform simple operations andeéded, relay their results to other sensors pearb
In the majority of the applications, the sensoms powered by small batteries and replacing them is
either too expensive or impossible (i.e., sendargwn over a disaster area). Thus, designing energy
efficient protocols is essential to increase tfetithe of the sensor network. Since radio operagdoy

far the biggest factor of energy drain in sensadesp minimizing the number and volume of radio
transmissions is vital in data-centric applicatioBsen in the case when sensor nodes are attached t
larger devices with ample power supply, reducingdeddth consumption is still important due to the

wireless, multi-hop nature of communication andghert-range radios usually installed in the nodes.

In DBSENSE, we seek to understand the fundameniatiples in designing viable large-scale data-
centric applications using wireless sensor nodeg/hat follows we discuss the four major objectioés
DBSENSE in more details.



Objective 1: Explore Advanced I n-Network Processing Techniques

In densely distributed sensor networks there isalamndance of information that can be collected.
Accumulating individual node measurements at a todng node close to the user is immensely
expensive. Aggregation is an effective means togedhe data measurements into a much smaller set
of comprehensive statistics, like the maximum ograge value of all readings. For example, sensors
deployed in a metropolitan area can be used tarobsimates on the number of observed vehicles to
assess traffic conditions. Temperature sensorswarahouse can be used to keep track of the average
and maximum temperature for each floor of the lwgd Often, aggregated readings over a large
number of sensors nodes show little variance, gingia great opportunity for reducing the number of
(re)transmissions by the nodes when individual mesments change only slightly (as in temperature
readings) or changes in measurements of neighlgpumides effectively cancel out (as in vehicle
tracking). Thus, we need to devise techniques whthtbalance the quality of the aggregate results
returned to the user/application against the cogtarlucing these results. It is desirable thattrobshe

required primitives are implemented inside the ogkwin order to minimize data movement.

Objective 2: Explore Distributed Data Reduction Schemes

Often applications require detailed historical mgaments from the sensor nodes. As an example,
consider sensors dispersed in a wild forest, datiganeteorological measurements (such as pressure,
humidity, temperature) for the purpose of obtainnpng-term historical record and building models
on the observed eco-system. At an abstract leaeh sensor generates a multi-valued data feed and
often substantial compression can be achieved pjoking natural correlations among these feeds
(such as in case of pressure and humidity measuatsjndn such cases, sensor nodes are mostly
“silent” (thus preserving energy) and periodicallyocess and transmit large batches of their
measurements to the monitoring station for furffreccessing and archiving. The new challenge in this
setup is to exploit correlations in the obtainedasweements within and across multiple nodes in a
localized setting. We, thus, need to develop (ipession algorithms that can be implemented in a
distributed manner and are suitable for the typdavé produced in sensor network applications é&nd (
decentralized algorithms for clustering nodes vmag that will benefit the selected compression sahe

by exploiting, for instance, spatial correlationgtie obtained measurements.

Objective 3: Explore New Query Types

In our discussion so far we have considered twadypf queries that are also found in traditional
database management systems: aggregation gueidescan-based (select *) queries. Scan-based
gueries produce a potentially large detailed datam while aggregation queries return a result of
bounded size containing, for example, simple giedis Since query processing on sensor networks
needs to respect any given limits on resourceaatitin we would like to explore hybrid query types
where parts of the data stream are automaticallyoed to a set of statistics when available ressurc

cannot tolerate a full-resolution data stream. dibeision of when to perform this reduction and what



parts of the data needs to be fused needs toriek@dcount both the available resources as wehles

data characteristics.

Objective 4: Handling Outliers and Dirty Data

Sensor readings are inherently dirty. Due to thattended nature of many applications and the
inexpensive hardware used in the construction efribdes, sensor nodes often provide imprecise
individual readings after a failure, i.e., theydeto fail dirty. Thus, we are faced with the danogti
challenge to build applications on top of an aegttiire that is, at times, unreliable and unpretdietdn

this proposal we will explore distributed technigder identifying outlier readings, motivated byake
applications of sensor networks. Unlike prior wev& will not base our decisions on local individual
readings. Instead, our planned framework lookstorelations between sets of readings from multiple
sensors in order to properly classify them. Readfngm outlier nodes will not be injected in thesgu
result, in order not to distort the outcome, bugythstill hold valuable information that needs to be
conveyed to the user/application. This way, usexg investigate outliers further and take appropriat
decisions. For instance, if a single sensor is iooausly reported as an outlier, the network
administrator may investigate it and determine thags in fact failed and needs to be removed from

further consideration during query processing pai@d, if possible.

2. Related Projects

Within the database community, there are a fewntgamjects, such as COUGARCornell University)
and TinyDB' (Berkeley), on using embedded database systerasrigor networks. The networking
aspects of wireless sensor nodes are a topic #mtghined a lot of attention in the networking
community. There are some ongoing EU projects edlab the deployment of wireless sensor
technology such as WISEBEDwhich aims to provide a multi-level infrastruauof interconnected
testbeds, ALGODESwhich focuses on modelling and networking aspants LOTUS, which looks at
algorithms and protocols for establishing securenroanications among node3he techniques
developed in the above works are complementaryite and provide the underlying primitives that we

can base our advanced query processing framework.

3. Description of DBSENSE Outcomes
We now briefly discuss the progress make by the beesnof our team towards fulfilling the four
objectives of DBSENSE.

3.1 RFID Data Aggregation (Objective 1,2)
Radio frequency identification (RFID) technologyshgained significant attention in the past few gear

In a nutshell, RFIDs allow us to sense and iderdifjects. RFIDs are by no means a new technology.

! hitp:/lwww.cs.cornell.edu/bigreddata/cougar/ingég.
2 http://telegraph.cs.berkeley.edu/tinydb/
3 http://www.wisebed.eu/



Its origins can be traced back to World War I, véeh& was deployed in order to distinguish between
friendly and enemy war planes [1]. Since then, RHiAve seamlessly infiltrated our daily activitiés.
many cities around the word, RFIDs are used fdrdollection, in roads, subways and public buses.
Airport baggage handling and patient monitoring ramge examples denoting the widespread adoption
of RFIDs.

With their prices already in the range of a fewtseRFID tags are becoming a viable alternativieaio
codes for retail industries. Large department sttike the Metro Group and Wal-Mart are pioneers in
deploying RFID tags in their supply chain [2]. Widiual products, pallets and containers are
increasingly tagged with RFIDs. At the same tifREID readers are placed at warehouse entrances,
rooms and distribution hubs. These readers comgrnudecommunicate the list of RFID tags sensed in
their vicinity to a central station for further pessing and archiving. The ability to automatically
identify objects, without contact, through theirIRRags, allows for a much more efficient tracking

the supply chain, thus eliminating the need for &nnmtervention (which for instance is typically
required in the case of bar codes). This removdataincy between the appearance of an object at a
certain location and its identification allows us d¢onsider new large- or global- scale monitoring

infrastructures, enabling a much more efficienhplag and management of resources.

Nevertheless, an immediate adoption of RFID teahmpolby existing IT infrastructure, consisting of
systems such as enterprise resource planning, axaothg execution, or supply chain management, is
a formidable task. As an example, the typical iecture of a centralized data warehouse, used by
decision support applications, assumes a periagdiesh schedule [3] that contradicts the need for
currency by a supply chain management solutionménproduct arrives at a distribution hub, it needs
to be processed as quickly as possible. Moreox&timg systems have not been designed to cope with
the voluminous data feeds that can be easily getketarough a wide-use of RFID technology. A pallet
of a few hundred products tagged with RFIDs gemsraundreds of readings every time it is located
within the sensing radius of a reader. A contaimi¢n several hundred pallets throws tens of thodsan
of such readings. Moreover, these readings areéncants: the RFID reader will continuously repoit al
tags that it senses at every time epoch. Obvipgsiyne form of data reduction is required in otder

manage these excessive volumes of data.

In our work, we investigated data reduction methib@s can reduce the size of the RFID data streams
into a manageable representation that can therethanto existing data processing and archiving
infrastructures such as a data warehouse. Key rtdramework is the decision to move much of the
processing near the locations where RFID stream$@duced. This reduces network congestion and
allows for large scale deployment of the monitorinffastructure. Our methods exploit the inherent

temporal redundancy of RFID data streams. WhileR&ID tag remains at a certain location, its

* http://rul.cti.gr/algodes/



presence is recorded multiple times by the readeesby. Based on this observation we propose
algorithms of increased complexity that can aggeedle records indicating the presence of this tag
using an application-defined storage upper bounding this process some information might be lost
resulting in false positive or false negative cases of identification. Our techniques minimihe t
inaccuracy of the reduced representation for aetasgace constraint. In addition to temporal, RFID
data streams exhibit spatial correlations as watkaged products within a pallet are read allttege
when near an RFID reader. This observation carxpliéed by introducing a data representation that
groups multiple RFID readings within the same rdcdvhile this observation has already been
discussed in the literature [5], to our knowledgeare the first to propose a systematic methodctat

automatically identify and use such spatial cotietes.

The contributions of our work are

¢ We propose a distributed framework for managingurohous streams of RFID data in a supply-
chain management system. Our methods push therkgitred for reducing the size of the streams
at the so-calle@tdgeware, near the RFID readers, in an attempt to redutseank congestion.

o We present a lossy aggregation scheme that exphhateemporal correlations in RFID data streams.
For a given space constraint, our techniques coenhé optimal temporal representation of the
RFID data stream that reduces the expected errtreofipproximate representation, compared to
the full, un-aggregated data stream. We also censiliernative greedy algorithms that produce a
near-optimal representation, at a fraction of tiretrequired by the optimal algorithm.

¢ We present complementary techniques that furthglogxhe spatial correlations among RFID tags.
Our methods detect multiple tags that are movelgroup and replace them with a surrogate group
id, in order to further reduce the size of the espntation.

o We provided an experimental evaluation of our témphes and algorithms using real RFID data
traces. Our experiments demonstrate the utility effieictiveness of our proposed algorithms, in

reducing the volume of the RFID data, by exploitiogrelations both at the time and space.
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Figure 1: Performance of our techniques using real RFID traces



In Figure 1 we demonstrate the effectiveness otezhniques in reducing the size of a raw RFID data
stream using our proposed temporal and spatiakggtjion schemes. The first three bars correspond t
lossless compression, while the last two barszetilbssy representation in order to further redbee

size of the dataset. Additional details on our teghes and more results can be found in [6].

3.2 Building Efficient Collection Trees (Objectives 1,3)

Many pervasive applications rely on sensory devites are able to observe their environment and
perform simple computational tasks. Driven by canstadvances in microelectronics and the economy
of scale it is becoming increasingly clear that tuture will incorporate a plethora of such sensing
devices that will participate and help us in ouilydactivities. Even though each sensor node wéll b
rather limited in terms of storage, processing anthmunication capabilities, they will be able to
accomplish complex tasks through intelligent cailaion. Nevertheless, building a viable sensory
infrastructure cannot be achieved through massuatamh and deployment of such devices without
addressing first the technical challenges of marmpaguch networks. In our work we focus on
developing the necessary data collection infratitredor supporting data-hungry applications trestdh

to acquire and process readings from a large sealeor network. While previous work has focused on
optimizing specific types of queries such as agage{j’], join [8], model-based [9], proximity [28hd
select-all [10] queries, in DBSENSE we propose ta diissemination framework that can address the

needs of multiple, concurrent data acquisition estgiin an efficient manner.

It is generally agreed that one cannot simply mibxereadings necessary for processing an applicatio
request out of the network and then perform theired processing in a designated node such asea bas
station. Most recent proposals rely on building sagpes of ad-hoc interconnect for answering ayquer
such as the aggregation tree [7, 12, 26, 27]. i&h& paradigm of in-network processing that can be
applied to non-aggregate queries as well [10, 2IL, th this work we explored techniques for builgli

and maintaining efficientlata collection trees that will provide the conduit to disseminate adital
required for processing many concurrent queries gensor network, including long-term and ad-hoc
type of queries, while minimizing important resascsuch as the number of messages exchanged

among the nodes or the overall energy consumption.

While prior work [13, 14] has also tackled simifapblems, previous techniques base their operation
the assumption that the sensor nodes that colkget blevant to the specified query need to include
their measurements (and, thus, perform transmisgion the query result at every query epoch.
However, in many monitoring applications such asuasption is not valid. Monitoring nodes are often
interested in obtaining either the actual readingsheir aggregate values, from sensor nodegl#tatt
interesting events. The detection of such eveatsaften be identified by the readings of each @ens
node. For example, in vehicle tracking and momigrapplications high noise levels may indicate the

proximity of a vehicle. In military applicationsigh levels of detected chemicals can be used to war



nearby troops. In industrial settings, where thasees monitor the condition of machines, high

temperature readings may indicate overheating.parts

In other applications, as in the case of approxeneataluation of queries over the sensor data [&5, 1
20], an event is defined when the current sensading deviates by more than a given threshold from
the last transmitted value. In all of these scesareach sensor node is not forced to include its
measurements in the query output at each epoclrathér such quergarticipation is evaluated on a
per epoch basis, depending on its readings andefimition of interesting events. In our work wente

the monitoring queries where the participation abde is based on the detection of an event afesite
asevent monitoring queries (EMQs). It is important to note that typigalonitoring queries, considered
in the bulk of research so far, arswibclass of EMQs, as the former correspond to déise @here the
participation of sensor nodes in the query resuiaeh epoch ifixed (either true, or not) throughout

the query execution.

Our techniques base their operation on collectingple statistics during the operation of the sensor
nodes. The collected statistics involve the nunadfexvents (or, equivalently, their frequency) thath
sensor detected in the recent past. Our algoritiifize these statistics as hints for the behaviafur
each sensor in the near future and periodicallygauze the collection tree in order to minimizetae
metrics of interest, such as the overall numberasfsmissions or the overall energy consumptidién
network. The formation of the collection tree &sbd on the collection and local transmission &f an
small set of values at each node termedoassfactors in our framework. Using these cost factors each
sensor selects its parent node, through whichllifevivard its results towards the base statioselaon
the estimated correspondiaggachment cost. In a nutshell, the attachment cost of a parelecsen is

the increase in the objective function (e.g., thnber of transmitted messages) resulting from this
selection. Given the estimates of attachment dbstsour algorithms compute, our work demonstrates

that they are able to design significantly bettdlection trees than existing techniques.

Our contributions are summarized as follows:

We formally introduce the notion of EMQs in sensetworks. EMQs are a superset of existing
monitoring queries, but are handled uniformly im bamework, irrespectively of the minimization
metric of interest.

o We present detailed algorithms for minimizing imot metrics such as the number of messages
exchanged or the energy consumption during theutixecof an EMQ. The presented algorithms
are based on the collection and transmission ehallsand of constant size, set of statistics. We
introduce our algorithms along with a succinct reathtical justification.

o We present alternative techniques that we considier@ur work and discuss their intuition and

drawbacks.

We extend our framework for the case of multipla@orent EMQs of different types.



We present a detailed experimental evaluation ofatgorithms. Our results demonstrate that our

techniques can achieve a significant reductiomértumber of transmitted messages, or the overall

energy consumption, compared to alternative algmst These benefit increase with increasing the
network size or the number of EMQs.
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Figure 2: Comparison of Different Algorithms for Collection Tree Construction

In Figure 2 we evaluate the performance of colectrees constructed by our algorithms (MinMesg,
MinEnergy) compared to existing techniques (MinHdpaCost). The y-axis in the graph depicts the
total number of messages required for evaluatingrainuous aggregate query that counts the number
of school buses detecting by a grid of sensorsrrettopolitan area. In the x-axis we vary the numbe
of sensors and the algorithm used for construdtiencollection tree. We can see that in all cases o

algorithms result in more efficient collection tsehat existing techniques. Additional information
these experiments and the discussed algorithmbecéound in [23, 24].

3.3 Computing Outlier-free Aggregatesin Sensor Networks (Objectives 1,3,4)

A lot of recent research has focused on the proldérafficiently answering declarative queries in
sensor networks. These efforts primarily focus walwating aggregate queries, which are of great
importance to surveillance applications [7, 12]d an enabling in-network processing. An equally
important line of research addresses the issue atd dleaning of sensor readings [4, 17]. A
measurement obtained by a node is only an appréximaf the physical quantity observed and is
constrained in accuracy and precision by the cleniatics of the sensing device. Sensors are dlea o
exposed to conditions that adversely affect theirsgng devices, yielding readings of low qualitgr F
example the humidity sensor on a MICA nfogvery sensitive to rain drops. Moreover, semsmtes
often provide imprecise individual readings afteiadure, i.e., they tend ttail dirty [18]. Thus, data

® Data sheet available at httfwww.xbow.com/Products/Product_pdf_files/Wirelgsdf/MICA.pdf



processing applications using sensor networks deedtwith information that is at times unreliabtela

unpredictable.

In this work, we present a novel query processhagnéwork for aggregate queries over a network
consisting of inexpensive, wireless sensor nodatséte prone to generating dirty data. Our approac
computes robust, or “meaningful”, aggregatesdentifying and excluding potentially ““abnormal”
readings. In our query processing model, introdundd9], the sensor network propagates, in mutipl
hops towards the base station, the aggregate yalndsalso recognizes and reports a concise set of
readings that are believed to be outliers, alorty wiset of characteristic values, iwitnesses, which
have been used to derive the requested aggrefgaf@s, 28] we build a comprehensive framework for
identifying outliers and simultaneously computingai resilient manner aggregate values in-netwaork. |
our proposed framework, users are able to corttehtinimum amount of support that the readings of
each node are required to achieve in order fontdte to not be classified as an outlier. Thisitghi
provided through a query-defined parameter, terasainimum support, which regulates the number
of tests that measurements have to pass in order itacluded in aggregates. This way, our techesqu
are resilient to environments where spurious regdoriginate from multiple nodes at the same epoch,
due to a multitude of different, and hence unprtatie, reasons. Our framework supports a richyquer
model that permits grouping, and also allows fonaetic constraints on the definition (and deteqgtion
of outliers. Respecting theninimum support for a query and the enriched query model creates

significant challenges for efficient and effectwatlier detection, which we successfully address.

A key characteristic of our framework is that werdit use the same, originally constructed, colbecti
tree to gather values throughout the life of arregate query, but periodically seek to readjubaiged

on easy to compute statistics. Using a single, ithio collection tree constructed in advance, &s i
[19], does not take into account the existing negsliand can lead to suboptimal decisions when
computing and communicating outliers in the netwoe overhaul the aggregation and outlier
detection processes and periodically determinegsroguting paths, based on simple statistics deltec
during query processing. The periodic reorganinatib the collection tree based on these statistics
provides significant bandwidth and energy savingsgared to the monolithic approach without

affecting the quality of either the produced aggtegr the detection of outliers.

Our contributions can be summarized as follows

o We propose a formal framework and algorithms fenétwork aggregate query processing in the
presence of multiple unreliable sensor nodes. G guery model is based on simultaneous
aggregate processing and outlier detection, andtsda reporting both outlier and witness nodes in
addition to the aggregates, to create increasadcoséidence in the produced results and to enable
further investigation of suspicious readings in efficient manner. Our framework allows the

incorporation of different metrics for similaritggting between measurements of sensor nodes.



e We show that the generation of outliers by sensdes renders raw aggregation techniques [7, 24]
meaningless and inefficient. We thus develop a houdlier-aware process for constructing the
collection tree that takes into account the natfireur evaluation process. Our algorithms are based
on a periodic reorganization of the collection tneging simple statistics of how often the
measurements of two sensor nodes are similar. \WM& #at the collection trees constructed by our
algorithms result in substantial savings in the bernof transmitted bits (up to 43%) and in energy
consumption compared to existing methods that ardiepoblivious when constructing the
collection tree. The overhead of communicating thecessary statistics and running our
reconstruction algorithm is comparable to the badtiwconsumption of one epoch, and less than
0.4% overall.

o We perform an extensive experimental evaluatiowwfframework using real traces of sensory
data. It demonstrates significant benefits compéoealternative approaches a) in the quality of the
reported aggregate computed through our aggregaaamework, and b) in energy and bandwidth
consumption (up to 6.5 times). We also report coaipla performance, in the number of detected
and reported outliers, to an out-of-network compareaof outliers that uses the full set of node

readings per epoch.
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Figure 3: Computing the Maximum Temperature in a Room

In Figure 3 we used a real dataset consisting rapégature measurements of 48 sensors located in a
room and attempted to compute the maximum temperatut of their readings. The line denoted as
AGGREGATION present the results when using a stah@d@gregation technique like TAG [24].
Since this data contains many outliers, the redosiggregate value is practically useless, sinceyman
nodes report temperature readings exceedingClObhe line denoted as Robust corresponds to our



preliminary algorithm presented in [19], while SiaesAggr corresponds to our techniques presented in

[25] using a minimum support value of 3. More detaan be found in [25, 28].

Recently, we have extended our framework for namanchical topologies, such as cluster formations.
Our techniques utilize Locality Sensitive HashibKl) in order to perform a distributed evaluatidn o

outliers. A report on these techniques can be fofi80].

4. Conclusions

In this report we provided preliminary results b butcomes of the DBSENSE project, funded by the
Basic Research Funding Program (BRFP) of AUEB. Aoldal information and related publications
can be found at http://pages.cs.aueb.gr/usersi&otid
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