
A Case for Dynamic View Management

YANNIS KOTIDIS
AT&T Labs—Research
and
NICK ROUSSOPOULOS
University of Maryland

Materialized aggregate views represent a set of redundant entities in a data warehouse that are
frequently used to accelerate On-Line Analytical Processing (OLAP). Due to the complex struc-
ture of the data warehouse and the different profiles of the users who submit queries, there
is need for tools that will automate and ease the view selection and management processes. In
this article we present DynaMat, a system that manages dynamic collections of materialized ag-
gregate views in a data warehouse. At query time, DynaMat utilizes a dedicated disk space for
storing computed aggregates that are further engaged for answering new queries. Queries are
executed independently or can be bundled within a multiquery expression. In the latter case, we
present an execution mechanism that exploits dependencies among the queries and the materi-
alized set to further optimize their execution. During updates, DynaMat reconciles the current
materialized view selection and refreshes the most beneficial subset of it within a given main-
tenance window. We show how to derive an efficient update plan with respect to the available
maintenance window, the different update policies for the views and the dependencies that exist
among them.

Categories and Subject Descriptors: H.2.7 [Database Management]: Database Administration—
data warehouse and repository; H.4.m [Information Systems Applications]: Miscellaneous

General Terms: Management

Additional Key Words and Phrases: Data cube, data warehousing, materialized views, OLAP

1. INTRODUCTION

The ability to participate or react quickly and decisively in today’s competi-
tive marketplace is critical to the success of organizations. Recent advances

An extended abstract of a preliminary version of this article was presented at the ACM SIGMOD
International Conference on Management of Data, Philadelphia, Pennsylvania, 1999.
Authors’ addresses: Y. Kotidis, AT&T Labs—Research, 180 Park Avenue, P.O. Box 971, Florham
Park, NJ 07932-0000; N. Roussopoulos, Department of Computer Science, University of Maryland,
College Park, MD 20742.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or direct commercial
advantage and that copies show this notice on the first page or initial screen of a display along with
the full citation. Copyrights for components of this worked owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,
to redistribute to lists, or to use any component of this work in other works requires prior specific
permission and/or a fee. Permission may be requested from Publications Dept., ACM, Inc., 1515
Broadway, New York, NY 10036 USA, fax +1 (212) 869-0481, or permissions@acm.org.
C© 2001 ACM 0362-5915/01/1200–0388 $5.00

ACM Transactions on Database Systems, Vol. 26, No. 4, December 2001, Pages 388–423.

A Case for Dynamic View Management • 389

in information technology have made available overwhelming amounts of in-
formation. One of the more well-known examples is WalMart’s dataset that
captures point-of-sale transactions from over 2,900 stores in six countries with
an estimate size of more than 100 terabytes. Telecom companies provide an-
other example of data rich industries. The Network Services Research Center
at AT&T Labs has collected over 60 terabytes of data from various sources (call-
detail, IP-traffic, etc.) with the number expected to grow to over 200 terabytes
within two years. Being able to manage and analyze these tremendous volumes
of enterprise-data offers a strategic advantage in the marketplace.

The data warehousing technology and tools provide an integral part of
any decision support system. In the broadest sense, a data warehouse is
a single, integrated informational store that provides stable, point-in-time
data for decision support applications. Unlike traditional database systems
that automate day-to-day operations, a data warehouse provides an environ-
ment in which an organization can evaluate and analyze its enterprise data
over time.

To ensure easy access to the information, most data warehouses adopt a mul-
tidimensional approach for representing the data. The origins of this practice
go back to PC spreadsheet programs that were extensively used by business
analysts. More advanced multidimensional access is now achieved through in-
terfaces that provide On-Line Analytical Processing (OLAP), which involves
interactive access to a wide variety of possible views of the information. OLAP
queries compute key performance metrics that enable the enterprise to bet-
ter understand its businesses. Examples of OLAP involve the computation of
multidimensional ratios (e.g., “Show me the contribution to weekly profit made
by all items sold in Maryland between May 1 and May 7”), comparisons (e.g.,
“Show sales in this fiscal period, broken down into monthly intervals, versus
last period”), and computing quantiles and statistical profiles (e.g., “Show sales
by store for all locations in the bottom 10% of sales”).

In most cases, the main cost in terms of the time consumed of executing
this type of queries is not doing the actual arithmetic, but of retrieving the data
items that affect the calculated functions. For a large dataset, executing queries
with aggregations against the detailed transaction records is prohibitively ex-
pensive, simply because of the volume of records that are being accessed. As
a result, data warehouses facilitate some form of preaggregation in order to
support complex data-intensive queries. In relational databases, materialized
derived relations (views) have long been proposed to speed up query processing.
In the data warehouse, these views store redundant, aggregated information
and are commonly referred to as summary tables [Chaudhuri and Dayal 1997].
A materialized view contains consolidated information and is typically much
smaller than the base relations used to store all detailed records. As a result,
querying the view instead of the base relations offers several orders of magni-
tude faster query speeds.

Since materialized views promise high performance improvements for ana-
lytical queries, they are a valuable component in the design of a data warehouse.
They might, for example, include high-level consolidations, which are bound to
be needed for reports or ad-hoc analyses, and which involve too much data to be

ACM Transactions on Database Systems, Vol. 26, No. 4, December 2001.

390 • Y. Kotidis and N. Roussopoulos

aggregated on the fly. If query response time is the only concern, an eager policy
of materializing all possible aggregates that might be requested will yield an ex-
cellent effect on performance since each query will require a minimum amount
of data movement and on the fly calculations. Unfortunately, this plan is not
viable, as the number of possible aggregate views is exponential in the number
of attributes (dimensions) that the dataset in analyzed on. Furthermore, much
like a cache, the views get dirty whenever the data warehouse tables are mod-
ified. Thus, one should also take into account the view maintenance overhead,
which is payable each time new data is shipped to the data warehouse and its
base tables get refreshed.

In this article, we present DynaMat [Kotidis and Roussopoulos 1999], a sys-
tem that manages dynamic collections of materialized views in a data ware-
house. At query time, DynaMat utilizes a dedicated disk space (called the View
Pool) for storing computed aggregates (called view fragments) that are fur-
ther engaged for answering new queries. The View Pool is efficiently organized
through a network of indexes connected in a lattice (hyper-cube) topology that
permits fast access to the fragments based on a partial order that we impose
among the views. This organization allows DynaMat to manipulate results of
different levels of aggregation and exploit them to answer queries that don’t
have an exact match stored in the View Pool. During updates, the material-
ized set is reconciled and the most beneficial subset of it is refreshed within
a given maintenance window. A critical performance issue is how fast we can
incorporate the updates to the views. Efficient computation of the views using
techniques like Gupta et al. [1993], Griffin and Libkin [1995], Jagadish et al.
[1995], Agrawal et al. [1996], Harinarayan et al. [1996], Mumick et al. [1997],
and Zhao et al. [1997] and/or bulk incremental updates [O’Neil et al. 1996;
Roussopoulos et al. 1997; Jermaine et al. 1999] enhances the overall perfor-
mance of the system. In DynaMat, any of these techniques can be applied. Our
update algorithm identifies dependencies among the views in order to share
the refresh cost among multiple aggregates and considers both incremental
and recomputation techniques.

We believe that the main contribution of DynaMat is the idea of con-
tinuous view management that results in better utilization of the avail-
able system resources. DynaMat offers a self-tunable solution that relieves
the data warehouse administrator from having to monitor and calibrate
the system constantly. In our experiments, we compare DynaMat against
a system that is given all queries in advance and the precomputed opti-
mal static selection of views for them. These experiments show that dy-
namic view management outperforms the optimal static system and thus
any suboptimal static algorithm proposed in the literature. The reason is
that DynaMat, at any point in time, utilizes both the available disk space
and maintenance window, while a static system is bound to fully utilize one
of them.

The rest of the article is organized as follows: in Section 2, we discuss some
implications of the view selection problem and make a case for a dynamic
approach. Section 3 gives an overview of the basic functionality of DynaMat
and presents an abstract interface that allows easy integration into existing

ACM Transactions on Database Systems, Vol. 26, No. 4, December 2001.

A Case for Dynamic View Management • 391

systems. In Section 4, we describe how the View Pool is organized to handle
efficiently both ad-hoc and precompiled queries. In Section 5, we show how to
efficiently update the View Pool, within a given maintenance window. Section 6
contains the experiments while, in Section 7, we comment on related work.
Finally, in Section 8, we draw the conclusions.

2. A CASE FOR DYNAMIC VIEW MANAGEMENT

Disk space and creation/maintenance overhead will not allow us to materialize
all interesting aggregate views in the data warehouse. The view selection
problem consists of finding those views that minimize query response time
[Roussopoulos 1982; Harinarayan et al. 1996; Baralis et al. 1997; Gupta 1997;
Gupta et al. 1997; Shukla et al. 1998; Smith et al. 1998; Karloff and Mihail
1999] under a resource constraint, typically disk space. Most view selection
algorithms also take into account the query workload (e.g., by using frequency
counts for each view) and compute a set of views that fit in the available disk
space and best optimize query performance.

This static selection of views, however, contradicts the dynamic nature of
decision support analysis. In many cases, users submit their queries inter-
actively, that is, they do not have a precompiled set of queries in mind, but
rather they are making up their queries on the way, based on the feedback
they get from the system. This type of analysis often results in querying the
dataset in surprising ways that are not best supported from the materialized
views selected by the previous algorithms. Furthermore, as query patterns and
data trends change over time and as the data warehouse is evolving with re-
spect to new business requirements that continuously emerge, even the most
fine-tuned selection of views that we might have obtained at some point will
very quickly become outdated. This means that the data warehouse admin-
istrator should monitor the query pattern and periodically “recalibrate” the
materialized views by rerunning these algorithms. This task for a complex
data warehouse with many users of different profiles is rather complicated
and time consuming. In addition, the maintenance window, the disk space re-
strictions and other important operational parameters of the data warehouse
may also change. For example, an unexpected large volume of updates will
throw the selected set of views as not updateable unless some of these views
are discarded.

Another inherent drawback of a static view selection is that the system has
no way of tuning a wrong selection by reusing results of queries that couldn’t be
answered by the materialized set. Notice that, although OLAP queries take an
enormous amount of disk I/O and CPU processing time to be completed, their
output is often quite small. Query “Show the total volume of sales for the last
5 years” is a fine example of that. Processing this query might take hours of
scanning and aggregating vast tables of detailed records, while the result is a
single value that can be easily “cached” for future reuse. Moreover, during rollup
operations [Gray et al. 1996], the data is examined at a progressively coarser
granularity and future queries are likely to be computable from previous results
without accessing the base tables at all.

ACM Transactions on Database Systems, Vol. 26, No. 4, December 2001.

392 • Y. Kotidis and N. Roussopoulos

We believe that selecting a view set to materialize is just the tip of the ice-
berg. Clearly, query performance is improved as more views are materialized.1

With the cost of disk volume constantly dropping, disk storage constraint may
no longer be the limiting factor in view selection but the time window to refresh
the materialized set after updating the detailed records. More materialization
implies a larger refresh time. This update window is the major data warehouse
parameter, constraining overmaterialization. Some view selection algorithms
[Gupta 1997; Baralis et al. 1997] take into account the maintenance cost of the
views and try to minimize both query-response time and the maintenance over-
head under a given space restriction. Theodoratos and Sellis [1997] define the
data warehouse configuration problem as a state-space optimization problem,
where the maintenance cost of the views needs to be minimized, while all the
queries can be answered by the selected views. The trade-off between space
of precomputed results and maintenance time is also discussed in Do et al.
[1998]. However, they do not consider the dynamic nature of the view selection
problem, nor they propose a solution that can adapt on the fly to changes in
the workload.

Our premise is that a result is a terrible thing to waste and that its gen-
eration cost should be amortized over multiple uses of the result. Our main
motivation comes from earlier work on caching query results in the ADMS±
architecture [Roussopoulos and Kang 1986; Delis and Roussopoulos 1992], the
work on prolonging their useful life through incremental updates [Roussopoulos
1991] and their reuse in the ADMS optimizer [Chen and Roussopoulos 1994].
This is a major departure from the static paradigm of preselecting a set of views
to be materialized and running all queries against this static set.

3. FUNCTIONALITY OF DYNAMAT AND API CALLS

We envision DynaMat as a self-tunable view management system, tightly cou-
pled with the rest of the data warehouse architecture. DynaMat manages a
dedicated disk space that we call View Pool (V), in which previously computed
aggregates are stored. We use the term, view fragments or simply fragments,
when referring to the data that is materialized in V. For faster access to these
fragments and bookkeeping, a fragment lookup directory (called Directory) is
maintained, as shown in Figure 1.

We distinguish two operational phases of the system. The first is the “online”
phase during which DynaMat answers queries posed through a queryPool(q)
API call. A description of the queries accepted by this interface is in Section 4.
DynaMat determines whether or not stored fragments can be exploited to an-
swer a new query by comparing the cost of answering the query from a fragment
against the cost of running the same query against the detailed records in the
data warehouse. Both costs are estimated by probing the query optimizer. Our
model exploits dependencies among materialized aggregates of different levels
of aggregation. This means that a more detailed aggregate is used to answer

1There are some exceptions due to the effect of thrashing in memory buffers, that we ignore in this
discussion.

ACM Transactions on Database Systems, Vol. 26, No. 4, December 2001.

A Case for Dynamic View Management • 393

Fig. 1. DynaMat Overview.

queries of coarser granularity like, for instance, when computing the monthly
sales out of the available daily aggregates. In the general case, more than one
fragments might be used for computing the answer to a new query. Such frag-
ments are quickly discovered using the Directory structure that is described in
detail in Section 4.1.

For a dynamic system, an important functionality is the admission of new
aggregates in the View Pool. Whenever a new fragment f is computed as a
result of a query, f is passed back to DynaMat through the storePool(f) call.
In a traditional caching system, a new result is always offered storage in the
cache in order to exploit spatial—temporal locality in the user access pattern.
For most applications, this is desirable if all cached objects have the same cost.
However, this is not the case for materialized aggregates whose recomputation
cost varies dramatically. Scheuermann et al. [1996] introduced an admission
schema specific for data warehousing workload. In DynaMat, we extend these
techniques, as described in Section 5.3.

The second phase of DynaMat is the update phase, during which updates re-
ceived from the data sources get stored in the data warehouse and the fragments
in the View Pool get refreshed. In DynaMat, we assume that the update phase
is “offline” and queries are not permitted during maintenance. The maximum
length W of the update process is specified by the administrator. Updates are
introduced through an updatePool(d) function call, which defines a data source
d that holds the update increment. This can be a log-file, a regular table, or a
virtual view over multiple tables. Different update policies can be implemented,
depending on the types of updates, the properties of the data sources and the ag-
gregate functions that are computed by the fragments. From DynaMat’s point
of view, the goal is to select and update the most useful fragments within the
update time constraint. Notice that this is not equivalent to updating as many
fragments as possible, although often both yield the same result.

4. AGGREGATE AWARE VIEW POOL ORGANIZATION

A multidimensional data warehouse (MDW) is a repository in which data is
organized along a set of dimensions D={d1, d2, . . . , dn}. A possible way to
design a MDW is the star-schema [Kimball 1996] in which, for each dimension,
there is a dimension table Di that has di as its primary key and also uses a fact
table F that correlates the information stored in these tables through the

ACM Transactions on Database Systems, Vol. 26, No. 4, December 2001.

394 • Y. Kotidis and N. Roussopoulos

Fig. 2. The data cube lattice for D = {product, store, customer}.

foreign keys d1, . . . , dn. The data cube operator [Gray et al. 1996] performs the
computation of one or more aggregate functions for all possible combinations of
grouping attributes, which are actually attributes selected from the dimension
tables Di.

As a running example, we use a simplified basket-dataset in which customers
are buying products from various stores. This schema has three dimensions
namely: customer, product, store and a single numeric measure sales that stores
the amount of dollars spent in each transaction. A relational implementation
uses the following fact table for organizing atomic transactions:

F (product, store, customer, sales).

Figure 2 shows a lattice representation [Harinarayan et al. 1996] of the data
cube for D={product, store, customer}. Each node in the lattice represents a
view that aggregates data over the attributes present in that node; for exam-
ple, (product, store) is an aggregate view over the product and store grouping
attributes. For simplicity in the notation, in this presentation we do not consider
the case where grouping is done over attributes other than the dimension keys
di. However, our framework is still applicable in the presence of more grouping
attributes and hierarchies, using the extensions of Harinarayan et al. [1996]
for the lattice.

The lattice is frequently used by view selection algorithms [Harinarayan
et al. 1996; Gupta et al. 1997; Shukla et al. 1998] because it captures the com-
putational dependencies among the views of the data cube. In Figure 2, we
show only dependencies between adjacent views and not those in the transitive
closure of this lattice. For example, view (product) can be computed from view
(product, store), while view (product, store, customer) can be used to derive any
other view.

In this context, we assume that the data warehouse workload is a collection of
Multidimensional Range queries (MR-queries) each of which can be visualized
as a hyperplane in the data cube space using an n-dimensional “vector” Eq:

Eq = {r1, r2, . . . , rn}, (1)

ACM Transactions on Database Systems, Vol. 26, No. 4, December 2001.

A Case for Dynamic View Management • 395

where ri is a range in dimension’s di domain. We restrict each range to be one
of the following:

—a full range: ri = (mindi , maxdi), where mindi and maxdi are the minimum and
maximum values for key di.

—a single value for di

—an empty range that denotes a dimension that is not present in the query.

Example 4.1. Let product and store be integer keys in the range: 1≤
product ≤ 1000 and 1 ≤ store ≤ 200. Vector Eq = {50, (1, 200), ()} describes the
following SQL query:2

select product, store, sum(sales)
from F
where product = 50
group by product, store

The empty range for the customer dimension denotes that the measure is
aggregated over all values of this dimension.

If, in this example, the grouping was done on attributes other than the di-
mension keys, then the actual SQL description would include joins between
some dimension tables and the fact table. This type of queries are often called
slice queries [Gupta et al. 1997; Baralis et al. 1997; Kotidis and Roussopoulos
1998]. We prefer the multidimensional notation over the SQL description be-
cause it describes the workload in the data cube space independently of the
actual implementation of the MDW.

The same notation permits us to represent the materialized results of MR-
queries, which we call multidimensional range fragments (MRFs). Given a MR-
query q and a cost model for accessing the stored MRFs, we want to find the
“best” subset of them in V to answer q. Based on the definition of MRFs, we
argue that it doesn’t pay to try to combine multiple materialized results to
answer q. With high probability, q is best computable out of a single fragment
f or not computable at all. We illustrate this with the following example:

Example 4.2. Consider the previous query Eq={50, (1, 200), ()}. Figure 3 de-
scribes the content of the View Pool in the 2-dimensional subspace of (product,
store) view. The light-gray areas represent results that are stored in the Pool in
the form of MRFs while the dark-gray region depicts the values requested by the
query. In this example, no single MRF in the View Pool contains all values in q.
A stored fragment that partially computes the result is of the form {50, s id} or
{(1, 1000), s id}, where s id is some store value. In order to answer the query,
there should be at least one such fragment for all values of s id between 1 and
200. Even if such a combination exists, it is highly unlikely that querying 200
different fragments to get the complete result provides a cost-effective way to
answer the query.

2The sum() function is picked as a representative of an interesting aggregation of the measure.

ACM Transactions on Database Systems, Vol. 26, No. 4, December 2001.

396 • Y. Kotidis and N. Roussopoulos

Fig. 3. Querying stored MRFs.

MRFs provide a slightly coarser grain of materialization if we compare them
with views that allow arbitrary ranges for the attributes. However, if we allow
such fragments to be stored in the View Pool, then the probability that a single
stored fragment can solely be used to answer a new query is rather low, espe-
cially if most of the materialized results are small, that is, they correspond to
small areas in the n-dimensional space. This means that we will need to use
combinations of stored fragments and perform costly duplicate eliminations
to compute an answer for a given query. Even though the multidimensional
description of the fragments allows us to check for query containment [Yang
and Larson 1987; Levy et al. 1995; Abiteboul and Duschka 1998; Kolaitis and
Vardi 1998] quickly, in the general case, where many fragments overlap some
portion of the query, there is a large number of combinations that need to be
checked for finding the most efficient way to answer the query. A possible way
to avoid this overhead is to organize the View Pool in a chunk-based schema as
described in Deshpande et al. [1998]. This method partitions the cube space into
equally sized n-dimensional “chunks” that conceptually define the finer block
of data addressable by the system. A user query is also transformed to a set of
chunks that need to be satisfied from the View Pool. Although this approach
works well for managing the View Pool, it has the drawback that, in order to
efficiently compute missing chunks in the data warehouse, the base tables have
to be organized in a chunk-based format too. This requirement makes the ap-
proach impractical for commercial systems. In DynaMat, on the other hand, we
do not make any assumptions on the structure of the data warehouse or even
on how fragments get actually stored in the View Pool.

When managing the View Pool, an important consideration is the mainte-
nance cost of the fragments. In most cases, updating fewer, larger fragments
of views (as in a MRF-pool) is preferable as opposed to updating many smaller
ones. We denote the number of fragments in the View Pool as |V|. In Section 5.4,
we show that the complexity of computing an update plan for the stored data
is quadratic in |V|, making the MRF approach more scalable.

ACM Transactions on Database Systems, Vol. 26, No. 4, December 2001.

A Case for Dynamic View Management • 397

4.1 Dynamic Query Processing

When a MR-query q is posted through the queryPool() API call, we search for
candidate fragments that can be used to answer q. The following is easy to
prove:

LEMMA 4.3. Given a MRF f and a MR-query q, f answers q iff for every
nonempty range ri of the query, the fragment stores an equal or extended range
and for every empty range ri = () the fragment’s corresponding range is either
empty or spans the whole domain of dimension i.3

DynaMat maintains a look-up structure that we call the Directory (see
Figure 1), for finding candidate fragments for a new query. The Directory is
designed to prune the search space down to a subset of potentially useful frag-
ments from the View Pool. It is actually a set of smaller indices connected in the
lattice topology of Figure 2. Each node has a dedicated index that keeps track of
all fragments of the corresponding view that are stored in the View Pool. In our
initial designs we indexed the fragments as objects in a k-dimensional (k ≤ n)
subspace, using R-trees. Each fragment f has exactly one entry that contains
the following info:

—A hyperplane Ef index with all k ≤ n nonempty ranges ri in the fragment’s
vector Ef ={r1, . . . , rn}. For example, the result f of query Eq={50, (1, 200), ()}
has an entry Ef index={(50, 50), (1, 200)}. Ef index is used as a key in one of the
R-trees.

—Statistics (e.g., number of accesses, time of creation, time of last access)
—The father of f (explained below).

When a query q arrives, we scan the corresponding directory for each view
that contains a superset of the dimensions present in the query. For each index,
we create an appropriate search hyperrectangle that is used to retrieve all
fragments f that answer q. This is illustrated in the following example:

Example 4.4. Let Eq={(1, 1000), (), Smith} be the query of interest. The set
of dimensions with nonempty ranges in q is Dq ={product, customer}. We there-
fore need to scan the View Pool for fragments of views (product, customer)
and (product, store, customer). For the first view, we search the corresponding
2-dimensional R-tree index using rectangle {(1, 1000), (Smith, Smith)}. Figure 4
depicts a snapshot of this R-tree as well as the search area. The shaded areas
denote MRFs of that view that are materialized in the View Pool. Since no frag-
ment is found, based on the dependencies defined in the lattice, we also check
view (product, store, customer) for candidate fragments. For this view, we “ex-
pand” the undefined in q store dimension and search the corresponding R-tree
using rectangle {(1, 1000), (1, 200), (Smith, Smith)}. To answer the query from
a fragment of this view we need to “collapse” the store column and aggregate
the measure(s) over the product, customer dimensions.

3In the latter case, we have to perform an additional aggregation to compute the result, as will be
explained.

ACM Transactions on Database Systems, Vol. 26, No. 4, December 2001.

398 • Y. Kotidis and N. Roussopoulos

Fig. 4. Directory for view (product, customer).

If a stored fragment f exactly matches the query (i.e., Ef ≡ Eq), it is retrieved
and returned to the user. If no exact match exists, we select the “best” fragment
f from the View Pool that answers q, assuming that at least one can be found.
Let function c(q, f) denote the expected cost of querying a candidate fragment
f for the values that are requested by q. If, for example, the fragments are
stored as flat files, we estimate c(q, f)= size(f), that is, the size of the fragment.
Another possibility is to implement the fragments as relational tables with
additional indices. In that case, c(q, f) is determined by probing the optimizer.
We also evaluate the expected cost of running the query at the data warehouse
denoted as c(q, DW). If a fragment f is found that can answer the query more
effectively than the data warehouse, it is retrieved and used to compute the
query. Let fq be the materialized result of q. The fragment that was used to
compute fq is called the father of fq and is denoted as f́q . If no fragment answers
q with cost less than c(q, DW), the query is computed from the base tables of
the data warehouse. In both cases, the result fq is passed back to DynaMat
through the storePool() API call and considered for admission in the View Pool.

As the necessary information stored for each fragment is just a few bytes
long and the number of MRFs in the View Pool is in the order of thousands, we
can safely assume that in all cases the Directory will be memory resident. Our
experiments validate this assumption and indicate that the look-up cost in this
case is negligible. For our current prototype, we are using linked lists for storing
the fragment information for each node of the Directory, as we found them to
perform sufficiently. For all of our experiments, the look-up time for a new query
was in the order of microseconds, showing that the lattice organization of the
Directory performs well.

4.2 Optimizing Precompiled Queries

In many cases, OLAP-style analysis gives rise to simultaneous related queries.
Examples can be found in report-generating applications where a precompiled
set of aggregates needs to be computed out of the raw data. Similarly many
data-mining applications have an a-priori knowledge of the queries that they

ACM Transactions on Database Systems, Vol. 26, No. 4, December 2001.

A Case for Dynamic View Management • 399

want to be executed. Another interesting example is when users interact with
the data warehouse by sending batches of queries, disconnect for a while, and,
after a reasonable amount of time, come back to find the results. These cases
present a challenge for DynaMat to gain by optimizing the execution of these
queries as a unit.

For better formulating the problem, in this section we treat the View Pool
as a large disk-resident cache of materialized fragments (MRFs). Given a
stream of precompiled queries that we want to execute, the optimization prob-
lem that we define consists of finding: (1) the best way to answer the queries
from the View Pool and (2) the best execution order along with a replace-
ment and materialization policy for the results of the queries, given a limited
disk space.

4.2.1 An Extended Multiquery Interface. For the discussion in this sec-
tion, the queryPool() interface call of DynaMat is extended to allow users to
express multiple, possibly related, queries within a single Multi-Fragment
Expression (MFX). An MFX is simply a multiset of MR-queries against the
View Pool:

MFX = {q1, q2, . . . , qk}.
We assume that the user implies no order in the execution of the queries

qi. Similarly, we make no assumption that queries within the same MFX are
necessarily related. Intuitively, a MFX provides the means to express multiple
queries within the same unit. Compared to a sequential or concurrent execution
of the queries q1, . . . , qk , the MFX interface allows DynaMat to better explore
possible dependencies among them as is illustrated in the following example:

Example 4.5. Assume the following two queries on our basket-dataset:

q1 : select product, store, sum(sales)

from F

group by product, store

q2 : select product, store, customer, sum(sales)

from F

group by product, store, customer

Both queries are expected to be costly to execute, since they both lack of
predicates that would reduce the portion of base data that has to be accessed to
compute the aggregates. Suppose the user issues query q1 before q2. If they are
executed in a First-Come-First-Served manner, each would require a full scan
of the base table F to be computed and a large volume of disk space to hold the
result in the View Pool. If, on the other hand, the system had the knowledge
that q2 follows query q1 it could postpone execution of q1 until q2 has been
processed and then use the result of q2 from the View Pool for answering query
q1. In this way, table F will only be scanned once. In addition, assuming a tight
space bound that doesn’t permit both results from q1 and q2 to be stored in the
View Pool, the execution order q1→q2 will unnecessarily materialize q1 in the
View Pool and then probably replace it with the larger result q2, as shown in

ACM Transactions on Database Systems, Vol. 26, No. 4, December 2001.

400 • Y. Kotidis and N. Roussopoulos

Fig. 5. Order of execution and time/space tradeoffs.

Fig. 6. Computed FDTs for a sample MFX expression.

Figure 5. The alternative execution order q2→q1 on the other hand, avoids this
extra materialization.

4.2.2 Processing an MFX. Processing an MFX in DynaMat is a two-step
approach. In the first, we identify dependencies among the queries in the ex-
pression and the materialized fragments in the View Pool. For query qi in the
MFX, we compute the following costs:

(1) the cost c(qi, f j) of answering qi from the result f j of another query qj
(j 6= i) in the expression, assuming this result has been materialized as a
fragment f j . If more than one query can be used, we pick the one with the
smallest cost.

(2) the cost c(qi, fpool) of computing the query from the best candidate fpool
in the View Pool as described in Section 4.1.

(3) the cost c(qi, DW) of executing the query at the data warehouse.

For each query, the alternative with the smallest estimated cost is picked. If
a query is to be answered from a fragment in the View Pool, we create a pointer
from the query to that fragment. Similarly, if another query’s result is to be
used, we create a pointer from qi to qj . These pointers encode the computed
dependencies among the queries and the fragments in the View Pool. Figure 6
shows these dependencies for a sample MFX. The small cubes in the figure
represent materialized fragments in the View Pool, while the queries are de-
picted as circles. The arrows between the queries and the fragments denote the
computed pointers and show the most cost-effective way to execute the queries.

ACM Transactions on Database Systems, Vol. 26, No. 4, December 2001.

A Case for Dynamic View Management • 401

This visualization results in a forest of inverted trees that we call Fragment
Dependency Trees (FDTs). Each one of these trees links queries from the MFX
that are related. Some FDTs are linked to a fragment in the View Pool meaning
that the root query of the FDT can be answered from the View Pool. The re-
maining set of trees contain related queries that are not computable from any
fragment in the View Pool.

After this phase is completed, we have encoded, in the resulting trees, the
best way to answer each query in the MFX. The second phase of processing
the MFX is to actually execute and compute the given queries. Each one of the
queries is executed individually, taking into account the space restrictions of the
system as described in Section 5.3, starting with FDTs whose roots are linked to
some fragment in the View Pool. The intuition is that we don’t want to postpone
the execution of these queries because the pointed fragments might get evicted
as new results are constantly introduced in the View Pool. Within a single FDT,
queries are executed in a depth-first fashion. This is demonstrated in Figure 6
where the execution order of the queries in the leftmost FDT is shown. The
next FDT to execute from that figure is C, while FDT B is executed last since
none of its queries uses the View Pool. For that FDT, we want to make sure that
the root of the tree remains in the View Pool until the whole tree is processed.
DynaMat pins the result of the root-query in the View Pool, assuming of course
that its result has actually been admitted, see Section 5.3. This guarantees that
all other queries in the same tree will be handled without accessing the data
warehouse because they all can be answered from the materialized result of
the root query. For FDTs whose root query is linked to a fragment in the View
Pool, this precaution step is not necessary because that fragment (or any of its
parents) can be used to answer every query in the tree in case that the root or
an intermediate node gets evicted from the View Pool during execution.

5. MANAGEMENT OF THE VIEW POOL

5.1 The Time and Space Constraints

During the “online” phase of the data warehouse, results from incoming queries
are added to the View Pool. If the View Pool had unlimited disk space, the size of
the materialized data would grow monotonically overtime. During an “update”
phase ui, some of the materialized fragments may not be updateable within
the time constraint W and thus will be evicted from the View Pool. This is
the update time bound case shown in Figure 7 with the size of the View Pool
increasing between the two update phases u1 and u2. The two local minimums
correspond to the amount of materialized data that can be updated within W
and the local maximums to the View Pool size at the time of the updates.

The space bound case is when the size of the View Pool is the constraining
factor and not W . In this case, when the View Pool becomes full, we have to use
a replacement policy. This can vary from simply not admitting more results in
the View Pool, to known techniques like LRU, FIFO, etc., or to using heuristics
for deciding whether or not a new result is more beneficial for the system than
an older one. Figure 8 shows the variations in the View Pool size in this case.

ACM Transactions on Database Systems, Vol. 26, No. 4, December 2001.

402 • Y. Kotidis and N. Roussopoulos

Fig. 7. The Time Bound case.

Fig. 8. The Space Bound case.

Since we assumed a sufficiently large update window W , the stored fragments
are always updateable and the content of the View Pool is now controlled by
the replacement policy.

Depending on the workload, the disk space and the update window, the sys-
tem may in some cases behave as time or space bound, or both. In such cases,
fragments are evicted from the View Pool, either because there is no more space
or they can not be updated within the update window, as shown in Figure 9.

5.2 Defining a Goodness Metric

In the previous section, we saw that fragments are evicted from the View Pool
either because there is not enough space or because they can not be maintained
within the given update window, or both. Management of the fragments in these
cases can be modeled as a caching problem, in which the cache resides not in
main memory but in the disk. An important difference with traditional caching
is that the fragments do not have the same size or the same recomputation
costs. This is demonstrated through the following example:

Example 5.1. We assume that V contains only two fragments shown in
Figure 10 that are the results of queries q1 and q2 of Example 4.5. Fragment
f1 is a higher level aggregation on dimensions product and customer only and

ACM Transactions on Database Systems, Vol. 26, No. 4, December 2001.

A Case for Dynamic View Management • 403

Fig. 9. The Space & Time Bound case.

Fig. 10. Father-child relationship among two fragments.

therefore requires less space compared to f2. What makes this example in-
teresting is that the two fragments are not independent. The father pointer
between them denotes that as long as fragment f2 is in the View Pool, f1 can
be recomputed from it without accessing the detailed records. As a result, we
expect the recomputation cost of f1, in case it gets evicted and query q1 is seen
again, to be relatively small. However, if f2 gets evicted, now q1 is only com-
putable through f1 and the recomputation cost of f1 gets increased. Because
of such dependencies among the fragments, their recomputation costs change
over time and the management unit of the View Pool should trace and record
these changes.

In order to manage the View Pool we derive a goodness metric for choosing
which of the stored fragments we prefer. This metric is used both in the online
and the offline phases. Each time DynaMat reaches the space or time bounds,
we use the goodness metric for replacing MRFs. There can be many criteria
to define this metric. Among those we tested, the following four showed the
best results:

—The time that the fragment was last accessed by the system to handle a query:

goodness(f)= tlast access(f).

This information is kept in the Directory. Using this time-stamp as a goodness
value, results in a Least Recently Used (LRU) type of replacement.

ACM Transactions on Database Systems, Vol. 26, No. 4, December 2001.

404 • Y. Kotidis and N. Roussopoulos

—The frequency freq(f) of accessing the fragment at query time:

goodness(f)= freq(f).

freq(f) is computed using the statistics kept in the Directory and results in
a Least Frequently Used (LFU) replacement policy.

—The raw size, size(f), of the result, measured in disk pages:

goodness(f)= size(f).

The intuition behind this approach is that larger fragments are more likely
to be useful for a query. An additional benefit of keeping larger results in
the View Pool is that |V| gets smaller, resulting in faster look-ups using the
Directory and less overhead while updating the View Pool. We refer to this
case as the Smaller Fragment First (SFF) replacement policy.

—The expected penalty rate of recomputing the fragment, if it is evicted, nor-
malized by its actual size:

goodness(f)= accesses(f) ∗ c(f)
staleness(f) ∗ size(f)

.

accesses(f) is the total number of accesses to the fragment at query time,
staleness(f) is the time since the last access to f and c(f) is the cost of
recomputing f for a future query if it gets evicted. We are using as an es-
timate of c(f) the cost of recomputing the fragment from its father, which
is computable in constant time. This metric looks similar to the one used
by Scheuermann et al. [1996] for their cache replacement and admission
policy. An important difference is that we estimate the cost c(f) dynamically
based on the content of the View Pool (i.e., the current father of the fragment).
In Scheuermann et al. [1996], the cost assigned to a cached result is static
and corresponds to the cost of rerunning the query at the data warehouse.
This may lead to assigning large recomputation costs to fragments that can
be easily recomputed from the data in the View Pool, as in Figure 10. We
refer to this case as the Smaller Penalty First (SPF).

In the remaining part of this section, we describe how the goodness metric
is used to control the content of the View Pool.

5.3 On-Line Management at Query Time

As long as there is enough space in the View Pool, results from incoming queries
are always stored in V. When the View Pool gets full, we use the replace algo-
rithm of Figure 11. The algorithm takes as input the current state of the View
Pool V, the new computed result f and the space restriction S. A stored frag-
ment is considered for eviction only if its goodness is less than that of the new
result. At a first step, a set Fevicted of such fragments with the smaller goodness
values is constructed. If, during this process, we cannot find candidate victims
the search is aborted and the new result is denied storage in the View Pool.

ACM Transactions on Database Systems, Vol. 26, No. 4, December 2001.

A Case for Dynamic View Management • 405

Fig. 11. The replace algorithm.

When a fragment fvictim is evicted the algorithm updates the father pointer of
all fragments that point to fvictim. In Section 5.4, we discuss the maintenance
of the father pointers.

5.4 Off-Line Management During Updates

When the data sources are updated, all data stored in the data warehouse and
therefore the fragments in the View Pool, have to be updated too. Different
update policies can be implemented, depending on the types of updates, the
properties of the data sources and the aggregate functions that are computed by
the views. Several methods have been proposed [Agrawal et al. 1996; Deshpande
et al. 1996; Sarawagi et al. 1996; Ross and Srivastava 1997; Zhao et al. 1997] for
fast (re)-computation of data cube aggregates. On the other hand, incremental
maintenance algorithms have been presented [Gupta et al. 1993; Griffin and
Libkin 1995; Jagadish et al. 1995; Mumick et al. 1997; Roussopoulos et al. 1997]
that handle grouping and aggregation queries.

For our framework, we assume that the sources provide the differentials
(called deltas) of the base data, or at least the log files are available. If this is
the case, then an incremental update policy can be used to refresh the View Pool.
In this scenario, we assume that all the aggregate functions that we compute
are self-maintainable [Mumick et al. 1997] with respect to the updates that we
have. This means that the new value for each function can be computed from
the old value and the deltas, thus allowing incremental updates.

5.4.1 Computing an Initial Update Plan. Given a View Pool with several
thousand fragments, our goal is to derive an update plan for refreshing the
most “important” of them within a selected update window W . Retrieving
the appropriate records from the deltas for each fragment is unrealistic if the
deltas are not indexed somehow. In initial tests, we saw that the time spent
on identifying the necessary deltas for each fragment is the dominant factor.

ACM Transactions on Database Systems, Vol. 26, No. 4, December 2001.

406 • Y. Kotidis and N. Roussopoulos

For this reason, we extract, in a preprocessing step, all the necessary deltas
and store them in a separate view dV materialized as a Cubetree [Kotidis and
Roussopoulos 1998], which provides efficient indexing for the deltas against
multidimensional range queries. The overhead of loading a Cubetree with the
deltas is practically negligible4 compared to the benefit of having the deltas fully
indexed. Assume that lowdi and hidi are the minimum and maximum values for
dimension di that are stored in all fragments in the View Pool. These statistics
are easily computed from the Directory. View dV includes all deltas within
the hyperplane:

EdV = {(lowd1 , hid1

)
, . . . ,

(
lowdn , hidn

)}
.

For each fragment f in V, there are three alternative ways of applying the
updates:

—Incremental updates from dV: We query dV to get the records that are
necessary for refreshing f and then update the fragment incrementally. We
denote the cost of this operation as UCI (f). It consists of the cost of running
the MR-query Ef against dV: c(f , dV) and the cost of updating f incrementally
from this result.

—Recompute from another fragment: If the fragment was originally computed
out of another result f́ (i.e., its father), we estimate the cost of recomputing f
from f́ , after f́ is updated. The cost of computing f from its father is denoted
as UCR(f) and includes the cost c(f , f́) of running MR-query Ef against f́,
plus the cost of materializing the result.

—Recompute from the data warehouse: We can recompute the fragment from
the updated data warehouse. The cost in this case is c(f , DW) plus the cost
of materializing the updated result.

The third alternative is, in most cases, much slower that the other two and is
not further considered in the analysis. However, for sources that do not provide
their differentials during updates or for aggregate functions that are not self-
maintenable with respect to the deltas, we should consider this option. The
system computes the costs for the first two alternatives and picks the minimum
one, denoted as UC(f) for each fragment. Obviously, this plan is not necessarily
the best one. There is always the possibility that another result f1 has been
added in the View Pool after f was materialized. Since the selection of the
father of f was done before f1 was around, as explained in Section 4.1, this
plan does not consider recomputing f from f1. An eager maintenance policy of
the father pointers would be to refine them whenever necessary, for example,
set father(f)= f1, if it is more cost effective to compute f from f1 than from its
current father f́. We have decided to be sloppy and not refine the father pointers
based on experiments that showed negligible differences between the lazy and
the eager policy. The noticeable benefit is that the lazy approach reduces the
worst-case complexity of the replace and the refinePlan algorithm that is

4We have achieved loading rates that exceed 33GB/hour using a SUN Ultra 60 workstation with
two Seagate Cheetah disks.

ACM Transactions on Database Systems, Vol. 26, No. 4, December 2001.

A Case for Dynamic View Management • 407

Fig. 12. Forwarding the father pointers.

discussed in the next section from O(|V|3) down-to O(|V|2), thus making the
system able to scale for large number of fragments.

By the end of this phase, the system has computed an initial update plan,
which directs the most cost-effective way to update each one of the fragments
using one of the two alternatives, that is, incrementally from dV or by recom-
putation from another fragment.

5.4.2 Computing a Time-bound Update Plan. The total update cost of the
View Pool is UC(V)= ∑ f∈V UC(f). If this cost is greater than the given update
window W , we have to discard a portion of V and not include it in the new
updated version of the View Pool. Suppose that we choose to evict some fragment
f . If f is the father of another fragment fchild that is to be recomputed from
f in the initial update plan, then the reduction in the update cost of the View
Pool is less than UC(f), since the update cost of fchild increases. For the lazy
approach of maintaining the father pointer we forward the father pointer for
fchild: set father(fchild)= father(f). We now have to check if recomputing fchild
from father(f) is still a better choice than incrementally updating fchild from
d V . Let UCnew(fchild) and UCold(fchild) be the new and old update cost for fchild
based on this process. The reduction in the overall update cost of the View Pool
if we evict fragment f is:

Udelta(f) = UC(f)−
∑

fchild∈V:

father(fchild)=f

(UCnew(fchild)−UCold(fchild)). (2)

Example 5.2. Figure 12 shows how to apply formula (2) in a sample case
where a fragment f with update cost 100 time units is evicted. This fragment
has two children, namely f1 and f2 that are scheduled to be recomputed from
f , since this is cheaper than updating them incrementally. The initial costs for
f1 and f2 are:5

—Incremental Updates from dV : UCI (f1)= 70, UCI (f2)= 45
—Recompute from another fragment: UCR(f1)=UCR(f2)= 20

5The recomputation and incremental update costs are shown next to the arrows.

ACM Transactions on Database Systems, Vol. 26, No. 4, December 2001.

408 • Y. Kotidis and N. Roussopoulos

Fig. 13. The refinePlan algorithm.

If fragment f gets evicted, we forward the father pointers of both children
and then test if recomputing them from their “grandfather” is still a better
choice that the incremental approach. For f1, this is true but not for child f2
whose incremental cost is just 45 time units. Therefore, the total reduction of
the update cost of the View Pool will not be 100 but just 45 time units since the
update cost of f1 and f2 combined is increased by 55 time units.

If the initial plan is not feasible, we discard at a first step all fragments
whose update cost UC(f) is greater than the window W . If we still exceed the
time constraint, we evict more fragments from the View Pool. In this process,
there is no point in evicting fragments whose Udelta value is less or equal to
zero. Having such fragments in the View Pool reduces the total update cost
because all their children are efficiently updated from them. For the remaining
fragments, we use the goodness metric to select candidates for eviction until
the remaining set is updateable within the given window W .

The refinePlan algorithm in Figure 13 starts with the initial update plan
and evicts fragments until the View Pool is updateable. At a first step, the
algorithm discards all fragments whose estimated update cost is larger that
W and forwards the father pointer of their children, as described above. Since
a fragment has at most one father, the number of forwarding steps required
for k1 evictions is O(k1|V|), in the worst case. If the remaining set is still not
feasible, then, in the second loop, we start evicting results according to their
goodness value. If this metric is computed in constant time, the cost for k2 more

ACM Transactions on Database Systems, Vol. 26, No. 4, December 2001.

A Case for Dynamic View Management • 409

evictions is O(k2 ∗ |V| ∗O(1))+O(k2|V|)6=O(k2|V|). In the extreme case, where
W is too small so that only a few fragments can be updated, this leads to an
O(|V|2) complexity for computing a feasible update plan. However, in many
cases, just a small fraction of the stored results will be discarded resulting in
pseudolinear execution.

For our simulation, we used a slightly more sophisticated implementation
of the refinePlan algorithm. We are building a heap structure to order all
fragments in the View Pool according to their goodness metric. This takes O(|V|)
time. Using the heap, removing the fragment with the smallest goodness value
is an O(log|V|) step. Notice that, even though the overall forwarding cost is
O(k|V|) in the worst case, usually fragments with a small goodness value do
not have children (this is an empirical observation). Thus, in many cases, the
cost of forwarding the father pointers is practically negligible. This results in
an “empirical” complexity of O(|V| + k log|V|) ≈ O(|V|) for k � |V|.

6. EXPERIMENTS

The comparison and analysis of the different aspects of the design made in
this section are based on a simulation that we have developed for DynaMat.
We implemented the algorithms and different policies that we present in this
article as well as the Directory structure, but not the View Pool architecture.
For the latter, we assumed that the fragments were stored in Cubetrees
[Roussopoulos et al. 1997] and tuned the simulation accordingly using our
Cubetree DataBlade [Kotidis and Roussopoulos 1998] for the Informix Univer-
sal Server. We also implemented a random MR-query generator for creating
query sets with different statistical profiles.

A important issue for establishing a reasonable set of experiments was to
derive the measures to base the comparisons upon. The Cost Saving Ratio (CSR)
was defined in Scheuermann et al. [1996] as a measure of the percentage of the
total cost of the queries saved due to hits in their cache system. This measure
is defined as:

CSR =
∑

i cihi∑
i ciri

, (3)

where ci is the execution cost of query qi without using their cache, hi is the
number of times that the query was satisfied in the cache and ri is the total
number of calls to that query. This metric is also used in Deshpande et al. [1998]
for their experiments. Because the costs of queries vary widely, CSR is a more
appropriate metric than the common hit ratio:

∑
i hi/

∑
i ri. A potential limita-

tion of CSR, for our case, is that it doesn’t capture the different ways that a
query qi might “hit” the View Pool. In case the result of qi is already material-
ized in V, the savings is defined as ci = c(qi, DW). When another stored result is
used, the actual savings depend on how “close” this result is to the answer that
we want to produce. If c f = c(qi, f) is the cost of querying the best fragment f

6This portion of the formula depicts the cost of forwarding the father pointers.

ACM Transactions on Database Systems, Vol. 26, No. 4, December 2001.

410 • Y. Kotidis and N. Roussopoulos

for answering qi, the savings in this case is ci − c f .7 To capture all cases, we
define the savings provided by the View Pool V for a query qi as:

si =


0 if qi can not be answered by V
ci if there is an exact match for qi in V
ci − c f if f from V was used to answer qi.

(4)

Using the above formula, we define the Detailed Cost Saving Ratio (DCSR) as:

DCSR =
∑

i si∑
i ci
. (5)

DCSR provides a more accurate measure than CSR for OLAP queries. CSR is
based on a “binary” definition of a hit: a query hits the View Pool or not. For
instance, if a query is computed at the MDW with cost ci = 10,000 and from
some fragment f with cost c f = 9, 500, CSR returns a savings of 10,000 for the
“hit”, while DCSR credits the system will only 500 units based on the previous
formula. DCSR captures the effectiveness of the materialized data against the
incoming queries and describes better the performance of the system.

The rest of this section is organized as follows: Section 6.1 makes a direct
comparison of the different choices for the goodness metric, described in 5.2.
Section 6.2 compares DynaMat against a system that uses the optimal static
view selection. Finally, in Section 6.3, we demonstrate that executing queries
with MFXs further increases the performance of DynaMat. All experiments
were ran using an 300 Mhz Ultra SPARC 60 with 128 MB of main memory
running Solaris 2.6.

6.1 Comparison of Different Goodness Metrics

In this set of experiments, we compare the DCSR under the four goodness poli-
cies: LRU, LFU, SFF and SPF described in Section 5.2. We used a synthetically
generated dataset that models super-market transactions, organized by the star
schema. The MDW had 10 dimensions and a fact table containing 20 million
tuples. We assumed 50 update phases during the measured life of the system.
During each update phase, we generated 250,000 new tuples for the fact table
that had to be propagated to the stored fragments. The size of the full data cube
for this base data after all updates were applied was estimated to be around
708 GB. We generated 50 query sets with 1,500 MR-queries each that were
executed between the updates. These queries were selected uniformly from all
210= 1, 024 different views in the data cube lattice. In order to simulate hot
spots in the query pattern, the values asked by the queries for each dimension
are following the 80–20 law: 80% of the times a query was accessing values
from 20% of the dimension’s domain. We also ran experiments for uniform and
Gaussian distributions for the query values but are not presented here as they
were similar to the 80–20% distribution.

7ci and c f do not include the cost to fetch the result which is payable even if an exact match is
found.

ACM Transactions on Database Systems, Vol. 26, No. 4, December 2001.

A Case for Dynamic View Management • 411

Fig. 14. First 15× 1500 queries.

Fig. 15. Remaining 35× 1500 queries.

For the first experiment, we tested the time-bound case. The size of the View
Pool was chosen large enough to guarantee no replacement during queries and
the time allowed for updating the fragments was set to 2% of the estimated time
to update the full data cube, which we denote as WData Cube. For a more clear
view, we plot in Figure 14 the DCSR overtime for the first 15 sets of queries,
starting with an empty View Pool. In the graph, we plot the cumulative value
of DCSR at the beginning of each update phase, for all queries that happened
up to that phase. The DCSR value reaches 41.4% at the end of the first query
period of 1,500 queries that were executed against the initially empty View Pool.
This means that simply by storing and reusing computed results from previous
queries, we cut down the cost of accessing the MDW to 58.6%. Figure 15 shows
how DCSR changes for the remaining queries. All four policies quickly increase
their savings, by refining the content of the View Pool while doing updates,

ACM Transactions on Database Systems, Vol. 26, No. 4, December 2001.

412 • Y. Kotidis and N. Roussopoulos

Fig. 16. The Space Bound case.

up to a point where all curves flatten out. At all times, the SPF policy is the
winner with 60.71% savings for the whole run. The average I/O per query,
was 94.84, 100.08, 106.18 and 109.09 MB/query for the SPF, LFU, LRU and
SFF policies respectively. The average write-back I/O cost for materializing the
fragments was about the same in all cases ('19.8 MB/query). For the winner
SPF policy, the average time spent on searching the Directory was negligible
(about 0.4 ms/query). Computing a feasible update plan took on the average
37 ms, and 51 ms in the worst case. The number of MRFs stored in the View
Pool by the end of the last update phase was 206.

Figure 16 depicts DCSR overtime in the space-bound case for the last 35
sets of queries, calculated at the beginning of each update phase. In this exper-
iment, there was no time restriction for applying the updates, and the space
that was allocated for the View Pool was set to 14 GB, that is, 2% of the full
data cube size. The content of the View Pool is now managed by the replace
algorithm, as the limited storage space results in frequent evictions during
the on-line mode. Again, the SPF policy showed the best performance with
a DCSR of 59.58%. For this policy, the average time spend on the replace
algorithm, including any modifications in the Directory, was less that 3 ms
per query. Computing the initial update plan for the updates, as explained in
Section 5.4, took 10 ms on the average. Since there was no time restriction,
this plan was always feasible. The final number of fragments in the View Pool
was 692.

In a final experiment, we tested the four policies for the general case, where
the system is both space and time bound. We varied the time window for the
updates from 0.2% up to 5% of WData Cube and the size of the View Pool from
0.2% up to 5% of the full data cube size, both in 0.2% intervals. Figure 17
shows the DCSR for each pair of time and space settings for the SPF policy,
that outperformed the other three. We can see that even with limited resources
DynaMat provides substantial savings. For example, with just 1.2% of disk
space and 0.8% time window for the updates, we get over 50% savings compared
to accessing the MDW.

ACM Transactions on Database Systems, Vol. 26, No. 4, December 2001.

A Case for Dynamic View Management • 413

Fig. 17. The Space & Time Bound case.

6.2 Comparison with the Optimal Static View Selection

In the experiments of the previous section, we found the SPF policy to be
superior for dynamic view (fragment) selection during both updates (time-
bound case) and queries (space-bound case), or both. An important question,
however, is how the system compares with a static view selection algorithm
like Harinarayan et al. [1996], Gupta et al. [1997], Gupta [1997], and Baralis
et al. [1997] that considers only fully materialized views. Instead of comparing
each one of these algorithms with DynaMat, we implemented SOLVE, a
module that, given a set of queries, the space and time restrictions, searches
exhaustively all feasible view selections and returns the optimal one for these
queries. For a data cube lattice with n dimensions and no hierarchies, there
are 2n different views. A static view selection, depending on the space and time
bounds, contains some combination of these views. For for n= 6, the search
space contains 226 = 18, 446, 744, 073, 709, 551, 616 possible combinations
of the 64 views of the lattice. Obviously, some pruning can be applied. For
example, if a set of views is found feasible, there is no need to check any of its
subsets. Additional pruning of large views is possible depending on the space
and time restrictions that are specified; however, for nontrivial cases, this
exhaustive search is not feasible but for very small values of n.

We used SOLVE to compute the optimal static view selection for a
6-dimensional subset of our synthetic supermarket dataset, with 20 million
tuples in the fact table. There were 40 update phases, with 100 thousand new
tuples being inserted each time. The time window W for the updates was set to
the estimated 2% of that of the full data cube (WData Cube). We created 40 sets of
500 MR-queries each that were executed between the updates. These queries
targeted uniformly the 64 different views of the 6-dimensional data cube lat-
tice. This lack of query locality is bad for the dynamic case that needs to adapt
to the incoming query pattern. For the static view selection, query locality is
not an issue, because SOLVE was given all queries in advance. The optimal set

ACM Transactions on Database Systems, Vol. 26, No. 4, December 2001.

414 • Y. Kotidis and N. Roussopoulos

Fig. 18. DCSR per view for uniform queries on the views.

returned, after 3 days of computations in our hardware platform, includes 23
out of the 64 full-views in the 6-dimensional data cube. The combined size of
these views in the disk is 281 MB (1.6% of the full data cube). For the most
strict and unfavorable comparison for the dynamic case, we set the size of the
View Pool to the same number. Since the dynamic system started with an empty
View Pool, we used the first 10% of the queries as a training set and measured
system’s performance for the remaining 90%. We used the SPF policy to derive
the goodness of the MRFs for the dynamic approach.

The measured cumulative DCSR for the two systems was about the same:
64.04% for the dynamic and 62.06% for the optimal static. The average I/O
per query for the dynamic system was 108.11 MB and the average write-back
I/O cost 2.18 MB. For the optimal static selection, the average I/O per query is
112.94 MB and no write-back, without counting the overhead of materializing
the statically selected views for the first time.

For a clearer view on the performance differences between the static and
the dynamic approach, we computed the DCSR per view and plotted them in
decreasing order of savings in Figure 18. Notice that the x-axis labeling does
not correspond to the same views for the two lines. The plot shows that the
static view selection performs well for the 23 materialized views; however, for
the remaining 41 views, its savings drops to zero. DynaMat, on the other hand,
provides savings for almost all the views. The right-hand side of the graph
contains the larger views of the data cube. Since most results from queries on
these views are too big to fit in the View Pool, even DynaMat’s performance
decreases because they cannot be materialized in the shared disk volume.

Figure 19 depicts the performance of both systems for a nonuniform set of
queries where the access to the views is skewed. The skewness is controlled by
the number of grouping attributes in each query. As this number increases,8 it
favors accesses on views from the upper levels of the data cube lattice, because
the views are bigger in size and need a larger update window. These views,

8Having three grouping attributes per query, on the average, corresponds to the previous uniform
view selection.

ACM Transactions on Database Systems, Vol. 26, No. 4, December 2001.

A Case for Dynamic View Management • 415

Fig. 19. Varying the average number of grouping attributes per query.

Fig. 20. Extra disk space (10%).

because of the space and time constraints, are not in the static optimal selection.
On the other hand, the dynamic approach provides results whenever possible
and, for this reason, it is more robust than the static selection, as the workload
shifts to the larger views of the lattice. As the average number of grouping
attributes per query reaches 6, most queries access the single top-level six-
dimensional view of the lattice. DynaMat adapts nicely to this query pattern
and allocates most of the View Pool space to MRFs of that view. That explains
the performance of DynaMat going up at the right-hand side of the graph.

The View Pool size in the above experiments was set to 1.6% of the full
data cube as this was the actual size of the views used by the optimal static
selection. This number, however, is rather small by today’s standards. We ran
two more experiments with View Pool size 5% (878 MB) and 10% (1.7 GB) of
the full data cube size. The optimal static selection does not refine the selected
views because of the update window constraint (2%). DynaMat, on the other
hand, capitalizes the extra disk space and increases the DCSR from 64.04% to
68.34% and 78.22% for the 5% and 10% storage, respectively. Figure 20 depicts
the computed DCSR per view for this case. As more disk space is available,
DynaMat achieves even more savings by materializing more fragments from

ACM Transactions on Database Systems, Vol. 26, No. 4, December 2001.

416 • Y. Kotidis and N. Roussopoulos

Fig. 21. Drill-down/roll-up queries.

the larger views of the data cube. This experiment demonstrates the important
difference between the static and dynamic systems: because of the continuous
management, DynaMat utilizes both the available time and space constraints
while the static system typically utilizes only one of these two resources; the
update time in this experiment.

In the previous experiment, the queries that we ran were selected uniformly
from all 64 views in the data cube lattice. Often in OLAP, users do follow-up
queries, such as drill-downs or roll-ups, where starting from a computed result,
they refine their queries and ask for a more or less detailed aggregate view
of the data, respectively. DynaMat enormously benefits from roll-up queries
because they are always computable from results that were previously added
in the View Pool. To simulate such a workload we created 40 sets of 500 queries
each with the following properties: 40% of the times a user asks a query on a
randomly selected view from the data cube, 30% of the times the user performs
a roll-up operation on the last reported result, and 30% of the times the user
performs a drill-down.

For this experiment, we used the previous set-up for the 2% and 10% time
and space bounds and we recomputed the optimal static selection for the new
queries. Figure 21 depicts DCSR for this workload. Compared to the previous
example, DynaMat further increases its savings by taking advantage of the
locality of the roll-up queries.

6.3 Experiments with Multi Fragment Expressions

For the first experiment, we used the previous 6-dimensional synthetic dataset
and we generated a random set of 500 queries. For this run, we did not impose
any space restriction for the View Pool and there were no updates since we
wanted to concentrate on the execution of the queries only. The cumulative
DCSR after we executed all queries starting with an empty View Pool was
70.54%. We then grouped the same queries using MFXs of various lengths.
For the first MFX execution, we grouped every 10 consecutive queries into a
single expression. This resulted in having 50 expressions with 10 queries each.
Table I shows the measured DCSR values as the number of queries in the

ACM Transactions on Database Systems, Vol. 26, No. 4, December 2001.

A Case for Dynamic View Management • 417

Table I. Cumulative Savings vs MFX Size

MFX Size 1 10 20 50 100 200 500
DCSR 70.54 71.09 71.15 72.24 73.51 75.61 80.01 (optimal)

Fig. 22. MFX processing for uniform queries.

expressions increased up to 500. For the latter run, all queries were bundled
into a single expression and issued to DynaMat as a unit. The DCSR value for
this execution was 80.01% and corresponds to the maximum value reported.
Because there were no space or update-time restrictions, this is the optimal
savings that can be obtained by reordering their execution starting with an
empty View Pool.

In Figure 22, we have computed the relative improvements in the measured
DCSR over the starting point of 70.54% that corresponds to the original execu-
tion without using MFXs. The figure shows that, even for random uncorrelated
queries, grouping them in larger sets always improves the performance.

As a more representative workload for OLAP, we also tested another set of
500 correlated queries, similar to the ones used in the last experiment of the
previous section. Figure 23 shows the relative improvements in the measured
DCSR by using MFXs, as the number of queries in each group increases from
10 to 500. This time because of the stronger correlation among the queries,
even smaller groupings are adequate for getting higher improvements. The
optimal execution of all queries in a single MFX provides in this case relative
improvement of 17.3% over the single-query execution model. This comes from
the ability of the system to exploit and gain from all types of correlations among
the queries. On the contrary, the single-query execution model provides savings
only for roll-up type of analysis due to hits in the View Pool as seen in Figure 21.

7. DISCUSSION

Dynamic management of materialized views can be formulated as a caching
problem. Semantic caching of query results has been introduced in Dar et al.

ACM Transactions on Database Systems, Vol. 26, No. 4, December 2001.

418 • Y. Kotidis and N. Roussopoulos

Fig. 23. MFX processing for drill-down/roll-up queries.

[1996] for Client—Server main memory architectures. The client maintains
a semantic description of the cached data, which allows tuples that are not
available in the cache to be requested using a “remainder” query. Semantic
caching incorporates semantic notion of locality for cache replacement unlike
page-level caching that chooses victims based on temporal and spatial locality.
In a similar context, Keller and Basu in [1996] utilize a collection of constraint
formulas to describe cached data regions.

An important difference of our design from traditional caching architectures
is that the materialized OLAP aggregates have different computation costs. For
instance, it is far more expensive to recompute results of a high level of aggre-
gation (e.g., query q1 query q2 in Example 4.5) since they require scanning and
processing lots of detailed records. A nice formulation of the problem of caching
precomputed results in relational database systems is given by Sellis [1988b].
The WATCHMAN cache manager, introduced by Scheuermann et al. [1996],
uses replacement and admission techniques specifically designed for data
warehousing workload. Similar techniques are also described in Deshpande
et al. [1998] where caching is introduced for data warehouses organized based
on a specialized chunked file organization [Sarawagi and Stonebraker 1994].
With the exception of Deshpande and Naughton [2000], previous caching
schemes fail to address and exploit interdependencies among materialized ag-
gregates of different levels of aggregation. Drill-down and roll-up queries that
are common in OLAP analysis tend to fill the cache with correlated aggregates
of different aggregation levels. An effective caching architecture should under-
stand and exploit the dependencies among these aggregates. In addition, all
previous systems were introduced for main-memory caching. As a result, they
do not address updates and the memory cache is simply invalidated each time
the data warehouse is updated. This practice is not suitable for disk resident-
materialized aggregates with potentially large recomputation overhead.

An underlying question has to do with the applicability of this line of re-
search in real systems. After all, query result reuse has been discussed in var-
ious context (e.g., caching, materialized views, multiquery optimization) in the

ACM Transactions on Database Systems, Vol. 26, No. 4, December 2001.

A Case for Dynamic View Management • 419

literature but little progress has been made in implementing these ideas in
commercial systems. We believe that query-reuse is a viable technique in data
warehousing environments for the following reasons:

—Ad-hoc analysis is very unpredictable. It is hard to derive a static set of views
that fits all users. Thus, adaptive techniques that materialize frequent com-
putations are necessary.

—Data cube views have a rather restricted form that makes the problem some-
how easier. Query processing in DynaMat, described in Section 4.1, imple-
ments a simple rewriting policy based on a multidimensional description of
the stored results. In the general case of SPJ-views, there are quite a few
algorithms [Larson and Yang 1985; Yang and Larson 1987; Chaudhuri et al.
1995; Levy et al. 1995; Srivastava et al. 1996] that could be used to optimize
the execution of user queries against the fragments. Even though such tech-
niques are applicable for our case, we chose a cleaner engineering-oriented
approach that in practice seems to perform well. Our query model allows
for an abstract interface, shown in Figure 1, that is potentially easier to be
integrated into existing systems.

—Query results are often relatively small, as they contain aggregated data. The
potential saving when reusing computed aggregates justify the additional
complexity of bookkeeping and managing these results.

—Data is relatively static with only infrequent updates that are happening in
predetermined intervals. Thus, a stored result has a potentially long period
of time to prove itself useful for future queries.

Interestingly, we find recent papers from database vendors [Bello et al. 1998;
Zaharioudakis et al. 2000; Goldstein and Larson 2001] on the use of materi-
alized views (that are, after all, query results) in query optimization. DB2, for
example, has implemented the capability to define Automatic Summary Tables
and Replicated Tables, which materialize frequently referenced computations
redundantly to enhance query performance.

In Section 4.2, we extended DynaMat’s API to handle multiple, possible re-
lated queries. The optimization problem that we addressed consists of finding
the execution order and materialization/replacement plan that best utilizes
the available materialized fragments of the View Pool according to the given
disk space constraint. Our solution was based on an open-world assumption
meaning that during the processing of an expression the View Pool is avail-
able for other users/queries. Under the assumption of an empty View Pool with
an infinite disk space, the problem is very similar to a multiquery optimiza-
tion problem. Global query optimization has long been studied [Sellis 1988a;
Shim et al. 1994; Roy et al. 2000] for database applications. Recently, Zhao
et al. [1998] have addressed the problem of optimizing multiple dimensional
queries in the content of data warehousing. Their work focuses in process-
ing Multi-Dimensional Expressions (MDX) defined in the OLE DB for OLAP
standard by Microsoft [Microsoft]. MDX provide a framework in which a user
can naturally ask several related OLAP queries in a single unit. The authors
consider the evaluation of MDX expressions by a relational database system.

ACM Transactions on Database Systems, Vol. 26, No. 4, December 2001.

420 • Y. Kotidis and N. Roussopoulos

Compared to previous work in multiquery optimization MDX provide new
opportunities of optimizations because of the more restricted nature of the
OLAP queries involved.

8. CONCLUSIONS

In this article, we made a case for dynamic management of views in data ware-
houses. We presented DynaMat, a view management system that materializes
results from incoming queries as views and exploits them for future reuse.
DynaMat unifies view selection and view maintenance under a single frame-
work that takes into account both the update time and space constraints of the
data warehouse.

We have defined and used the Multidimensional Range Fragments (MRFs) as
the basic logical unit of materialization. Our experiments show that, compared
to the conventional paradigm that considers only full views, MRFs provide
a finer and more appropriate granularity of materialization. The operational
and maintenance cost of MRFs, which includes directory look-up operations
at query time and the derivation of an efficient update plan during updates,
remains practically negligible, in the order of milliseconds. At query time, we
utilize a distributed directory structure that permits fast access to the stored
fragments. Queries are executed independently, or can be bundled within a
multiquery expression. In both cases, execution is optimized with respect to
the materialized data and the available disk space.

We compared DynaMat against a system that is given all queries in advance
and the precomputed optimal static view selection. These experiments indicate
that DynaMat outperforms the optimal static selection and thus any suboptimal
view selection algorithm that has appeared in the literature. Another important
result that validates the importance of materialized views, is that just 1–2% of
the space and 1–2% of the update window required for the full data cube are
sufficient for substantial performance improvements.

However, the most important feature of DynaMat is that it represents a
self-tunable solution that adapts to new query patterns and new time/space
constraints. This way DynaMat relieves the data warehouse administrator from
having to monitor and calibrate the system constantly. Even for cases that there
is no specific pattern in the workload, like the uniform queries used for some of
our experiments, DynaMat manages to pick a set of MRFs that outperforms the
optimal static view selection. For more skewed query distributions, especially
for workloads that include a lot of roll-up queries, the performance of DynaMat
is even better.

REFERENCES

ABITEBOUL, S. AND DUSCHKA, O. M. 1998. Complexity of answering queries using materialized
views. In Proceedings of the 17th Annual ACM SIGACT-SIGMOD-SIGART Symposium on Prin-
ciples of Database Systems (Seattle, Wash., June). ACM, New York, pp. 254–263.

AGRAWAL, S., AGRAWAL, R., DESHPANDE, P., GUPTA, A., NAUGHTON, J., RAMAKRISHNAN, R., AND SARAWAGI, S.
1996. On the computation of multidimensional aggregates. In Proceedings of the 22nd VLDB
conference (Bombay, India, Aug.), pp. 506–521.

ACM Transactions on Database Systems, Vol. 26, No. 4, December 2001.

A Case for Dynamic View Management • 421

BARALIS, E., PARABOSCHI, S., AND TENIENTE, E. 1997. Materialized view selection in a multidimen-
sional database. In Proceedings of the 23th International Conference on VLDB (Athens, Greece,
Aug.), pp. 156–165.

BELLO, R. G., DIAS, K., DOWNING, A., JR., J. F., NORCOTT, W. D., SUN, H., WITKOWSKI, A., AND ZIAUDDIN,
M. 1998. Materialized views in oracle. In Proceedings of the 24rd International Conference on
Very Large Data Bases (New York, New York, Aug.), pp. 659–664.

CHAUDHURI, S. AND DAYAL, U. 1997. An overview of data warehousing and OLAP technology.
SIGMOD Record, 26, 1 (Sept.).

CHAUDHURI, S., KRISHNAMURTHY, R., POTAMIANOS, S., AND SHIM, K. 1995. Optimizing queries with
materialized views. In Proceedings of the 11th International Conference on Data Engineering
(Taipei, Taiwan, Mar.), pp. 190–200.

CHEN, C. AND ROUSSOPOULOS, N. 1994. The implementation and performance evaluation of the
ADMS query optimizer: Integrating query result caching and matching. In Proceedings of EDBT
(Cambridge, UK, Mar.), pp. 323–336.

DAR, S., FRANKLIN, M., JONSSON, B., SRIVASTAVA, D., AND TAN, M. 1996. Semantic data caching and
replacement. In Proceedings of the 22th International Conference on VLDB (Bombay, India, Sept.),
pp. 330–341.

DELIS, A. AND ROUSSOPOULOS, N. 1992. Performance and scalability of client-server database
architectures. In Proceedings of the 18th VLDB (Vancouver, Canada), pp. 610–623.

DESHPANDE, P., AGRAWAL, S., NAUGHTON, J., AND RAMAKRISHNAN, R. 1996. Computation of multidi-
mensional aggregates. Tech. Rep. 1314, Univ. Wisconsin, Madison, Madison, Wis.

DESHPANDE, P. AND NAUGHTON, J. 2000. Aggregate aware caching for multi-dimensional queries.
In Proceeding of the 7th International Conference on Extending Database Technology (Konstanz,
Germany, Mar.), pp. 167–182.

DESHPANDE, P., RAMASAMY, K., SHUKLA, A., AND NAUGHTON, J. 1998. Caching multidimensional
queries using chunks. In Proceedings of the ACM SIGMOD (Seattle, Wash. June), pp. 259–270.

DO, L., DREW, P., JIN, W., JUNAMI, V., AND ROSSUM, D. V. 1998. Issues in developing very large
data warehouses. In Proceedings of the 24th VLDB Conference (New York, N.Y., Aug.), pp. 633–
636.

GOLDSTEIN, J. AND LARSON, P. 2001. Optimizing queries using materialized views: A practical,
scalable solution. In Proceedings of ACM SIGMOD International Conference on Management of
Data (Santa Barbara, Calif., May), ACM, New York.

GRAY, J., BOSWORTH, A., LAYMAN, A., AND PIRAMISH, H. 1996. Data cube: A relational aggregation
operator generalizing group-by, cross-tab, and sub-totals. In Proceedings of the 12th ICDE Confer-
ence (New Orleans, La., Feb.), IEEE Computer Society Press, Los Alamitos, Calif., pp. 152–159.

GRIFFIN, T. AND LIBKIN, L. 1995. Incremental maintenance of views with duplicates. In Proceedings
of the ACM SIGMOD Conference (San Jose, Calif., May). ACM, New York, pp. 328–339.

GUPTA, A., MUMICK, I., AND SUBRAHMANIAN, V. 1993. Maintaining views incrementally. In Proceed-
ings of the ACM SIGMOD Conference (Washington, D.C., May). ACM, New York, pp. 157–166.

GUPTA, H. 1997. Selections of views to materialize in a data warehouse. In Proceedings of ICDT
(Delphi, Greece, Jan.), pp. 98–112.

GUPTA, H., HARINARAYAN, V., RAJARAMAN, A., AND ULLMAN, J. 1997. Index selection for OLAP. In
Proceedings of ICDE (Burmingham, U.K., Apr.), pp. 208–219.

HARINARAYAN, V., RAJARAMAN, A., AND ULLMAN, J. 1996. Implementing data cubes efficiently. In
Proceedings of ACM SIGMOD (Montreal, Ont., Canada, June). ACM, New York, pp. 205–216.

JAGADISH, H., MUMICK, I., AND SILBERSCHATZ, A. 1995. View maintenance issues in the chronicle
data model. In Proceedings of PODS (San Jose, Calif.). ACM, New York, pp. 113–124.

JERMAINE, C., DATTA, A., AND OMIECINSKI, E. 1999. A novel index supporting high volume data
warehouse insertions. In Proceedings of 25th International Conference on Very Large Data Bases
(Edinburgh, Scotland, U.K., Sept.), pp. 235–246.

KARLOFF, H. J. AND MIHAIL, M. 1999. On the complexity of the view-selection problem. In Proceed-
ings of the 18th ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems
(Philadelphia, Pa., May). ACM, New York, pp. 167–173.

KELLER, A. AND BASU, J. 1996. A predicate-based caching scheme for client-server database archi-
tectures. VLDB J. 5, 1, 35–47.

KIMBALL, R. 1996. The Data Warehouse Toolkit. J. Wiley, New York.

ACM Transactions on Database Systems, Vol. 26, No. 4, December 2001.

422 • Y. Kotidis and N. Roussopoulos

KOLAITIS, P. G. AND VARDI, M. Y. 1998. Conjunctive-query containment and constraint satisfac-
tion. In Proceedings of the 17th ACM SIGACT-SIGMOD-SIGART Symposium on Principles of
Database Systems (Seattle, Wash., June). ACM, New York, pp. 205–213.

KOTIDIS, Y. AND ROUSSOPOULOS, N. 1998. An alternative storage organization for ROLAP aggregate
views based on cubetrees. In Proceedings of the ACM SIGMOD International Conference on
Management of Data (Seattle, Wash., June). ACM, New York, pp. 249–258.

KOTIDIS, Y. AND ROUSSOPOULOS, N. 1999. DynaMat: A dynamic view management system for data
warehouses. In Proceedings of the ACM SIGMOD International Conference on Management of
Data (Philadelphia, Pa., June). ACM, New York, pp. 371–382.

LARSON, P.-A. AND YANG, H. Z. 1985. Computing queries from derived relations. In Proceedings of
the 11th VLDB Conference (Stockholm, Sweden), pp. 259–269.

LEVY, A. Y., MENDELZON, A. O., SAGIV, Y., AND SRIVASTAVA, D. 1995. Answering queries using views. In
Proceedings of the 14th ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database
Systems (San Jose, Calif., May). ACM, New York, pp. 95–104.

MICROSOFT. OLE DB for OLAP. http://www.microsoft.com/data/olepdb.
MUMICK, I. S., QUASS, D., AND MUMICK, B. S. 1997. Maintenance of data cubes and summary tables

in a warehouse. In Proceedings of the ACM SIGMOD Conference (Tucson, Az., May). ACM, New
York, pp. 100–111.

O’NEIL, P. E., CHENG, E., GAWLICK, D., AND O’NEIL, E. J. 1996. The log-structured merge-tree
(LSM-tree). Acta Inf. 33, 4, 351–385.

ROSS, K. AND SRIVASTAVA, D. 1997. Fast computation of sparse datacubes. In Proceedings of the
23th VLDB Conference (Athens, Greece, Aug.), pp. 116–125.

ROUSSOPOULOS, N. 1982. View indexing in relational databases. ACM Trans. Datab. Syst. 7, 2
(June), 258–290.

ROUSSOPOULOS, N. 1991. The incremental access method of view cache: Concept, algorithms, and
cost analysis. ACM Trans. Datab. Syst. 16, 3 (Sept.), 535–563.

ROUSSOPOULOS, N. AND KANG, H. 1986. Preliminary design of ADMS±: A workstation-mainframe
integrated architecture for database management systems. In Proceedings of the 12th Interna-
tional Conference on VLDB (Kyoto, Japan, Aug.), pp. 355–364.

ROUSSOPOULOS, N., KOTIDIS, Y., AND ROUSSOPOULOS, M. 1997. Cubetree: Organization of and bulk
incremental updates on the data cube. In Proceedings of the ACM SIGMOD International Con-
ference on Management of Data (Tucson, Az., May), ACM, New York, pp. 89–99.

ROY, P., SESHADRI, S., SUDARSHAN, S., AND BHOBE, S. 2000. Efficient and extensible algorithms
for multi query optimization. In Proceedings of ACM SIGMOD International Conference on
Management of Data (Dallas, Tex., May). ACM, New York, pp. 249–260.

SARAWAGI, S., AGRAWAL, R., AND GUPTA, A. 1996. On computing the data cube. Tech. Rep. RJ10026.
IBM Almaden Research Center, San Jose, Calif.

SARAWAGI, S. AND STONEBRAKER, M. 1994. Efficient organization of large multidimensional arrays.
In Proceedings of ICDE (Houston, Tex.), pp. 328–336.

SCHEUERMANN, P., SHIM, J., AND VINGRALEK, R. 1996. WATCHMAN: A data warehouse intel-
ligent cache manager. In Proceedings of the 22th VLDB Conference (Bombay, India, Sept.),
pp. 51–62.

SELLIS, T. 1988a. Multiple-query optimization. ACM Trans. Datab. Syst. 13, 1, 23–52.
SELLIS, T. K. 1988b. Intelligent caching and indexing techniques for relational database systems.

Inf. Syst. 13, 2, 175–185.
SHIM, K., SELLIS, T., AND NAU, D. 1994. Improvements on a heuristic algorithm for multiple-query

optimization. DKE 12, 2, 197–222.
SHUKLA, A., DESHPANDE, P., AND NAUGHTON, J. F. 1998. Materialized view selection for multidimen-

sional datasets. In Proceedings of the 24th VLDB Conference (New York, New York, Aug.), pp.
488–499.

SMITH, J. R., LI, C., CASTELLI, V., AND JHINGRAN, A. 1998. Dynamic assembly of views in data cubes.
In Proceedings of the Symposium on Principles of Database Systems (PODS) (Seattle, Wash.,
June). ACM, New York, pp. 274–283.

SRIVASTAVA, D., DAR, S., JAGDISH, H., AND LEVY, A. Y. 1996. Answering queries with aggregation
using views. In Proceedings of the 22nd International Conference on Very Large Data Bases
(Mumbai (Bombay), India, Sept.), pp. 318–329.

ACM Transactions on Database Systems, Vol. 26, No. 4, December 2001.

A Case for Dynamic View Management • 423

THEODORATOS, D. AND SELLIS, T. 1997. Data warehouse configuration. In Proceedings of the 23th
International Conference on VLDB (Athens, Greece, Aug.), pp. 126–135.

YANG, H. Z. AND LARSON, P.-Å. 1987. Query transformation for PSJ-queries. In Proceedings of 13th
International Conference on Very Large Data Bases (Brighton, England, Sept.), pp. 245–254.

ZAHARIOUDAKIS, M., COCHRANE, R., LAPIS, G., PIRAHESH, H., AND URATA, M. 2000. Answering complex
SQL queries using automatic summary tables. In Proceedings of ACM SIGMOD International
Conference on Management of Data (Dallas, Tex., May). ACM, New York, pp. 105–116.

ZHAO, Y., DESHPANDE, P., AND NAUGHTON, J. 1997. An array-based algorithm for simultaneous mul-
tidimensional aggregates. In Proceedings of the ACM SIGMOD Conference (Tucson, Az., May).
ACM, New York, pp. 159–170.

ZHAO, Y., DESHPANDE, P., NAUGHTON, J. F., AND SHUKLA, A. 1998. Simultaneous optimization and
evaluation of multiple dimensiona queries. In Proceedings of the ACM SIGMOD International
Conference on Management of Data (Seattle, Wash., June). ACM, New York, pp. 271–282.

Received September 1999; revised July 2000, November 2000, and February 2001; accepted June 2001

ACM Transactions on Database Systems, Vol. 26, No. 4, December 2001.

