A Framework for Enabling Query Rewrites when
Analyzing Workflow Records*

Dritan Bleco #!, Yannis Kotidis #2

Athens University of Economics and Business
76 Patission Street, Athens, Greece
ldritanblecoaueb. gr, 2kotidisRaueb. gr

Abstract. Workflow records are naturally depicted using a graph model in which
service points are denoted as nodes in the graph and edges portray the flow of pro-
cessing. In this paper we consider the problem of enabling aggregation queries
over large-scale graph datasets consisting of millions of workflow records. We
discuss how to decompose complex, ad-hoc aggregations on graph workflow
records into smaller, independent computations via proper query rewriting. Our
framework allows reuse of precomputed materialized query views during query
evaluation and, thus, enables view selection decisions that are of immense value
in optimizing heavy analytical workloads.

1 Introduction

A Workflow Management application in a Customer Support Call Center manages mas-
sive collections of different trouble (issue) tickets generated daily by an Issue Tracking
System (ITS). Such an application tracks all activities from the creation of the trouble
ticket till its completion. A trouble ticket is commonly composed by different flows
of tasks that may be serviced in parallel or sequentially by distinct agencies within the
company’s domain called service points.

A natural way to depict the workflow followed by a trouble ticket is to utilize a
graph model in which service points are denoted as nodes and edges depict the flow
of processing. Figure 1 depicts the graph instance associated with a particular trouble
ticket. Numeric labels on the nodes depict processing time (in days) within the service
point. The values on the edges depict delays for propagating the associated task(s) from
one service point to another (e.g. handoffs latencies or wait times).

In this paper we consider the problem of enabling analytical queries over large-scale
graph datasets related to workflow management applications such as those serving ITS.
We describe a comprehensive framework for modeling analytical queries that range
over the structure of the graph records. For example, queries like “find the average
ticket completion time” in an ITS application are naturally captured by our framework.

As will be explained, in our framework we decompose complex, ad-hoc aggrega-
tions on graph workflow records into smaller, independent computations via proper
query rewriting. In the context of a large-scale data warehouse, our framework allows

* This work was partially supported by the Basic Research Funding Program, Athens University
of Economics and Business.

100% T
90% \

= 80%
8 o |

o
© 70%

Y 60%

9 so%

[
gl
= 40%
Bea.ll

E 30%
o

Z 20% 1
10% .

o
0%

0% 10% 20% 30% 40% 50% 60%
Space Budget (%)

Fig. 1. A sample workflow record

Fig. 2. Benefits of Materialization

re-use of precomputed materialized query views during query evaluation and, thus, en-
ables view selection decisions [1]. Our framework is not an attempt to provide a new
algebra for graph analytics. All computations discussed in our work, can be naturally
expressed in relational algebra, given a decomposition of the graph records in a rela-
tional backend. Our query rewriting framework allows us to optimize ad-hoc aggre-
gations over workflow records by utilizing precomputed views, independently of the
technological platform used for storing and querying such records. In our experimental
evaluation, we demonstrate that our techniques can be used to expedite costly queries
via query rewriting and available precomputations in the data warehouse.

2 Motivation and Basic Concepts

Figure 1 captures information related to a single trouble ticket workflow that we will
refer to as a record henceforth. Service point B is a special type of node called splitting
node, where processing of the ticket is split between two tasks that are processed in
parallel following different flows in particular [B, C, O] (or [BCO] for brevity) and
[BDEBMO)]. These independent flows are merged (synchronized) at node O, which
is a merging node. From there, the ticket is moved to node P where it is marked as
completed. There can be recordings of different cost metrics, in addition to the time we
consider in this example. A decision maker would like to analyze data according to all
these attributes over different parts of the graph for thousands of such records. In what
follows we describe a formal way to analyze such data.

In a workflow management application a flow is simply a sequence of nodes result-
ing from the concatenation of adjacent edges. When a flow is uniquely identified by its
endpoints, for brevity, we omit the internal nodes. For example flow [ABC] is depicted
as [AC]. In the record of Figure 1, flow [BDEBMO] contains a cycle, [BDEB] in
our case. This cycle shows that this flow, for some reason, goes back to node B for
further proccessing and after that to node M. On each node there is a cost related with
each input/output edge. For example, to proceed from B to M the flow was processed
locally on B for four days.

When we analyze the costs on a flow in a trouble ticket often we want to omit
the costs on the two side nodes. Borrowing notation from mathematics, we denote this

“open-ended” flow similarly to an interval whose endpoints are excluded. For example
(BCO) denotes our intention to look at the processing of the flow excluding cost related
to its starting and ending points. Similarly, a flow can be opened in only one of its side
nodes, i.e. [BO).

In a large ITS application, a lot of tickets are processed daily, creating a massive
collection of such data. Given these primitive data an analyst should be able to answer
queries like

— (Q1: What is the total wall-clock time for each trouble ticket from its initialization
till its completion?

— (Q2: What is the total waiting time at a certain merging node?

— (3: What are the total processing time and total delay time?

— Q4: What is the wasting time due to a non approved task (a circle during the flow
or a flag over a node depicts such a situation)?

These queries will be executed over a large collection of tickets. Primitive statistics
computed at a per-ticket basis can then be combined to compute aggregate statistcs like
average completion time per type of ticket etc. Query ()1 in this example requires us to
find the longest flow between nodes) and P. During the computation, attention should
be paid to merging nodes that synchronize execution of parallel flows. In our running
example two flows reach merging node O; the fastest one waits for the other flow. For
the sample record of Figure 1 the longest flow is [QABDEBM O P] with a total time
of 68 days. In this example, query ()1 spans over the whole record. Depending on the
scenario being analyzed, a user may restrict the analysis over parts of the input records
(e.g. between two specific service points). Query ()2 calculates the longest and shortest
flow among tasks starting at spliting node B (including the cost(s) on this node) and
ending at the merging node O. The waiting time is the difference between the returned
values of the two subqueries. For our example this is 40-20=20 days. Query ()3 sums up
the measures on the edges (the delay time) and the values on the nodes (the processing
time). In this record, the processing is 64 days and delay time 24 days. Query ()4 first
needs to identify the non approved - circles on the ticket and then sum up the total time
of the flow related to these circles. For the depicted record the wasting time is related
with the cirlce B, D, E/, B and equals to 25. Obviously the cost of the second proccess
on B is not included because this value is related with the new flow from B to M.

Our framework allows us to model such queries in an intuitive manner via a decom-
position of a record into flows and the use of two basic operators we introduce next.

3 Query Rewriting and Evaluation

In order to allow composition of flows we introduce the merge-join operator (>) that
concatenates two flows f; and f5 that run in parallel when they have the same starting
and ending nodes. No merging node should be present in the two flows except the
starting or/and the ending node. For flows that are running sequentially, we use a second
operator called union operator (@) that concatenates two flows f; and fo when the
ending node of f; is the same as the starting node of f> and one of the two flows is
open-ended at the common end-point. Using the two operators the ticket depicted in
Figure 1 can be rewritten as [QP|= [QAB)® {{BDEBMO] > [BCO]} & (OP].

To compute different statistics on these measures we can use a Flow Level Aggre-
gation function F's(r) which takes as input a flow f and a record r. The function F' is
applied on the measures of the flow and returns f along with the computed aggregate.
As an example, in the record r of Figure 1, SUM|gapp)(r) returns flow [QABD)
and its duration, i.e. 25 days (denoted as [QABD):25). In case more than one flows
are given, the function is computed over the (existing) individual flows and the result is
returned along with each respective flow.

In a subsequent step a Flow Set Level Aggregation function can be used in order to
aggregate the results of the previous step and to return a unique value for a set of flows.
As an example, function M AX (SUM;qp)(r)) computes the total wall-clock time for
the ticket depicted in record r along with the longest flow. The aggregate function over
a union among two or more flows can be written also as a union among the aggregate
function results of these flows. The aggregate function over the merge join operator
among flows can be written as the aggregate function over the set of flows that were
related with the merge join. Thus, for our record r we have

MAX(SUMgapys{BDEBMOP[BCO@OF](T)) =

MAX(SUM[QAB)(T) DBsum SUM{[BDEBMO],[BCO]}(T) Dsum SUM(OP](T))
The union operator concatenates flows with common ending and starting nodes and,
additionally consolidates their measures. In this example, we need to add their mea-
sures, and this is indicated with the use of function SU M underneath the operator. In
general, the rewrites for pushing flow level aggregation (for the union and merge-join
respectively) on a flow are of the form (F',H are appropriate aggregate functions)

Fr=pop(r) = Fn(r) ©n Fp,(r) and Fi=fop5,(r) = Fp, g, (r) = {Fp, (r), Fp, (r)}

Furthermore the Flow Set Level Aggregation can be pushed inside each Flow Level
Aggregation Function and can be omitted in case the latter is executed over a sim-
ple flow. So continuing the above example we have M AX (SUMqp)(r))=[QAB) :
18 @sum [BDEBMO] : 45 ®sum (OP) : 5=[QABDEBMOP] : 68.

In order to demonstrate the effectiveness of our rewrite techniques, we synthesized
a random graph consisting of 10000 nodes and 15000 edges and generated 120 million
workflow records by selecting random subgraphs from it. The records were stored in a
relational backend using a single table storing their edges and appropriate indexes. We
created 100 random queries on these records. Half of the queries used the SUM flow
level aggregation function. The rest performed, additionally, the M AX flow set level
aggregation. We used the Pick By Size (PBS) algorithm [2] for selecting materialized
views. In Figure 2 we depict the reduction in query execution cost (compared to running
these queries without rewrites) with respect to the available space budget of the views.
The results demonstrate that even a modest materialization of 10%, via the use of our
rewrites provides substantial savings (up to 90%).

References

1. Kotidis, Y., Roussopoulos, N.: A Case for Dynamic View Management. ACM Transactions
on Database Systems 26(4) (2001)

2. Shukla, A., Deshpande, P., Naughton, J.F.: Materialized View Selection for Multidimensional
Datasets. In: VLDB. (1998) 488—-499

