
Processing Proximity Queries in Sensor Networks
Yannis Kotidis∗

Athens University of Economics and Business
kotidis@aueb.gr

Abstract

Sensor networks are often used to perform mon-
itoring tasks, such as in animal or vehicle track-
ing and in surveillance of enemy forces in mili-
tary applications. In this paper we introduce the
concept of proximity queries that allow us to re-
port interesting events that are observed by nodes
in the network that are within certain distance of
each other. An event is triggered when a user-
programmable predicate is satisfied on a sensor
node. We study the problem of computing prox-
imity queries in sensor networks using existing
communication protocols and then propose an ef-
ficient algorithm that can process multiple prox-
imity queries, involving several different event
types. Our solution utilizes a distributed routing
index, maintained by the nodes in the network
that is dynamically updated as new observations
are obtained by the nodes. We present an exten-
sive experimental study to show the benefits of
our techniques under different scenarios. Our re-
sults demonstrate that our algorithms scale better
and require orders of magnitude fewer messages
compared to a straightforward computation of the
queries.

1 Introduction
Sensor networks are used in a variety of monitoring tasks.
In this paper we initiate a study of new decentralized al-
gorithms for the detection of events that are observed by
nodes within certain distance of each other, i.e. events
that are reported by sensor nodes in spatial proximity. An
event is triggered when a user-programmable predicate is
satisfied on a sensor node. The definition allows differ-
ent types of events, depending on the sensing capabilities
of the nodes in the network and on the application. For
instance, in an application where nodes are used for col-
lecting meteorological data, an event may be defined for
when the temperature readings on a sensor exceed a certain
threshold. Another type of event, in the same application
may be defined when temperature readings fall below an-
other, lower value. When both events are detected, each
by a different node, and these two nodes are in proximity,
this may indicate an abrupt, abnormal shift in temperature
in the terrain. In a military surveillance application, events
may be used to detect the movement of friendly and en-
emy forces. Proximity alerts then may be used for the early
warning of approaching enemy forces. In another applica-
tion of wild animal tracking, we may want to raise an alert
when a predator in spotted in an area occupied by a flock

∗The project is co-funded by the European Social Fund and National
Resources (Ministry of Education) Pythagoras II - EPEAEK.

Proceedings of the 3rd International Workshop on Data Manage-
ment for Sensor Networks (DMSN’06), Seoul, South Korea, 2006

that we observe, assuming that the presence of each ani-
mal can be detected by the use of some RFID technology
or by matching the sensory data to stored patterns in the
node [10].

In this paper we provide a generalized solution to
the problem of detecting proximity among interesting
types of events such as those presented in the aforemen-
tioned applications. Given a set of predefined event types
E={A,B, C, . . .} the users can register continuous proxim-
ity queries of the form Q=(X, Y, d) where X and Y are
members of E and d is a proximity threshold. In turn, the
sensors will inform a base station by raising a proximity
alert when two events of type X and Y are detected by sen-
sor nodes S1 and S2 that are within distance d of each other.
A response could be a quadtuple (S1, X, S2, Y) indicating
that node S1 (resp. S2) has observed event X (resp. Y). In
the general case, X and Y may be of the same type. Sim-
ilarly, the definition of a query can be extended to include
multiple event types.

If the proximity threshold d is zero, an alert is raised
when both events are detected at the same node (S1=S2).
This is a trivial case in that each node may process the
query independently using only localized information (i.e.
its own readings) without further knowledge on the obser-
vations of other nodes in the network. When d is greater
than zero, the query requires that the sensor nodes collab-
orate in order to share their observations. In a straight-
forward implementation, when a node S observes either
event X or event Y , this needs to be announced to all its
neighbors that are within distance d. Thus, the number of
messages that need to be communicated in response to a
proximity query rises rapidly with the value of threshold d
and becomes prohibitively expensive for larger, dense net-
works. Similar observations hold, if we decide to simply
forward the events to a base station and compute each prox-
imity query outside the network.

As has been well documented by past research, commu-
nication constitutes the biggest source of energy drain in
sensor networks. Thus, we need to devise more efficient
ways of processing a proximity query Q by the nodes in
the network. In this paper we propose a solution that uti-
lizes a distributed routing index for the communication of
interesting types of events in the network. When node S
observes an interesting event X , or hears an announcement
by some of its neighbors, it utilizes this index to propa-
gate the announcement to other parts of the network that
have the highest likelihood of witnessing an event of type
Y , assuming X and Y are both used in the same proximity
query. By carefully tuning the routing information avail-
able in the nodes we can simultaneously process a large
number of proximity queries without the need of flooding
portions of the sensor network that do not contain quali-
fying events. Of course, an optimization that prunes mes-
sages may not compute all matching proximity events in
the network. In the spirit of past work that exploit approx-

imation [6, 7, 8, 12, 15] in order to reduce energy drain in
sensor nodes, our algorithm will provide approximate an-
swers to each proximity query. As will be demonstrated in
our experimental evaluation, our algorithm is able to cap-
ture most proximity events in the network (with a median
recall of 99%) and 100% precision, using a tiny fraction
(that can be as low as 2%) of the messages that a straight-
forward implementation requires. We also discuss condi-
tions under which the algorithm provably finds all answers
to a proximity query, while still able to produce similar sav-
ings.

Our contributions are summarized as follows:

• We introduce the concept of proximity queries in sen-
sor networks. Our definition captures a large number of
interesting queries that may be used in a variety of mon-
itoring applications in sensor networks.

• We propose the use of a distributed routing index for
capturing the spatial distribution of interesting types of
events in the sensor network. This routing index requires
minimal resources at each node and is being updated
dynamically, when the nodes collaborate to provide an-
swers to proximity queries.

• We provide a detailed experimental evaluation where we
study the effect of various parameters in the accuracy of
our algorithms. Our results demonstrate that our tech-
niques are very robust and can accurately process a va-
riety of proximity queries, while substantially reducing
the number of messages exchanged in the network.

The rest of the paper is organized as follows. In Sec-
tion 2 we discuss related work. In Section 3 we introduce
the problem of proximity query answering, discuss several
implementation issues and explore the benefits and draw-
backs of a straightforward execution of the queries. In
Section 4 we discuss in detail our techniques. Finally, in
Section 5 we evaluate our techniques and in Section 6 we
provide concluding remarks.

2 Related Work
Sensor networks consisted of wireless, battery-powered
sensing devices, have introduced new challenges in data
management and have spawn several recent proposals for
embedded database systems, such as COUGAR [19] and
TinyDB [13]. Most of the proposed techniques explore in-
network processing to carefully synchronize the operation
of the nodes [13] and utilize the multi-hop communica-
tion links to leverage the computation of expensive queries,
such as those involving aggregation [4, 7, 15]. Continu-
ous monitoring queries [6, 16] and distributed join algo-
rithms [1] have also been considered. Alternative methods
try to reduce the cost of data processing in sensor networks
through probabilistic techniques [3], data modeling [8, 12]
or through the use of decentralized algorithms [2, 11].
Our algorithms fall in the latter category. Application
of existing methods for computing set-expressions in data
streams [5] in the evaluation of proximity queries is an open
research question due to the different settings and cost con-
siderations.

Most of these fundamental techniques have been de-
vised to support event-based monitoring applications. For

example, in animal tracking, an event such as the pres-
ence of an animal can be determined by matching the sen-
sor readings to stored patterns [10]. The authors of [18]
propose an event detection mechanism based on matching
the contour maps of in-network sensory data distributions.
In [14], kernel-based techniques are used to detect abnor-
mal behavior in sensor readings. In [9] the authors describe
the implementation of a real system based on Mica2 motes
for surveillance of moving vehicles.

3 Motivation
We consider the case of a proximity query Q(X, Y, d) that
requests the network to inform a base station whenever two
events X and Y are observed by nodes S1 and S2 that are
within distance d of each other. We note that the order of
the events doesn’t matter, i.e. Q(X, Y, d) is equivalent to
Q(Y, X, d). It is also straightforward to generalize the def-
inition of the query to include multiple event types such as
Q(A,B, C, . . . , d) and modify the semantics to return any
pair of events from the specified set that are in proximity.

In order to ease presentation and without affecting the
applicability of our techniques to other configurations we
will assume that the sensor nodes are placed in a two-
dimensional n × n grid. Then, Si,j will denote the sen-
sor node at location i,j in the grid, where 0 ≤ i, j < n.
For this arrangement we will use the L∞ norm to compute
distances

dist∞(Si,j , Sk,l) = max(|i− k|, |j − l|)

Using this metric, nodes S0,0, S1,0, S2,0, S2,1, S2,2, S1,2,
S0,2 and S0,1 are all within distance one from sensor node
S1,1. We will further assume that a node can transmit a
message to any of the nodes that are in adjacent locations
in the grid. In the above example node S1,1 can reach any
of its 8 immediate neighbors. We note that other distance
metrics, placements of nodes and transmission ranges are
possible without affecting the generality of our techniques.

We assume that nodes are able to observe events drawn
from a set E={A,B, C, . . .}. It is not required that each
node can detect (or compute) all event types. This will de-
pend of the node’s sensing capabilities and the application.
When a proximity query Q(X, Y, d) is registered, it is com-
municated to all nodes in the network using a flooding algo-
rithm (see for example [4, 7]). In turn, the nodes should in-
form the base station whenever the two events X and Y are
detected by nodes Si,j and Sk,l in proximity of each other.
There is not a strict requirement that one of Si,j and Sk,l

should inform the base station. This information can be, for
instance, computed and communicated to the base station
by any node in the network, for instance a node somewhere
in between nodes Si,j and Sk,l that becomes aware of both
events.

Before discussing our techniques for computing the
query, we will first present a straightforward algorithm.
The discussion will also help highlight some of the char-
acteristics of sensor nodes and motivate our techniques.
We will draw our examples using the characteristics of the
Berkeley Mica2 motes radios. A mote can communicate
with its neighboring nodes by sending either unicast or
broadcast messages. At an abstract level, the two methods
differ in that broadcast messages use a predefined broadcast

X

0

1

3

2

4

10 2 3 4

Y

Figure 1: Proximity Query Processing

address (TOS BCAST ADDRS), while unicast messages
encapsulate the local address of the recipient (roughly anal-
ogous to a node-id) in their header. When unicast commu-
nication is used, other motes in the neighborhood that have
their radios turned-on will be idle-listening to a unicast
message that is not directed towards them. On the Mica2
mote, the ratios for radio power draw during idle-listening,
receiving of a message and transmission are 1:1:1.41 at
433MHz with RF signal power of 1mW in transmission
mode [20]. Similar observations hold in networks consisted
of other types of nodes [20]. Thus, idle listening is a domi-
nant factor of energy drain in such networks making broad-
cast a attractive communication paradigm.

Based on the discussion above we can now derive a sim-
ple algorithm for computing proximity queries in sensor
networks. Let’s assume that sensor node Si,j observes an
event of type X (resp. Y). The node first checks whether
an event of type Y (resp. X) is also present and if so, it no-
tifies the base station.1 Then, assuming d > 0, sensor node
Si,j broadcasts a message to its neighborhood including the
type of the event and its location (for instance (X, Si,j)).
Each node Sk,l that receives this message makes similar
checks. It firsts sees whether a locally observed event (e.g.
Y) matches and should be reported to the base station.
Then, if dist(Si,j , Sk,l) < d it broadcasts (X, Si,j) to its
neighborhood. During this process a node Sk,l may receive
the same message multiple times from different neighbors.
In order to reduce unnecessary traffic the node only reacts
to the first announcement it receives for the event and ig-
nores subsequent messages. This is possible since the event
X and the originator of the event (node Si,j) are both in-
cluded in the message. Cascading terminates at nodes that
are in distance equal to the proximity threshold d from node
Si,j that initiated the process.

4 Our Solution
While the straightforward algorithm for computing a prox-
imity query is very simple to implement, it is rather expen-
sive in terms of the number of messages exchanged in the
network. As has been already discussed, each message sent
by a node in the network drains energy not only from the
sender but also from any other node that is listening on the
channel. Thus, we need to derive ways to reduce unneces-
sary traffic during computation of a proximity query.

Consider for example the scenario depicted in Figure 1.
Node S1,1 has just observed event X (that may indicate

1This can be accomplished, for example, by using the inverse routing
tree computed during query propagation [4, 13].

the presence of say enemy forces) and assume that contin-
uous proximity query Q(X, Y, 3) has been previously reg-
istered in the network. In the straightforward algorithm,
node S1,1 will start a flooding process that will announce
pair (X, S1,1) to all nodes in the 5× 5 area depicted in the
Figure. The number of messages transmitted in that case
will be equal to 16 and the number of messages received
equal to 105.

In the same Figure we also observe that an event of type
Y was previously detected by node S3,2. Thus, both events
need to be reported in response to query Q. If node S1,1 had
a way of knowing the position of event Y at grid location
(3,2) it would transmit a message indicating the presence
of event X at its location to its south-east neighbor S2,2,
which would in turn pass this information to node S3,2 and
have the latter confirm the proximity alert by responding to
the base station with tuple (X, S1,1, Y, S3,2).

An open question is how this information should be
passed from node to node, using unicast or broadcast? As
long as the cost of idle-listening is comparable to the cost
of receiving a message, the unicast approach provides no
real benefits. An additional advantage of broadcasting is
that additional nodes in the neighborhood will be listening
to the announcements and can use this information for tun-
ing their local indices (discussed below) at no additional
cost. We will assume at this point that broadcast messages
will be used in the process of informing adjacent nodes for
the presence of an event and revisit this issue later in this
section.

Using these assumptions, node S1,1 that first observed
event X sends a broadcast message to its adjacent nodes
indicating the location of the event (X, S1,1) and that its
south-east neighbor, node S2,2 should carry over propagat-
ing the event to the rest of the network. All other nodes in
its neighborhood can hear the announcement, and can use
the information to update locally stored information but do
not further react to it. Similarly, node S2,2 transmits a sec-
ond message that is heard by all nodes in the second shaded
area and includes in the message the location of the event
(X, S1,1) as well as the next “hop”, node S3,2. Node S3,2

that has observed event Y reacts by informing the base sta-
tion of the new result to the proximity query (the required
messaging is not depicted in the figure). The distance of
node S3,2 from S1,1 is 2 that is less that the proximity
threshold (3) and the node further propagates the announce-
ment, indicating this time that both nodes S4,1 and S4,3

should be the next “hops”. Notice that, in general, a node
may indicate that more than one nodes should further prop-
agate the announcement of an event, in search for results
to the proximity query. Nodes S4,1 and S4,3 do not need
to propagate the announcement further, because the prox-
imity threshold has been reached. In all, just three mes-
sages have been transmitted and the number of nodes that
received them was 24, a significant reduction compared to
the straightforward algorithm.

In Algorithm 1 we sketch an implementation of the ac-
cept() subroutine at sensor node Sk,l for processing an in-
coming message during the course of the algorithm. There
are fours major tasks in this process. In lines 3–5, the
node first checks whether it has already responded to an
announcement for the same event, and if so it ignores the

Algorithm 1 Accept Subroutine
Require: (X, Si,j , ListNextHops)

1: {X is the event type reported by node Si,j}
2: {ListNextHops is a list of nodes that should continue fur-

ther the messaging process}
3: if HasSeen(X, Si,j) then
4: return {Have already processed an announcement for this

event}
5: end if
6: {Sk,l is the current node}
7: if Exists Local Event Y and query Q(X, Y, d) and

dist(Si,j , Sk,l) ≤ d then
8: InformBaseStation(X, Si,j , Y, Sk,l)
9: end if

10: UpdateLocalIndices(X, Si,j)
11: {d is the largest proximity threshold for any registered query

Q(X, Y ′, d′)}
12: if Sk,l in ListNextHops and dist(Si,j , Sk,l) < d then
13: MyNextHops=PickHops(X){Pick next hops for event X}
14: Broadcast(X, Si,j , MyNextHops)
15: end if

message. Then, lines 6–8, if a local event Y has been de-
tected, for which a query Q(X, Y, d) is also registered and
the distance of node Sk,l is less or equal to d from the orig-
inator of event X (node Si,j), the node informs the base
station of the two matching events. In line 10, a call to
function UpdateLocalIndices() is made, so that the rout-
ing information can be updated. This process is discussed
in more detail below. Finally, in lines 11–15, if the node
belongs to the list ListNextHops, encapsulated in the mes-
sage, it is responsible for propagating the announcement
further. For that, it first computes, as will be explained, a
new list of next hops for the message and finally broadcasts
this list, along with the original event.

It is worth noting that nodes that are not in the NextHo-
pList are still able to check for local matching events and
also to update their routing information. This is another
advantage of using broadcast instead of unicast commu-
nication. Intuitively, there is a band of nodes around the
routing path that overhears the communication and is able
to either contribute to the query or tune its indices for fu-
ture queries and events. A implementation based on unicast
(or multicast) messaging would not be able to support this.
Effectively, in our algorithm, we simulate a multicast pro-
tocol, embedded over a broadcast communication channel
in order to benefit from both worlds.
4.1 Routing Indices

Up to this point we have assumed that the nodes have the
ability to properly route the announcement of an event to
one or more of their neighboring nodes in the topology.
This is accomplished by the use of a local routing index.
At each node s, the index is instantiated as a list of triplets
(nb, e, wnb,e), where nb is a neighbor of node s, e is an
event (from set E), and wnb,e is a weight associated with the
link between s and nb. The size of the full index is equal to
the number of event-types times the number of neighbors
of node s. Thus, in our running example, it is bounded by
8×|E|. Nevertheless, not all entries are required for routing
a message as is explained below.
Routing of Messages. Function PickHops(X) is used in
Line 13 of the Algorithm for selecting the next hops for

routing a message that contains an event of type X . This
function returns the top num hops entries from the index
using the following process. For each neighbor nb of node
s we compute the compound weight Wnb,X for routing a
message regarding X through nb as the maximum of all
weights wnb,e for all events e that are used in a proximity
query of the form Q(X, e, d). Thus,

Wnb,X = maxe:∃Q(X,e,d)(wnb,e)

Given these aggregate weights, function PickHops(X)
returns the top-num hops neighbors of s, ranked in de-
scended order of their values.2 Parameter num hops is a
built-in value and we will study its effect in the experimen-
tal evaluation of Section 5.

NextHop (n) Event(e) Weight (wn,e)
S3,1 V 3
S4,1 Y 3
S4,1 W 5
S4,3 X 5
S4,3 Y 4

Table 1: Sample routing information at node S3,2

In Table 1 we show a snapshot of the routing index
for node S3,2 used in the example of Figure 1. Assume
that the node has just received the announcement for event
(X, S1,1) and that the following two proximity queries are
registered: Q1(X, Y, 3) and Q2(X, W, 3). In this example
the ranked list of weights will be (we note that WS3,1,X

is not defined in this example): (i) WS4,1,X=5 and (ii)
WS4,3,X=4.
Computing/Updating the Index. An open question, is
how the weights wn,e associated with each link and event-
type will be determined. The larger the weight that is as-
sociated with a link, the more likely is to route a message
using this link. Arguably, there are many ways to determine
the weights and different choices may work better for cer-
tain applications. In our current implementation we target
applications where events represent moving objects such as
in vehicle and animal tracking, in military surveillance etc.
In such applications, events do not randomly appear and
disappear in the monitored area. They rather move along
predefined or unknown paths in the terrain. Thus, when a
node s reports an event of type X (for instance the pres-
ence of an animal) at time t, our best guess for the location
of the object at time t+1 will be the neighborhood of s.
Therefore, when node Sk,l hears about event (X, Si,j) by
its neighbor n, it assigns a value for weight wn,X equal to
the current timestamp t. Notice that in this scheme t can be
simply a local variable that will be incremented by each call
to function UpdateLocalIndices(). Intuitively, this process
generates a reverse routing tree that is rooted at node Si,j

that originally announced the event. In our running exam-
ple, node S3,2 will insert a new row with values (S2,2, X, t)
when it receives the announcement from node S2,2. In turn
this entry will be used when an event of type Y or W is
announced in the neighborhood of S3,2 and will properly
route the announcement back to node S1,1 to produce the
proximity alert, unless newer observations of the event X ,
in other locations, get higher priority.

2When computing this list, we exclude the node, which sent the mes-
sage that node s is currently processing.

 0

 5e+06

 1e+07

 1.5e+07

 2e+07

 0 5 10 15 20 25

T
ot

al
 C

os
t

Proximity Threashold (d)

"NAIVE"
"RI-8"
"RI-7"
"RI-6"
"RI-5"
"RI-4"
"RI-3"
"RI-2"
"RI-1"

Figure 2: Cost of a query, varying d

Of course, one can better tune the routing index, when
more information is available on the movement of each
event X in the area covered by the sensors. For instance,
if the nodes, in addition to the location of an object, can
also determine its speed and direction, we can easily mod-
ify function PickNextHops() to compute the most likely po-
sition of the event at time present t, given a past observa-
tion. When nodes with advanced sensing and computation
capabilities are available, we can take this process further
and design a more effective routing index using techniques
such as those described in [17] that can capture a variety of
unknown motion patterns. Such extensions do not change
the core logic of our algorithm and are left for future work,
due to lack of space.

5 Experiments
In this section we study the performance of our algorithm
and alternative implementations, using a simulator that we
developed. For the first experiment we modeled the net-
work using a 50 × 50 grid of nodes. Given our pref-
erence for surveillance applications, as discussed in Sec-
tion 4, we modeled 10 objects, 5 of type “X” and 5 of type
“Y ” that were free to move in the monitored space mak-
ing random walks. The walks were modeled so that when
object X is at grid location (i, j) at time t, its next posi-
tion at t+1 was randomly chosen from one of the adjacent
cells of (i, j). In Figure 2 we compute the communica-
tion cost of computing a single continuous proximity query
Q(X, Y, d) for 2,000 epochs, varying the proximity thresh-
old d. The total cost, following the suggestions in [20]
was computed as cost=1.41×(messages sent)+(messages
received)+(messages idle listening). The costs also account
for the messages required to route a matching tuple back to
the base station, which in this run was placed in the cen-
ter of the area (results for other placements were analogous
and are omitted due to lack of space).

The line labeled NAIVE depicts the performance of the
flooding algorithm discussed in Section 3. Results of our
algorithm are shown as RI-k (standing for Routing Index),
where k is the value of parameter num hops, see Sec-
tion 4. In all cases we used the first 10% of the epochs
to train the indices using the NAIVE method and started
counting after that point. As expected, a smaller value
of parameter num hops results in fewer messages in the
network. Compared with the naive execution, we note

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 5 10 15 20 25

R
ec

al
l

Proximity Threashold (d)

"RI-8"
"RI-7"
"RI-6"
"RI-5"
"RI-4"
"RI-3"
"RI-2"
"RI-1"

Figure 3: Recall of the RI algorithm

that even a value of 8 (=max number of neighbors) for
num hops results in a reduction of the total cost by a fac-
tor of up to 5, depending on the proximity threshold. This
is because, our algorithm does not route messages towards
neighbors that have never announced a matching event be-
fore. Performance of RI-8, can be improved further by ex-
piring old observations from the routing index. We defer
details to the full version of this paper. For num hops=1,
the savings are even higher, by a factor of up to 45, increas-
ing again with the selected value of d.

A potential drawback of using a small value for
num hops is that, under certain conditions, we might not
be able to detect proximity events, because of the prun-
ing of messages towards some of the neighbors of a node.
In Figure 3 we plot the recall (=percentage of answers re-
turned) of the algorithm varying d and for the different val-
ues of num hops. We note that precision is a perfect 100%
as we never return spurious tuples. The graphs show that a
value of 3 or larger for num hops returns at least 93% of
the answers, while the median value of recall is 99%.

In the case of RI-8 one can show that the algorithm prov-
ably finds all answers to a proximity query, under the as-
sumptions that (i) objects do not make abrupt jumps (i.e.
when X is observed by node s at time t, it will be within
the area covered by s and its neighbors at time t+1), (ii) the
necessary communication among nodes within an area of
“radius” d around the event can be carried out between t
and t+1 without loss of messages (iii) the initial weights of
the indices point towards the true location of the events at
time t=0.

In Figure 4 we show the effect of scaling the size of the
monitored area by increasing the grid from 10 × 10 up to
400 × 400. We used a single proximity query Q(X, Y, 5).
In the graph we introduce an additional implementation for
the computation of the queries that simply unicasts the ob-
servation of an event to the base station (using a minimum
cost path), which in turn computes the proximity events.
This algorithm is denoted as EXTERNAL in the Figure,
indicating that processing of the events is done outside the
network and has the best performance for the two smaller
grid sizes. This is explained as, for instance in the case of
the 10 × 10 grid with a proximity threshold d=5 for the
query, we essentially compute an all pairs cartesian prod-
uct of the events. Thus, no filtering can be accomplished
via in-network processing of the events, as in the case of

 0

 200000

 400000

 600000

 800000

 1e+06

 1.2e+06

 1.4e+06

 50 100 150 200 250 300 350 400

T
ot

al
 C

os
t

Grid Size (n)

"EXTERNAL"
"NAIVE"

"RI-2"

Figure 4: Varying the size of the monitored area

the NAIVE or RI algorithms. Of course, with larger grid
sizes, performance of the EXTERNAL method quickly de-
teriorates. Because of the selection of the distance metric
(L∞) the cost of EXTERNAL is asymptotically linear with
n. As expected, the cost of NAIVE is bounded by d2 while
RI becomes even more effective in larger grid sizes, as the
sparsity of the space helps prune more messages.

In Figure 5 we depict the cost of evaluating multiple
concurrent queries during 12000 epochs for an 100 × 100
grid. The number of event types was 26, we used 5 event
instances of each type and we varied the number of queries
from 1 up to 100. Each query was randomly chosen to se-
lect two of the 26 event types and the proximity threshold
was 5. As expected, the cost of EXTERNAL is unaffected
by the number of queries, as it depends on the number of
events and the size of the grid, which are constant in this
setup. The cost of NAIVE increases rapidly, up to the point
where is bounded by the size of the network (since a node
transmits at most 1 message). The RI algorithm had the
best performance (num hops was 2 in this example).

6 Conclusions
In this paper we introduced proximity queries as a means
of detecting interesting events that are observed by nodes
in the network that are within certain distance of each
other. Proximity queries can be used to set up alerts or
even to reduce the cost of collecting continuous measure-
ments from the nodes, since they allow us to define which
events are interesting based on the observations at several
nodes. We investigated the issues of computing proximity
queries in networks consisted of battery-powered wireless
nodes and proposed an efficient distributed algorithm that
utilizes routing information computed accordingly at each
node in the network. Our results demonstrate that our tech-
niques are very effective and provide substantial savings
compared to straightforward executions of the queries us-
ing in-network processing or to algorithms that relay the
events to a base station for further processing.

There are many interesting extensions to our techniques
that require further consideration. For example, when the
nodes have the ability to provide more information about
the events such as their speed, direction or even their trajec-
tories, we should be able to exploit this extra information
to achieve even higher benefits. Similarly, one should be
able to also define temporal proximity thresholds, in addi-

 0

 2e+06

 4e+06

 6e+06

 8e+06

 1e+07

 1.2e+07

 10 20 30 40 50 60 70 80 90 100

T
ot

al
 C

os
t

Number of Queries

"EXTERNAL"
"NAIVE"

"RI"

Figure 5: Varying the number of concurrent queries

tion to spatial proximity considered in this work. We plan
to investigate such extensions in the future.
References
[1] D.J. Abadi, S. Madden, and W. Lindenr. REED: Robust, Efficient

Filtering and Event Detection in Sensor Networks. In VLDB, 2005.
[2] M. Bawa, H. Garcia-Molina, A. Gionis, and R. Motwani. Estimating

Aggregates on a Peer-to-Peer Network. Technical report, Stanford,
2003.

[3] R. Cheng and S. Prabhakar. Managing Uncertainty in Sensor
Databases. SIGMOD Record, 32(4):41–46, 2003.

[4] J. Considine, F. Li, G. Kollios, and J. Byers. Approximate Aggrega-
tion Techniques for Sensor Databases. In ICDE, 2004.

[5] A. Das, S. Ganguly, M. Garofalakis, and R. Rastogi. Distributed
Set-Expression Cardinality Estimation. In VLDB, 2004.

[6] A. Deligiannakis, Y. Kotidis, and N. Roussopoulos. Compress-
ing Historical Information in Sensor Networks. In ACM SIGMOD,
2004.

[7] A. Deligiannakis, Y. Kotidis, and N. Roussopoulos. Hierarchical
In-Network Data Aggregation with Quality Guarantees. In EDBT,
2004.

[8] A. Deshpande, C. Guestrin, S. Madden, J.M. Hellerstein, and
W. Hong. Model-Driven Data Acquisition in Sensor Networks. In
VLDB, 2004.

[9] T. He, S. Krishnamurthy, J. Stankovic, T. Abdelzaher, L. Luo,
R. Stoleru, T. Yan, L. Gu, J. Hui, and B. Krogh. An Energy-Efficient
Surveillance System Using Wireless Sensor Networks. In MobiSys,
2004.

[10] C. Intanagonwiwat, R. Govindan, and D. Estrin. Directed Diffu-
sion: A Scalable and Robust Communication Paradigm for Sensor
Networks. In MOBICOM, 2000.

[11] D. Kempe, A. Dobra, and J. Gehrke. Gossip-Based Computation of
Aggregate Information. In FOCS, 2003.

[12] Y. Kotidis. Snapshot Queries: Towards Data-Centric Sensor Net-
works. In ICDE, 2005.

[13] S. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong. Tag:
A Tiny Aggregation Service for ad hoc Sensor Networks. In OSDI
Conf., 2002.

[14] T. Palpanas, D. Papadopoulos, V. Kalogeraki, and D. Gunopulos.
Distributed Deviation Detection in Sensor Networks. SIGMOD
Rec., 32(4), 2003.

[15] A. Sharaf, J. Beaver, A. Labrinidis, and P. Chrysanthis. Balancing
Energy Efficiency and Quality of Aggregate Data in Sensor Net-
works. VLDB Journal, 2004.

[16] A. Silberstein, R. Braynard, and J. Yang. Constraint Chaining: On
EnergyEfficient Continuous Monitoring in Sensor Networks. In
SIGMOD, 2006.

[17] Y. Tao, C. Faloutsos, D. Papadias, and B. Liu. Prediction and In-
dexing of Moving Objects with Unknown Motion Patterns. In SIG-
MOD, 2004.

[18] W. Xue, Q. Luo, L. Chen, and Y. Liu. Contour Map Matching for
Event Detection in Sensor Networks. In SIGMOD, 2006.

[19] Y. Yao and J. Gehrke. The Cougar Approach to In-Network Query
Processing in Sensor Networks. SIGMOD Record, 31(3):9–18,
2002.

[20] W. Ye and J. Heidermann. Medium Access Control in Wireless Sen-
sor Networks. Technical report, USC/ISI, 2003.

