
Updates Through Views: A New Hope

Yannis Kotidis
AT&T Labs - Research

kotidis@research.att.com

Divesh Srivastava
AT&T Labs - Research

divesh@research.att.com

Yannis Velegrakis
AT&T Labs - Research

velgias@research.att.com

Abstract

Database views are extensively used to represent unma-
terialized tables. Applications rarely distinguish between a
materialized base table and a virtual view, thus, they may
issue update requests on the views. Since views are virtual,
update requests on them need to be translated to updates on
the base tables. Existing literature has shown the difficulty
of translating view updates in a side-effect free manner. To
address this problem, we propose a novel approach for sep-
arating the data instance into a logical and a physical level.
This separation allows us to achieve side-effect free trans-
lations of any kind of update on the view. Furthermore,
deletes on a view can be translated without affecting the
base tables. We describe the implementation of the frame-
work and present our experimental results

1. Introduction
Views are an important asset of database management

systems. They limit access to only the portions of the data
that are relevant to an application. They achieve schema
independence [14] since certain physical database schema
changes can be handled by modifying the view query while
keeping the logical view interface unchanged. Applications
deal with views the same way they deal with base tables.
In fact, applications are rarely aware of whether a relation
they access is a base table or a view. Views are usually vir-
tual. Their instance data is completely defined by applying
the view query on the base tables. Due to this virtual na-
ture, view updates must be translated to updates on the base
tables in a way that the view state after the update is the
same we would have gotten if the update had been applied
to a materialized view instance. This translation is referred
to as updates through views [2, 9, 10]. Figure 1 provides a
graphical representation of the problem statement. The user
specifies an update U, which may be an insertion, deletion
or update on the view instance V (I). The goal is to find an
update W on the base tables (instance I) that results in a
new instance W (I), with a view V (W (I)) that implements
the view update. The update is said to be implemented with-

U(V(I))

W(I)I
W

U
V(W(I))=V(I)

Figure 1. The view update problem

out side-effects in the view if U(V (I))=V (W (I)), that is,
no other view tuple should be affected by the base tables
modification apart from the one specified in the view up-
date command, and no additional tuple should appear in the
view after the base tables have been modified.

Unfortunately, existing literature on updates through
views has shown that for many common cases there may
be no side-effect free translation [8, 16, 10]. This led re-
searchers to permit side-effects, to develop algorithms to
detect them [5], or to restrict the kind of updates that can
be performed on a view [10]. For many applications where
views need to be handled the same way base tables are han-
dled, accepting side-effects or having such restrictions is
unacceptable. Consider, for instance, a view that joins a ta-
ble Person and a table Car and a delete request for a person-
car pair from the view. The deletion can be achieved either
by removing the association between the person and the car
through modification of the join attribute, or by deleting the
car from the Car table, or by deleting the person from the
Person table. If the car tuple joins with many persons or the
person tuple with many cars, any of these three actions will
have the side-effect of additionally deleting the tuples from
the view that are formed by a join using the specific car or
the person, respectively. Furthermore, the latter two actions
make the additional assumption that the deletion of the car-
person pair is due to the deletion of the car or the person.
The semantics of the view deletion do not necessarily im-
ply either one. We claim that the translation should make
the minimum assumptions and should not make the car or
the person disappear from the base tables Car or Person, re-
spectively, neither should affect any other tuple in the view.
If a car or a person are to be deleted from the database, they
should be deleted through a delete command on the table
Car or Person.

1

Base Tables

Physical Schema Physical Data InstanceInformation
Data Storage

and Views

Instance

Logical Data InstanceInstanceLogical Schema

Figure 2. Abstraction levels in a DBMS

Due to the above results, in order to achieve side-effect
free translations, we are forced to relax the requirement that
the instance of a view is equal to the execution of its view
query on the base tables. However, since the view is virtual,
the view instance should be governed by the well-founded
relationship between a view and its base tables. That is,
every tuple that appears in the view must be justified by
the appearance of certain tuples in the base tables, but the
absence of a tuple from the view does not imply the absence
of a tuple in the base tables. In other words, we require
that for a view V with a view query Qv , and an instance I ,
the instance of the view V (I)⊆Qv(I). This means that an
insertion of a tuple in the view requires and may cause the
insertion of certain tuples in its base tables. For the same
reason, a deletion of a tuple from a base table will cause
the deletion of every tuple in the view that is formed using
the specific tuple. Since the tuple in a base table does not
depend on the existence of any tuple in the view, a deletion
of a view tuple should not modify the base table instances.
Such modifications will lead to side-effects in the view.

In short, our goal in this work is to develop a mechanism
that will allow every view update to be implemented: (1)
without side-effects; (2) without affecting the instances of
the base tables of the view in the case the update is a view
deletion; and (3) without violating the well-founded rela-
tionship between the view and its base tables.

We advocate here that if we consider a clear separation
between the physical and the logical level, for a user re-
quested view update at the logical level (see Figure 2), one
can always find an update at the physical level that performs
the view update with no side-effects. The separation be-
tween the physical and the logical level is not new. In fact,
it is one of the 12 rules of Codd [6] that characterize a re-
lational database. Unfortunately, existing database systems
do not provide true physical data independence, since ev-
ery construct of the logical level corresponds directly to a
primary physical structure. We have identified this lack of
separation as one of the reasons for the difficulty of the view
update problem. Following the example of the GMAP [17]
system, but with a different goal in mind, we propose a
physical representation of the data that is different from its
logical representation. This separation does not affect the
way users and applications interact with the views and the
base tables, since all this interaction takes plase at the logi-
cal level.

tp:

Personnel
dep emp
CS Fox
EE Fox
Phil Jones tt:

Teaching
prof equip sem
Fox proj PL
Fox proj OS
Fox proj DB
Fox lp OS
Jones mic DB

ts:

Schedule
cour rm day
PL 10 Mon
DB 10 Tue
DB 23 Wed
DB 45 Fri

td:

Vb = Personnel��emp=profTeaching��sem=courSchedule
dep emp prof equip sem cour rm day
CS Fox Fox proj PL PL 10 Mon
CS Fox Fox proj DB DB 10 Tue
CS Fox Fox proj DB DB 23 Wed
CS Fox Fox proj DB DB 45 Fri
EE Fox Fox proj PL PL 10 Mon
EE Fox Fox proj DB DB 10 Tue
EE Fox Fox proj DB DB 23 Wed
EE Fox Fox proj DB DB 45 Fri
Phil Jones Jones mic DB DB 10 Tue
Phil Jones Jones mic DB DB 23 Wed
Phil Jones Jones mic DB DB 45 Fri

Figure 3. Base tables and view instance

The current work makes the following contributions: (i)
We provide a framework that allows views and base ta-
bles to be treated identically with respect to queries, in-
sertions, deletions and updates; (ii) We achieve view up-
dates with no side-effects by extending the relational model
with identifiers on the values and using it as a physical data
model; (iii) We guarantee that all the three previously men-
tioned desiderata for view updates are satisfied; (iv) We de-
scribe and implement the proposed framework using exist-
ing database technology, and we provide experimental re-
sults using our prototype on real and synthetic data.

This document is organized as follows. Section 2
presents motivational examples and explains the main idea
of our solution. Section 3 formally describes our solution
and Section 4 presents the theoretical properties of the pro-
posed algorithms. Section 5 describes related work. Sec-
tion 6 explains how our framework has been implemented
over an existing relational database system, while Section 7
presents experimental results demonstrating the feasibility
of the framework.

2. Motivation and Our Solution
To demonstrate the problem, let us consider the three re-

lations Personnel, Teaching and Schedule of Figure 3. The
first specifies for each employee (emp) the department (dep)
where she is employed. The second describes seminars
(sem) that are taught by professors (prof) and the teaching
equipment (equip) they use. The third determines the room
number (rm) and the day (day) the seminar course (cour)
takes place. Assume a view Vb that joins these three tables
as shown in Figure 3. We are deliberately using an exam-
ple without primary/foreign key constraints for illustrative
purposes. We will show what issues arise when we try to
update the view. Assume that an application requests the

deletion of the shaded view tuple td from the view. Tuple td

is formed by joining tuples tp:[EE, Fox], tt:[Fox, proj, DB]
and ts:[DB, 10, Tue] of relations Personnel, Teaching and
Schedule, respectively. Deletion of tuple tp or modifica-
tion of its value Fox will achieve the deletion of tuple td

from the view. However, since tp also joins with three other
tuples of table Teaching, this base table modification will
have the unanticipated effect of removing three additional
tuples from the view (the one above td, and the two below).
Similar observations can be made for tuples tt and ts. In
fact, there is no change that can be done on the base tables
to make tuple td disappear from the logical instance of view
Vb without causing side-effects in the view.

Assume for the moment that tuple tp could join with only
tuple tt from Teaching. Then, deleting it, or changing its
Fox value to null, would have achieved the requested view
update. However, such a change implies that the reason for
the deletion of tuple td is that Fox stops being affiliated with
the EE department. If this was the case, then the delete re-
quest should have been issued on table Personnel and not
on the view Vb. A query on Personnel or on any other
base table of Vb, such as Personnel, Teaching or Schedule,
should return the same result before and after the deletion of
the view tuple td. Unfortunately, it can be shown that there
is no update on the base tables that can achieve this desired
result.

To tackle this issue, we propose a novel technique that
considers values at the physical level as a pair of a dis-
play form and an identifier. We refer to these values as
id-values, and we represent them by putting the identifier
as a subscript to the display form. The values at the logi-
cal level, with which users and applications interact, remain
unchanged. Two id-values can be used to form a join if
they agree on their identifier. When an id-value is mapped
to the logical level, only its display form appears. This al-
lows us to have different id-values that appear the same at
the logical level but have different identifiers and therefor
participate in different joins. We will also call a clone of
an id-value v another id-value v ′ that has the same display
form but different identifier. A clone of a tuple is a duplica-
tion of the tuple where at least one of its attribute values is a
clone of the respective attribute value of the original tuple.

We present first a naive approach that illustrates the tech-
nique but has large space complexity. Later on, we show
how the same idea can be used in a much more sophisti-
cated and space efficient way. Using id-values, we can have
a physical representation of the tables which have instead
of one, four different copies of tuple tp, one for each view-
tuple-forming join it participates. This idea is illustrated in
Figure 4 where the identifiers are mentioned as subscripts
next to the display form of each id-value. For certain id-
values the identifier is not critical for the example and has
been omitted for better readability. (For the moment, ig-

Personnel
dep emp
CS Fox1
CS Fox2
CS Fox3
CS Fox4
EE Fox5
EE Fox6
EE Fox7
EE Fox8
Phil Jones9
Phil Jones10
Phil Jones11
CS Fox
EE Fox

Teaching
prof equip sem
Fox1 proj PL21
Fox2 proj DB22
Fox3 proj DB23
Fox4 proj DB24
Fox5 proj PL25
Fox6 proj DB26
Fox7 proj DB27
Fox8 proj DB28
Jones9 mic DB29
Jones10 mic DB30
Jones11 mic DB31
Fox proj OS
Fox lp OS

Schedule
cour rm day
PL21 10 Mon
DB22 10 Tue
DB23 23 Wed
DB24 45 Fri
PL25 10 Mon
DB26 10 Tue
DB27 23 Wed
DB28 45 Fri
DB29 10 Tue
DB30 23 Wed
DB31 45 Fri

CS Fox12
EE Fox13
Phil Jones13

Fox12 proj DB32
Fox13 proj DB33
Jones14 mic DB34

DB32 10 Tue
DB33 10 Tue
DB34 10 Tue

Figure 4. Base tables at the physical level

nore the lower part of the figure and the fact that two tuples
in Schedule are strike-through.) A few computations can
verify that for these tables the instance of view Vb with the
identifiers of the id-values suppressed, is exactly the same
as the one in Figure 3.

Deletion of the view tuple td can now be done
with no side-effects by deleting/modifying the
dark gray shaded tuples. If we further wanted to
delete view tuples [CS,Fox,Fox,proj,DB,DB,10,Tue] and
[Phil,Jones,Jones,mic,DB,DB,10,Tue], we could remove
the light gray shaded tuples. Unfortunately, after the last
two deletions, tuple [DB,10,Tue] will disappear from the
instance of the base table Schedule. To avoid this and to
satisfy the second view update desiderata of Section 1, we
clone every shaded tuple and set new identifiers to the join
attribute id-values in the clone. Subsequently, the clone
of the shaded tuple of the first table (Personnel) and the
shaded tuple of the last table (Schedule) are removed. That
way, the deletion of the view tuples is achieved but the
instances of the base tables remain unchanged. The lower
part of Figure 4 illustrates the new tuples that were inserted
in the previous step. The strike-through tuples of the figure
are the tuples that were removed.

In that new instance, query select * from Teaching on
the instance of Figure 4 will return tuple [Fox,proj,DB] mul-
tiple times while on the instance of Figure 3, it would have
returned it only once. This kind of duplication can be eas-
ily removed from query results by adding an extra attribute
at the physical level that determines whether two tuples are
clones of the same original tuple.

The presented technique, referred to as eager, has the
drawback of requiring too many tuples at the physical
schema. For example, there is no reason to have three dif-
ferent copies of tuple [Phil,Jones] since it is not anyway af-
fected by our intended delete of view tuple td. An improved
technique, called on-demand, makes copies of tuples only
when needed. Consider again the example of deleting the
view tuple td. Starting from table Personnel, it is noticed

Personnel
dep emp
CS Fox
EE Fox
Phil Jones
EE Foxp

====EE ======Foxd

Teaching
prof equip sem
Fox proj PL
Fox proj OS
Fox proj DB
Fox lp OS
Jones mic DB
Foxp proj PL
Foxp proj OS
Foxd proj DB
Foxp lp OS
Foxp proj DBp

======Foxd ====proj =====DBd

Schedule
cour rm day
PL 10 Mon
DB 10 Tue
DB 23 Wed
DB 45 Fri
=====DBd ===10 ====Tue
DBp 23 Wed
DBp 45 Fri

Figure 5. Modified base tables

that td is formed by a join through tuple tp:[EE, Fox]. That
tuple is replaced by tuples [EE, Foxd] and [EE, Foxp], called
the delete and the preserve tuple, respectively. The goal
is to make every join in which tuple tp participates to use
[EE, Foxp] unless the result of the join is the view tuple td in
which case the join should use [EE, Foxd]. All the joins that
were formed between [EE, Fox] and a tuple in Teaching with
id-value Fox in the join attribute prof cannot be formed after
the last replacement. Their Fox id-value cannot be changed
to Foxp or Foxd because this will make them unable to join
with other tuples of Personnel such as [CS, Fox]. Instead,
they are cloned and in the clone, the id-value Fox is replaced
by Foxp, unless the tuple that is cloned is tuple tt, in which
case it is replaced by Foxd. These new tuples are indicated
in Figure 5 with the light gray color. A similar process is re-
peated, this time for tuple [Foxd, proj, DB] which is replaced
by [Foxp, proj, DBp] and [Foxd, proj, DBd]. Notice that the
copy with id-value DBp has id-value Foxp instead of Foxd.1

Finally, in relation Schedule, every tuple with id-value DB

is cloned and in each clone, the id-value DB is replaced by
DBp, unless the tuple that is cloned is the ts in which case
it is replaced by DBd. The tuples generated in this second
step are illustrated with the dark gray color in Figure 5. In
the resulting instance, shown in Figure 5, deletion of the
view tuple td can be achieved by deleting the double strike-
through tuples. Such a deletion satisfies the view update
translation requirements of Section 1. Furthermore, it has
no redundancy and is minimal, in the sense that removal of
any other tuple will result in unanticipated changes in the
logical view instance.

Notice that due to the replacement of tuple tp, four new
tuples were inserted in table Teaching, where four was the
cardinality of the id-value Fox in the join attribute prof.
Similarly, three tuples were inserted in table Schedule,
where three was the cardinality of id-value DB in the join
attribute cour. On the other hand, id-value DB has cardi-
nality two in attribute sem and id-value Fox has cardinality
two in attribute emp. Thus, had the same process started

1For simplicity of notation, we have used subscript d and p for both
Fox and DB, but it should be understood that they refer to distinct identi-
fiers.

first from table Schedule, then proceeded to table Teaching

and finally to table Personnel, the final instance would have
fewer tuples. This means that the order in which the rela-
tions are processed is critical for the on-demand technique.
This is not the case for the eager technique.

The requirement for view updates with no view side-
effects extends to insertions as well. Assume that the base
tables are as shown in Figure 3 and tuple [ME, Fox, Fox,
mic, PL, PL, 12, Fri] needs to be inserted in view Vb.
This insertion requires a tuple [ME, Fox] be inserted in table
Personnel, [Fox, mic, PL] in Teaching and [PL, 12, Fri] in
Schedule. Naturally, tuple [ME, Fox] will join not only with
[Fox, mic, PL], but with all the tuples in Teaching having
id-value Fox in attribute prof, causing additional tuples to
appear in view Vb. To avoid this, the new tuples are inserted
in the physical base tables with new id-values. For example,
tuple [ME, Foxn] is inserted in Personnel, [Foxn, mic, PLn′]
in Teaching and [PLn′ , 12, Fri] in Schedule. Their join will
create the logical view tuple [ME, Fox, Fox, mic, PL, PL, 12,
Fri], but no other, since due to the new identifiers they have,
they will join with none of the other existing tuples.

3 Supporting View Updates
This section provides the algorithms for updating the

physical instance in order to implement a view update re-
quest issued at the logical level, in a way that satisfies
the three desiderata set in Section 1. Updates are declar-
ative statements of the form insert into V values (...), delete
from V where <conditions> or update V set attr 1=expr1,
attr2=expr2,... where <conditions>. The current study is re-
stricted to a single view. Generalization of the results for
the case where there are multiple views, or views that are
defined at any time during lifetime of the database system
is out of the scope of this work and is part of future research.

3.1. Handling Insert Statements

For an insertion of a new tuple tv in a view, the right
tuples are created in the base tables so that their join is tuple
tv. In particular, a new tuple tR is created for every relation
R that appears in the from clause of the view query. If an
attribute A of a relation R is used in the select clause of
the view query, then a new id-value vo is created for the
attribute A of the tuple tR. The identifier o of that id-value
differs from any other identifier of an id-value in the domain
of A that is already in the database. The display form v
is the one specified in the insert statement for the attribute
A. Finally, for every two or more attributes that the where
clause of the view query specifies or logically implies to be
equal, e.g., the join attributes, their identifiers are set the
same. This ensures that the new tuple tR forms the right
joins that generate tuple tv .

If the values in the insert statement violate the conditions

of the view query, following the approach of Keller [10] and
Dayal and Bernstein [9], the insertion statement is rejected.

Example 3.1 Consider the base tables of Figure 3 and view
V with view query: select * from Personnel, Teaching

where emp=prof. If tuple [CS, Berry, Berry, PC, HW] is
to be inserted in the view, tuples [CSn1 , Berryn2

] and
[Berryn2

, PCn3 , HWn4] will be created in the relations
Personnel and Teaching, respectively. The identifiers ni

are all new identifiers that do not exist in the database. No-
tice how the join between the two tuples is preserved by hav-
ing the id-value in the attribute emp and prof use the same
identifier n2. If instead, tuple [CS, John, Berry, PC, HW] was
to be inserted in the same view, the statement would have
been rejected since it violates the condition that attributes
emp and prof should be equal.

In a sense, the conditions set by the view query are han-
dled as constraints on the view instance.

When the view query projects out certain attributes, one
may need to introduce id-values with null display forms on
the projected-out attributes whose value cannot be inferred
from the join or the equality conditions in the view.

Example 3.2 If the view in Example 3.1 did not have at-
tributes emp and equip in its select clause, then insertion
of tuple [CS, Berry, HW] in the view would have been trans-
lated to physical level insertions of tuple [CSn1 , Berryn2

] in
Personnel and [Berryn2

, nulln3 , HWn4] in Teaching.

The situation is different if the insert command is for a
base table instead of a view. If a tuple ti is to be inserted in
the logical schema relation R, then a new tuple tn is inserted
in the physical table R. Every attribute of tn is an id-value
vo where identifier o is new and the display form v is the
one specified in the respective attribute of the logical level
tuple ti. The expected behavior of tuple tn is to join with
all tuples of the other tables that agree on the respective join
attributes. This cannot happen since the identifiers of the
id-value in tn are new. To cope with this issue, for every
relation R′ that joins with R through attributes A and B,
respectively, every tuple with a display form in attribute A
equal to the display form of attribute B in tn, is cloned, and
the identifier of the id-value of attribute A in the clone is set
to be the same as the identifier of the id-value of attribute B
in tn. This way, the behavior expected by the insertion of
tuple ti in R is achieved.2

Example 3.3 Consider the base tables of Figure 5, and as-
sume that tuple [Fox, mic, DB] is to be inserted in relation
Teaching. Let tuple [Foxm, micp, DBn] be its physical level
representation. Notice that identifiers m, p and n do not ex-
ist in the instance of Figure 5. The tuple is expected to join

2There is also an alternative technique that achieves the same result by
modifying only relation R but the description is omitted for brevity.

with every tuple in relation Personnel with display form Fox

on attribute emp. To ensure this, every tuple of Personnel
with that property is cloned and in the clone, the identifier
of the id-value Fox in emp is set to be m. Similar actions are
performed for relation Schedule.

The above steps are for the on-demand technique. For
the eager technique, one extra step is needed to generate
one clone of the newly inserted tuple for every join it par-
ticipates in.

3.2. Handling Delete Statements

Deletions from regular tables are handled as usual. Of
course a delete operation on a base table will have side-
effects on any view defined over this table, but this is a nat-
ural consequence. When a view tuple is to be deleted, it
is not clear which of the component tuples are to be modi-
fied. If the eager technique is used (e.g. Figure 4), deletions
are handled by cloning the tuples that participate in the join
forming the view tuple under deletion, as we did in Sec-
tion 2. Deletions from a view are more challenging if the
on-demand technique is to be used. There, we try to do the
minimum number of changes in the base tables that achieve
the view deletion without side-effects in the view and with-
out affecting the instances of the base tables. We again con-
sider views that involve natural joins: R1��R2��. . . ��Rn

where each table Ri refers to a base table. If a Ri is a view,
it can be replaced by the view definition by applying query
unfolding [12, 15]. Let Ai,j denote the (common) join at-
tribute of tables Ri and Rj . When Ri and Rj join on mul-
tiple attributes then Ai,j refers to their composite attribute.
Notice that the definition allows cyclic joins as well as self-
joins, i.e., when Ri and Rj are the same relation. The pro-
cess presented, here with some minor modifications, works
even in these cases.

We first consider the case of a single tuple delete. Let td

denote the single tuple that we would like to remove from
view V . The algorithm (Algorithm 1) utilizes two main pro-
cedures: processIn() and processOut(). At an abstract
level, it will visit every table Ri and modify its contents.
Let tdi be the tuple of table Ri that is used in the join form-
ing the view tuple td. For each tdi , during processIn()
and processOut(), the algorithm generates a single special
tuple, referred to as the delete tuple, and some special tu-
ples, referred to as preserve tuples. The preserve and delete
tuples are clones of existing base table tuples with differ-
ent (new) identifiers at the join attributes. The delete tuples
only join among themselves to form the view tuple td. Ev-
ery other view tuple that was formed through a join using
tdi keeps being formed through a join using the preserve tu-
ples; thus any modification on the preserve tuples will have
undesired effects on the view. Removal of the delete tuples,
on the other hand, results in the deletion of only tuple t d

Algorithm 1 Main Loop

Input: Ge(Ve, Ee)) {The join-execution graph}
1: while ∃Ri∈Ve: Ri is not visited ∧

∀Rj∈predecessors(Ri): Rj is visited
do

2: Call processIn(Ri) if predecessors(Ri)�=∅
3: Call processOut(Ri) if successors(Ri)�=∅
4: Mark Ri visited
5: end while

from the view, i.e., achieves the desired deletion with no
side-effects. The order in which the relations R i are visited
is based on the notion of the join execution graph.

Definition 3.4 Given a view query Qv, the join graph
G(V, E) is an undirected graph whose set of nodes is the
relations in Qv: V = {R1, . . . , Rn} and set of edges
E = {(Ri, Rj)|Ri joins with Rj through Ai,j}. The join
execution graph Ge(Ve, Ee) is a connected DAG, obtained
from join-graph G(V, E), by considering the nodes in Ve to
be those in V , making the edges in E directional and re-
moving one or more of them to make the graph acyclic in
the case of cyclic joins in the view query.

Multiple join execution graphs can be obtained from a
join graph. Intuitively, given a view query Qv, each join
execution graph represents a different “execution plan” for
the on-demand view deletion algorithm that we will de-
scribe next. Each such plan correctly performs the delete
command, i.e., satisfies the three requirements of Section 1.
However, the final instance differs depending on the join ex-
ecution graph that was used. For example, in Section 2 we
saw that if we process the relations in the order Schedule,
Teaching, Personnel, we generated fewer tuples than if we
had done it in the order Personnel, Teaching, Schedule.
We would like to be able to find and use the execution graph
that minimizes the size of the final instance. For the mo-
ment, we assume that the join execution graph Ge is given
and is Personnel→ Teaching→ Schedule.

Procedure processIn(Ri) is invoked for a relation Ri that
is chosen to be processed when the set predecessors(Ri)
is not empty, i.e. node Ri has one or more incoming edges
in Ge. It assures that changes made in adjacent nodes of
Ri in Ge result in no tuples disappearing from the view. It
consists of the following two steps.

Step I.1: Create special delete tuple A clone of tdi is
inserted in Ri. The clone differs from tdi only on the id-
value of the join attribute corresponding to an incoming
edge (Rj , Ri). The new id-value is vd, i.e., has the same
display form as in tdi but a different identifier d. Applica-
tion of this step on the tables of Figure 5 creates no tuple
in Personnel (no incoming edge), tuple [Foxd, proj, DB] in
table Teaching and tuple [DBd, 10, Tue] in table Schedule.

Step I.2: Create join-preserve tuples for incoming edges
If (Rj0 , Ri), (Rj1 , Ri),. . . , (Rjk

, Ri) are incoming edges
of Ri in Ge, let t be a tuple in Ri that joins with tuples tdj0

,
tdj1

,. . . , tdjk
of relations Rj0 , Rj2 , . . . , Rjk

, respectively.
Tuple t is cloned in Ri exactly 2k − 2 times. (In case table
Ri joins with multiple tables using the same join attribute,
k refers to the number of join-attributes that have an incom-
ing edge. In the join execution graph, no R can have both
in-coming and out-going edges on the same attribute.) Let
vjl be the id-value of join attribute Ajl,i, 0 ≤ jl ≤ k − 1.
If we enumerate the copied tuples using index value h in
range 1 . . . 2k−2, then the id-value of join attribute Ajl,i in
the hth-clone obtains a new id-value vjl

p with special iden-
tifier p, if the bit in position jl of the binary representation
of h is 1. When t is not the tuple tdi , for any value of k, a
clone of t is added in Ri. That clone has all join-attributes
(for all incoming edges) having the special preserve iden-
tifier. When t is the tuple tdi , no action is performed
(the process took place during Step I.1). Table Teaching

in our join execution graph has only one incoming edge
emanating from table Personnel; thus, in Figure 5 tuples
[Fox, proj, PL], [Fox, proj, OS] and [Fox, lp, OS] are cloned
and the respective tuples [Foxp, proj, PL], [Foxp, proj, OS]
and [Foxp, lp, OS] are introduced. Table Schedule also has
one incoming edge from table Teaching. Application of
Steps I.1 and I.2 results to its bottom three shadowed tuples.

Note that after processIn has been executed for a rela-
tion, the tuple generated in Step I.1 will take the role of tuple
tdi . For example, for table Teaching and for the procedure
processOut() that follows, the tuple tdi will be considered
the tuple [Foxd, proj, DB].

Procedure processOut(Ri) is invoked when the set
successors(Ri) is not empty, i.e. node Ri has one or more
outgoing edges in Ge. It modifies Ri so that tuple tdi does
not interfere with other joins apart from the one creating the
view tuple td. It consists of the following three steps.

Step O.1: Create special delete tuple A clone of tuple
tdi is inserted in Ri. In the clone, every join attribute Ai,j

for which there is outgoing edge (Ri, Rj) keeps the same
display form but gets a new identifier d. Tuples [EE, Foxd]
of relation Personnel and [Foxd, proj, DBd] of relation
Teaching in Figure 5 are created by cloning the tdi tuples
[EE, Fox] and [Foxd, proj, DB], respectively.

Step O.2: Create join-preserve tuples between Ri and
adjacent nodes in Ge A clone of tuple tdi is inserted in
Ri. In the clone, the join attribute Ai,j for which there
is outgoing edge (Ri, Rj) in Ge keeps the same display
form but gets a new identifier p. The clone preserves all
the view tuples which were formed through a join using t di

and which should remain in the view after the deletion of
td. In Figure 5, tuples [EE, Foxp] in table Personnel and
[Foxp, proj, DBp] in table Teaching were created by cloning

tuples [EE, Fox] and [Foxd, proj, DB] respectively, due to
their join with tuples in relations Teaching and Schedule.

Step O.3: Remove original tuple Tuple tdi is removed
from Ri. Single-strike-through tuples in Figure 5 are
deleted during this step.

After Algorithm 1 has terminated, the special delete tu-
ple that has been created in each table plays the role of tdi

and can be removed without side-effects. In Figure 5, these
tuples are the double-strike-through.

When the delete command is declarative, i.e., multiple
view tuples are to be deleted, the processing is similar to
the case of a single tuple delete. The main difference is that
tdi refers to a bag of tuples. In that case, one special delete
tuple is created (in processOut() and processIn()) for the
whole bag, instead of one for each of its tuples.

3.3. Handling Update Statements
Updates on regular tables are performed as in the rela-

tional model. They have, though, the same problem we had
for insertions on regular tables when these tables were par-
ticipating in view joins (see Section 3.1). We deal with this
issue in the same way we did for the case of insertions.

An update on the view can be modeled as a deletion fol-
lowed by an insertion. Although seeing the delete this way
generates a correct translation of the view update, it gener-
ates more base table tuples than it is needed. So, instead,
what we do is to issue a virtual delete followed by a base
table value update. The virtual delete is similar to the delete
described in Section 3.2. The only difference is that at the
end the delete tuples (the double strike-through tuples in the
Figures) are not removed. Recall that these tuples generate
the view tuple that needs to be deleted/modified and only
that. Hence, we issue an update that modifies the display
forms of their id-values appropriately, and this update has
no side-effect in the view.

Example 3.5 Consider the update command update V b set
prof=’Nick’ where dep=’EE’ and sem=’DB’ and rm=10,
which sets the prof attribute of tuple td of Figure 3 to value
Nick. After the virtual delete, the instance will be like the
one in Figure 5 but with the double strike-through tuples
being kept in the base tables. The join of these tuples forms
the view tuple td and nothing else; thus, they can be mod-
ified with no side effects in the view. The performed mod-
ification is to change id-value Foxd in emp to Nickd. Note
that the identifier remained the same. Only the display form
changed. Due to this, the new id-value can still join with
the unchanged id-value Foxd in prof generating the correct
updated view tuple.

Special care needs to be taken when the update state-
ment uses functions or values obtained from other attributes
to specify the value of an attribute instead of a constant.

Personnel
dep emp
CS Fox
EE Fox
Phil Jones
EE Foxp

EE 10d10
EE 23d23
EE 45d45

Teaching
prof equip sem
Fox proj PL
Fox proj OS
Fox proj DB
Fox lp OS
Jones mic DB
Foxp proj PL
Foxp proj OS
Foxd10 proj DB
Foxd23 proj DB
Foxd45 proj DB
Foxp lp OS
Foxp proj DBp

Foxd10 proj DBd10
Foxd23 proj DBd23
Foxd45 proj DBd45

Schedule
cour rm day
PL 10 Mon
DB 10 Tue
DB 23 Wed
DB 45 Fri
DBd10 10 Tue
DBd23 23 Wed
DBd45 45 Fri

Figure 6. Update using an attribute value

In such cases, multiple clones of the delete tuple td are re-
quired to achieve the desired functionality. We give an ex-
ample but we omit the full details on this issue due to lack
of space.

Example 3.6 Consider the update command update V b set
emp=rm where dep=’EE’ and sem=’DB’ which sets the emp

attribute of tuple td in Figure 3 and its subsequent two tu-
ples to the value of their rm attribute, which is 10, 23 and 45,
respectively. The result table that our on-demand algorithm
will give is indicated in Figure 6. The difference from Fig-
ure 5 is that the double strike-through tuples are not deleted
but instead are replicated with identifiers d10, d23 and d45.

If the update violates any of the conditions of the view,
similarly to the case of insertions, the update statement is
rejected.

The eager approach is similar but requires an additional
step at the end that clones the inserted tuple as many times
as the number of view generating joins it participates in.

4. Correctness, Completeness, Complexity
A translation of a view update to updates on the base

tables that satisfies the conditions of Section 1 is referred to
as a correct translation. Given a database instance I , a view
V on I and a declarative update U on V , we can generate
a correct translation as follows. We materialize view V .
We apply the update to the materialized view. In case the
update is a delete, the deleted tuple is cloned, as discussed
in Section 2. We assign a different identifier to every id-
value of every tuple, unless two id-values are join values
in which case they are assigned the same id. The display
forms remain the same. We now project these id-enhanced
views on each base table. The result instance generates the
updated view and every original base table.

Theorem 4.1 For every declarative view update, there is
always a correct translation.

The procedure described above is the main concept on
which the eager approach is based. However, for a given
view update, one can find infinitely many correct instances,
and the issue there is which one to choose. It is desir-
able to choose the one with the minimum number of re-
quired changes in the physical instance. This is what our
on-demand approach is trying to achieve.

When the view update is an insert, the tuples inserted at
the base tables join to form the inserted view tuple but gen-
erate no other. If one of them is not inserted in the respective
base table, the view tuple will not appear in the view. If the
update is a delete, given a join execution graph, as explained
in Section 3.2, Algorithm 1 will introduce the minimum re-
quired tuples in the base tables to achieve the side-effect
free view deletions. By considering all the possible join ex-
ecution plans, the optimal one can be found. The optimal
join execution graph is identified as the one that minimizes
the cost function defined below. For the case where each
relation joins with at most two other relations in the view
query then, as will be explained, the optimal selection can
be found in linear time without even enumerating all possi-
ble join execution graphs. Similar observations hold for the
updates, since updates are handled similar to deletions.

To derive the cost of a delete, we first consider the
case of a single view tuple deletion (e.g., example of
Figure 3). To derive the cost we study separately pro-
cesses processOut() and processIn() of Algorithm 1. Let
fin(Ri) (resp. fout(Ri)) be the number of join-attributes
in table Ri with in-coming (resp. outgoing) edges in the
join execution graph. Procedure processOut(R i) performs
three tasks: (i) inserts a special delete tuple, (ii) clones all
tuples matching tdi as many times as the fan out of node Ri

and (iii) removes the original tuples:

Theorem 4.2 The size of base table Ri during execution
of processOut(Ri) is increased by Costout(Ri) = 1 +
(fout(Ri)− 1)|σtdi

(Ri)|, where |σtdi
(Ri)| is the multiplic-

ity of tuple tdi in Ri

As an example, for the instance in Figure 5 where
the join execution graph is Personnel → Teaching →
Schedule, the cost Costout(Personnel) is 1+(1-1)1=1.

For a tuple t in Ri, procedure processIn(Ri) will
clone t 2comm(t,tdi

) − 1 times, where comm(t, tdi) is the
number of common join-attribute id-values between t and
tdi . This also accounts for the special delete tuple that is
created.

Theorem 4.3 The size of base table Ri during execution of
processIn(Ri) is increased by:

Costin(Ri) =
∑

t∈Ri

2comm(t,tdi
) − 1

The above discussion suggests that, given the join graph
G, we can enumerate all possible join execution graphs Ge

and select the one that minimizes the sum

�

i:successors(Ri) �={}
Costout(Ri)+

�

i:predecessors(Ri) �={}
Costin(Ri)

When each base relation joins with at most two other
relations, the cost function is decomposable and this process
can be expedited by considering the direction of each edge
in Ge independently. Consider undirectional edge (R i, Rj)
in G and let (for ease of exposition) Ai,j be the common
join attribute. Let o be the identifier of the join attribute and
ni, nj be the multiplicities of o in base tables Ri and Rj

respectively. If the direction of the edge in Ge is Ri → Rj

then the cumulative increase in the size of the base tables R i

and Rj is 1+nj , while, for direction Ri ← Rj , the formula
changes to 1 + ni. Thus, we can pick the direction of each
edge independently by considering simple statistics on the
multiplicities of the join attribute id-values.

Example 4.4 Consider our running example of view Vb

shown in Figure 3. For edge (Personnel,Teaching) the mul-
tiplicity of the join attribute Fox is 2 in Personnel and 4 in
Teaching. Thus, the minimum cost plan is Personnel ←
Teaching. Similarly, the multiplicity of DB in join column
sem of base table Teaching is 2 and in join column cour

in table Schedule is 3. Thus, the optimal selection for Ge

is Personnel ← Teaching ← Schedule. The combined
increase in the size of the base tables is (1+2)+(1+2)=6.
(Notice that we count here the special delete tuples that, in
practice are not created since they are removed at the end
of the process).

The existence of key/foreign key constraints in the
schema can further expedite our algorithm. In particular,
the selection of the optimal join execution graph is done by
considering without any further calculation the edge direc-
tion from the foreign key to the key.

For multiple tuple deletes through a declarative delete
statement, the analysis is similar. We break the problem
into a set of sub-problems by considering each id-value of
the join attributes independently. This means that the same
edge on the join graph can be instantiated with different di-
rections in each sub-problem. The join execution graph may
not be a DAG anymore but will be decomposable into a set
of DAGs. Again, for join graphs with maximum fan-out that
is less than or equal to two, we can optimize the direction
of edges independently.

Example 4.5 Consider the delete command delete from
Vb where emp=’Fox’ for the view of Figure 3. For edge
(Personnel,Teaching) there is a single id-value of the join
attribute (Fox) and the optimal direction of the edge in the

view execution graph is Personnel ← Teaching (as in the
previous example). For edge (Teaching,Schedule) the join
attributes (sem=cour) in the deleted tuples obtain two id-
values for this delete statement: PL and DB. The multiplic-
ity of the PL id-value is one in both tables; thus we arbi-
trarily chose direction Teaching → Schedule for the in-
stance of the edge in the sub-problem (when sem=cour=PL).
For sem=cour=DB the optimal direction is Teaching ←
Schedule. Thus, the join execution graph has two instances
for edge (Teaching,Schedule) of opposite direction that are
processed separately.

Updates to the view are a generalization of deletes and
their analysis is similar. The only difference is that multiple
“delete” tuples may get created during an update statement
as discussed in section 3.3. It is easy to see that this only
affects the constants in the discussed cost functions and the
same arguments still apply.

5. Related Work
View update is an old problem [9]. Researchers have re-

alized very early that a database update that reflects a view
update may not always exist, and even if it does, it may not
be unique. Dayal and Bernstein [8] formalized the notion
of correct translation and defined constraints that guarantee
it. They generate one translation for each view update but
their views are restricted to those without join attributes in
the view interface. Along the same lines, Bancilhon and
Spyratos [2] used the concept of view complement to check
the existence of unique translations, but computation of the
view complement has been shown to be NP-Complete [7].
Tomasic [16] uses query containment to check the correct-
ness of a translation but assumes that the translation is pro-
vided. For the same purpose, Medeiros and Tompa [5] use
the chase [13] but do not provide a method for computing
the translation.

Buneman et al. [4] studied ways to propagate view dele-
tions to the sources based on provenance. Keller [10] stud-
ied the ambiguity of the translation. He enumerates all
translations of a given update based on a number of cri-
teria that guarantee the correctness of the translation, and
chooses the one through an interaction with the user at view
definition time [11]. Barsalou et al. [3] built on that work
to update in a similar fashion object-based views defined
over relational data. Keller’s work is the one closest to ours.
However, it does not support all the kinds of updates we
support, it requires the schemas to be in BCNF, and for dele-
tions it does not always preserve the base tables.

Achieving the required functionality for any view update
without side effects is clearly not feasible with the existing
relational model [10, 2, 9]. For that reason we had to extend
the data model used at the physical level. The idea of ex-
tending the relational model with identifiers is reminiscent

depDOM
vID display
1 CS
2 EE
3 Phil

Personnel
dep emp
1 10
2 10
3 11

empDOM
vID display
10 Fox
11 Jones

profDOM
vID display
10 Fox
11 Jones

Teaching
prof equip sem
10 20 30
10 20 31
10 20 32
10 21 31
11 22 32

semDOM
vID display
30 PL
31 OS
32 DB

equipDOM
vID display
20 proj
21 lp
22 mic

Figure 7. Physical data instance

of flexible relations [1]. We go further by having identifiers
associated with individual values.

6. System Implementation
This section describes how the proposed functionality

can be achieved using existing database technology. We
consider relational databases simply because they are ma-
ture enough and form the majority of the existing stor-
age systems. One way to simulate identifiers in relational
databases is to introduce an additional column for every
relational attribute. This additional column will keep the
identifier of each id-value in that attribute, leaving the orig-
inal column to represent the display form. The drawback of
this in-lined approach is that if a logical value is repeated
in multiple tuples in an attribute, its identifier will also be
repeated. Alternatively, we can introduce a set of binary ta-
bles, referred to as domain tables. A domain table stores
id-values from the domain of an attribute. The first column
keeps the id-value identifier (vID), and the second its display
form (display). Each domain table corresponds to one and
only one attribute of a relation. The id-value identifier col-
umn in a domain table serves as a key. The relational tables
need then to store only the id-value identifier. We will refer
to these tables as regular tables to distinguish them from
the domain tables. We follow this second approach. The
domain and regular tables of the logical tables Personnel

and Teaching of Figure 3 are illustrated in Figure 7.
User queries are expressed on the logical tables, and need

to be translated to queries on the physical data tables. For
this, first, every view involved in the query is replaced by its
view definition. This process is equivalent to query unfold-
ing [15, 12]. The select clause of the query is processed
next. As specified by the user, it selects attributes from
the regular tables, which means that the query result will
be tuples of identifiers and not display forms that the user
expects. For that, for each expression in the select clause
referencing a regular table attribute a join with its domain
table is introduced in the query. The join is based on the
identifier attribute of the domain table and the referenced
attribute of the regular table. The select clause expression

is then replaced by one using the display form attribute of
the domain table that was introduced. The third step is to
process the conditions of the where clause. For every ex-
pression referring to a table attribute of the logical schema,
the same steps as above are performed. An exception to the
above rule is the case in which an equality join condition
appears in the where clause as a result of the query unfold-
ing. In this case, the join condition has to remain unchanged
so that the join will be based on the identifiers and not the
display forms.

Example 6.1 Consider the query select v.day from Vb v
where v.emp=’Fox’. After query unfolding, it becomes

select s.day
from Personnel p, Teaching t, Schedule s
where p.emp=’Fox’ and p.emp=t.prof and

t.sem=s.cour

Next, due to the expression s.day in the select clause, a join
with the domain table dayDom of attribute day is introduced
in the query and expression s.day is replaced by expression
dd.display that selects the display form attribute from the
introduced domain table. Similar steps are applied for the
expression p.emp of the where clause and the query becomes

select dd.display AS day

from Personnel p, Teaching t, Schedule s,
dayDom dd, empDom de

where de.display=’Fox’ and p.emp=t.prof and
t.sem=s.cour and s.day=dd.vID and
p.emp=de.vID

Notice that the second and third equality conditions of the
where clause remained unchanged in order to ensure that
the join between Personnel, Teaching and Schedule is
based on the identifiers.

Since joins are expensive operators, in general, we have
exploited the fact that id-value identifiers are keys for the
domain tables so that regular-domain table joins can be ex-
ecuted more efficiently. Of course, query answering in the
domain table approach is expected to be slower than in the
approach that has the identifiers in-lined in the regular ta-
bles. However, the latter is expected to have a much larger
cost in terms of space. In general, schema and value distri-
bution knowledge may suggest a hybrid approach, and is a
future research topic.

7. Experimental Results
We implemented the prototype on top of an industrial

database system, and we tested it on a machine with a
3.2GHz CPU and 1GB of memory. We would like to ex-
perimentally compare our work with other view update al-
gorithms. Unfortunately, this is not feasible since other ap-
proaches can not support all the kind of updates we support,

DB Size Tuples On-demand Eager
(MB) in Vb (MB) (MB)

VIP 1 13.4 100K 35.8 118
VIP 2 26.3 200K 70.2 235
VIP 3 66.3 500K 175 588
VIP 4 138 1000K 364 1243
VIP 5 310 2850K 729 3060
TPCH 1200 6001K 3600 16000

Table 1. Test databases characteristics

and many of the update statements we randomly generated
to test our code could not be executed in other systems.
We did, however, conduct several experiments to evaluate
the feasibility and correctness of our system. Our goal was
to show that with the introduction of identifiers on values,
queries can be executed correctly while any kind of updates
can be performed on the views without side-effects on the
view, and all these with a reasonable cost in time and space.
We also compared our on-demand algorithm with the ea-
ger algorithm to show the benefit we get by carefully per-
forming the updates. We tried both real and synthetic data.
For the former we used a part of a real system, called VIP
(Virtual Integration Prototype) that integrates more than 30
legacy systems used in AT&T. The schema of the data we
considered is the following:

Orders(OrderNum, Type, Status)
Customers(Name, OrderNum, PhoneNo)
Biller(PhoneNo, AccountNum, ProvisNum)
Provisioning(ProvisNum, CircuitID)

To investigate how well our method can scale, we have cre-
ated multiple different size instances of these tables. The
sizes are indicated in the second column of Table 1. The
third column of the same table provides the number of tu-
ples in the view Vb=select * from Orders o, Customers c,
Biller b, Provisioning p where c.OrderNum=o.OrderNum
and c.PhoneNo=b.PhoneNo and b.ProvisNum=p.ProvisNum
which we use in our experiments.

Loading A first step we performed was to take each (na-
tive) database and enhance it with ids on the values. This
naturally increased the database size. The fourth and fifth
column of Table 1 indicates the id-enhanced database size
for the on-demand and eager approach, respectively. It can
be noticed that the size increase rate is much larger for the
eager case, which suggests that the on-demand strategy will
scale better. For identifiers we used 64-bit integers. For
small databases, one could use 32-bit identifiers with a sig-
nificant improvement in space. The time for building these
id-enhanced databases has a similar trend to the size. How-
ever, the id-enhancement of a native instance is an action
performed only once, hence the time spent on it is not a
critical factor.

Querying To investigate how the size increase affects
query answering, twelve queries were considered. The first
performs a selection from a single table with a small se-

0.01

0.1

1

10

100

1000

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12

T
im

e
(s

ec
, l

o
g

 s
ca

le
)

Native On-demand On-demand, No Dupl. Elimination Eager

Figure 8. Query execution time on VIP 4

lectivity factor. The second is also a selection from the
same table but with a much larger selectivity factor. The
third selects tuples from a view that joins two tables. The
fourth is the same as the third with additional selection con-
ditions in its where clause. The fifth and sixth are similar
to the third and fourth but are on the view Vb that joins
all four tables. The last six queries are the same as the
first six but the number of attributes in their select clause
has been doubled. We executed these twelve queries on
the native databases and their respective on-demand and
eager id-enhanced databases. Their execution time is re-
ported in Figure 8, for only database VIP 4 due to space
limitation, but similar observations hold for the rest. The
figure has four columns for each query. The first, second
and last are the query time for the native, on-demand and
eager id-enhanced databases, respectively. As expected, the
id-enhanced time is always larger than the time for the na-
tive, and this difference gets larger as the number of the at-
tributes in the select clause and the conditions in the where
clause increases. The reason is the additional joins with the
domain tables that are required to access the display forms
of the values. Furthermore, in order to merge the different
clones of the same tuple when query results are returned,
our algorithm always performs duplicate elimination, based
on some auxiliary attribute we keep. This duplicate elimi-
nation is a significant factor for this additional time. To il-
lustrate this, we have included in the figure, for each query,
the execution time on the on-demand id-enhanced database
without the duplicate elimination (third column). The re-
main difference between the on-demand and the eager case,
is due to the larger number of tuples in the latter.

Insertions Insertions on a view table are translated to a
tuple insertion in each of the base tables of the view. An
insertion on a base table, on the other hand, may require
additional tuples to be inserted in other tables as well, as
explained in Section 3.1. We generated random insert state-
ments and executed them on the native, on-demand and ea-
ger databases. Figure 9 illustrates the average number of
tuples that need to be inserted as a result of an insert com-

0

1

2

3

4

5

6

7

8

0.00 0.05 0.25 0.50 0.75 0.95

% of existing values

A
vg

 s
iz

e
in

cr
ea

se
 (

o

f
tu

p
le

s)

Native

On-demand

Eager

Figure 9. Size increase cause by insertions

mand. In the first experiment, none of the values in the
inserted tuples is already in the database. As such, no addi-
tional tuples are required, and the database size increase is
the same for the native, the on-demand and the eager case.
In the second experiment 5% of the inserted values are al-
ready in the database. The remaining 95% are new values.
We notice a slightly larger increase in the size of the the on-
demand and the eager database. As we keep increasing the
percentage of existing values in the insert commands, the
database size increase gets larger for the on-demand case
and much larger for the eager. In most applications, we ex-
pect that insertions will bring new data to the database and
will not re-insert data that is already stored which means
that the insertion cost will not be large, especially if the on-
demand approach is used. In all experiments, the execution
time of an insert statement is found to be always in the range
of milliseconds, independently of the used strategy.

Deletions Deletion statements on a table are executed
similarly to deletions on tables of a native database. Only
few extra joins with the domain tables may be required,
but our experiments show no noticeable delay due to this.
To evaluate our deletion through views, we generated view
deletion statements and we executed them on the eager
and the on-demand databases until there were no more tu-
ples left in the view. Note that the generated delete state-
ments are declarative commands which means that one sin-
gle statement may delete multiple tuples from the view.
Figure 10 illustrates how the size of one of the databases
evolved while we were performing the deletions. Notice
the paradox that after each delete command the database
size increases. This is justified by the fact that additional
tuples are inserted in the database not only to preserve the
base tables instances but also to preserve the view on which
the deletion takes place from side-effects. We have shown
that for a declarative delete our algorithm is optimal. For
a sequence of independent declarative deletes, further op-
timization can be done. This study is left for future work.
A second observation is that the rate of increase is simi-
lar in the eager and the on-demand approach and such that

0

10

20

30

40

50

60

70

0 200 400 600 800 1000 1200 1400 1600

T
h

o
u

sa
n

d
s

Deletes

D
B

 S
iz

e
(i

n
 #

 o
f

tu
p

le
s)

Eager On-Demand

Figure 10. Effect of deletions in space

even after the last (1718th) delete command, the size of the
on-demand database is much smaller than the size the ea-
ger database had at the beginning of the experiment. This
indicates once again the gain we have by following the on-
demand approach. The figure also indicates that at the end
of the experiment the increase in size is approximately 75%,
but this is only after all the view tuples have been removed.
We expect that in real scenarios, deletions that remove all
the tuples of a view are rare, in which case the size increase
will be much less. Furthermore, the experiment was on a
generic schema. There are various situations in which the
table size increase is much less. For instance, if the join
uses key/foreign key attributes, a situation commonly met
in practice, the size of the table that has the key attribute
remains unchanged during the on-demand view deletions.

We also experimented with synthetic (TPCH) data of
various sizes. We performed the same kind of experiments
as we did for the real VIP data and we reached similar con-
clusions. An indication of the space increase we had when
loading the TPCH databases is also given in Table 1.

All our experiments were performed using our Java-
based research prototype system, where most of the pro-
cessing was performed outside the database. We expect that
porting the system to some other language and integrating
it in a DBMS, e.g., as stored procedures, will yield a signif-
icant performance improvement.

8. Conclusion
This work presented a novel framework for dealing with

the view update problem, which, in contrast to similar ap-
proaches, can correctly translate any kind of view updates to
base table updates with no side-effects. In addition, for the
case of deletions, it guarantees that the virtual instances of
the base tables of the affected view will not be affected. The
success of the system depends on separating the data level
into a logical and a physical, storing additional information
in the latter, and hiding it from the users through the right
translation mechanism of queries, update statements and re-
sults between the two levels. We evaluated the system and

showed that the extra cost required does not prohibit the use
of the framework for cases where this kind of functionality
is needed.

In the future, we plan to extend the framework to
include, apart from select-project-join views, views with
aggregations and set operators, e.g., union, intersect and set
difference. Furthermore, we plan to study how modifica-
tions in one view affect other views that are defined using
the one that is updated and how the system behaves when
new views are introduced.

Acknowledgments: We would like to thank Phil Bernstein
and Sergey Melnik for their useful comments.

References
[1] S. Agarwal, A. M. Keller, G. Wiederhold, and K. Saraswat.

Flexible Relation: An Approach for integrating Data from
Multiple, Possibly Inconsistent Databases. In ICDE, pages
495–504, Mar. 1995.

[2] F. B. Bancilhon and N. Spyratos. Update Semantics of Rela-
tional Views. ACM TODS, 6(4):557–575, Dec. 1981.

[3] T. Barsalou, N. Siambela, A. M. Keller, and G. Wiederhold.
Updating relational databases through object-based views.
SIGMOD Record, 20(2):248–257, June 1991.

[4] P. Buneman, S. Khanna, and W. C. Tan. On Propagation of
Deletions and Annotations Through Views. In PODS, pages
150–158, 2002.

[5] C. Medeiros and F. Tompa. Understanding The Implications
Of View Update Policies. In VLDB, Aug. 1985.

[6] E. F. Codd. Is Your DBMS Really Relational? Computer-
World, 1985.

[7] S. Cosmadakis and C. Papadimitriou. Updates of Relational
Views. In PODS, page 317, Mar. 1983.

[8] U. Dayal and P. Bernstein. On the Correct Translation of Up-
date Operations on Relational Views. ACM TODS, 8(3):381–
416, 1982.

[9] U. Dayal and P. A. Bernstein. On the Updatability of Rela-
tional Views. In VLDB, pages 368–377, 1978.

[10] A. M. Keller. Algorithms for Translating View Updates to
Database Updates for Views Involving Selections, Projec-
tions, and Joins. SIGMOD, Mar. 1985.

[11] A. M. Keller. Choosing a View Update Translator by Dialog
at View Definition Time. In VLDB, pages 467–474, 1986.

[12] M. Lenzerini. Data Integration: A Theoretical Perspective.
In PODS, pages 233–246, 2002.

[13] D. Maier, A. O. Mendelzon, and Y. Sagiv. Testing Impli-
cations of Data Dependencies. ACM TODS, 4(4):455–469,
1979.

[14] R. Ramakrishnan and J. Gehrke. Database Management Sys-
tems. McGraw-Hill, Boston, 2nd edition, 2000.

[15] M. Stonebraker. Implementation of Integrity Constraints and
Views by Query Modification. In SIGMOD, pages 65–78,
1975.

[16] A. Tomasic. Correct View Update Translations via Contain-
ment, Dec. 1993.

[17] O. G. Tsatalos, M. H. Solomon, and Y. E. Ioannidis. The
GMAP: A Versatile Tool for Physical Data Independence.
VLDB Journal, 5(2):101–118, 1996.

