
Domain-Driven Data Synopses
for Dynamic Quantiles

Anna C. Gilbert, Yannis Kotidis, S. Muthukrishnan, and Martin J. Strauss

Abstract—In this paper, we present new algorithms for dynamically computing quantiles of a relation subject to insert as well as delete

operations. At the core of our algorithms lies a small-space multiresolution representation of the underlying data distribution based on

random subset sums or RSSs. These RSSs are updated with every insert and delete operation. When quantiles are demanded, we

use these RSSs to estimate quickly, without having to access the data, all the quantiles, each guaranteed to be accurate to within user-

specified precision. While quantiles have found many uses in databases, in this paper, our focus is primarily on network management

applications that monitor the distribution of active sessions in the network. Our examples are drawn both from the telephony and the

IP network, where the goal is to monitor the distribution of the length of active calls and IP flows, respectively, over time. For such

applications, we propose a new type of histogram that uses RSSs for summarizing the dynamic parts of the distributions while other

parts with small volume of sessions are approximated using simple counters.

Index Terms—Quantiles, database statistics, data streams.

�

1 INTRODUCTION

MOST database management systems (DBMSs) maintain
order statistics, i.e., quantiles, on the contents of their

database relations. Medians (half-way points) and quartiles
(quarter-way points) are elementary order statistics. In the
general case, the �-quantiles (for small real-valued � > 0) of
an ordered sequence of N data items are the values with
rank k�N , for k ¼ 1; 2; . . . 1�� 1.

Quantiles find multiple uses in databases. Simple
statistics such as the mean and variance are both insuffi-
ciently descriptive and highly sensitive to data anomalies in
real-world data distributions. Quantiles can summarize
massive database relations more robustly. Many commer-
cial DBMSs use equi-depth histograms [30], [32], which are in
fact, quantile summaries, during query optimization in
order to estimate the size of intermediate results and pick
competitive query execution plans. Quantiles can also be
used for determining association rules for data mining
applications [1], [2], [3]. Quantile distribution helps design
well-suited user interfaces to visualize query result sizes.
Also, quantiles provide a quick similarity check in coarsely
comparing relations, which is useful in data cleaning [25].
Finally, they are used as splitters in parallel database
systems that employ value range data partitioning [31] or
for fine-tuning external sorting algorithms [14].

Computing quantiles on demand in many of the above
applications is prohibitively expensive as it involves

scanning large relations. Therefore, quantiles are precom-
puted within DBMSs. The central challenge then is to
maintain them since database relations evolve via transac-
tions. Updates, inserts, and deletes change the data
distribution of the values stored in relations. As a result,
quantiles have to be updated to faithfully reflect the
changes in the underlying data distribution. Commercial
database systems often hide this problem. Database admin-
istrators may periodically (say, every night) force the
system to recompute the quantiles accurately. This has
two well-known problems. Between recomputations, there
are no guarantees on the accuracy of the quantiles:
Significant updates to the data may result in quantiles
being arbitrarily bad, resulting in unwise query plans
during query optimization. Also, recomputing the quantiles
by scanning the entire relation, even periodically, is still
both computationally and I/O intensive.

In applications such as those described above, it often
suffices to provide reasonable approximations to the
quantiles and there is no need to obtain precise values. In
fact, it suffices to get quantiles to within a few percentage
points of the actual values. Here, we present one such
algorithm for dynamically computing approximate quantiles
of a relation subject to both insert and delete operations.
Update operations of the form “change an attribute value of
a specified record from its current value x to new value y”
are thought of as a delete followed by an insert and are also
supported. The algorithm monitors the operations and
maintains a simple, small-space hierarchical representation
of the underlying data distribution based on random subset
sums or RSSs. Using these RSSs, we can estimate, without
having to access the data, all the quantiles on demand, each
guaranteed a priori to be accurate to within user-specified
precision.

While RSSs can be used for tracking quantiles in all of
the aforementioned applications, their value shines in
applications that handle massive volumes of “streaming”

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 17, NO. 7, JULY 2005 1

. A.C. Gilbert and M.J. Strauss are with the Department of Mathematics,
University of Michigan, 2074 East Hall, Ann Arbor, MI 48109-1109.
E-mail: {annacg, martinjs}@umich.edu.

. Y. Kotidis is with AT&T Labs-Research, Room D272, 180 Park Ave.,
PO Box 971, Florham Park, NJ 07932-0971.
E-mail: kotidis@research.att.com.

. S. Muthukrishnan is with the Department of Computer and Information
Sciences, Rutgers University, 319 Core Bldg, 110 Frelinghuysen Rd.,
Piscataway, NJ 08854. E-mail: muthu@cs.rutgers.edu.

Manuscript received 28 Aug. 2003; revised 9 June 2004; accepted 11 Oct.
2004; published online 18 May 2005.
For information on obtaining reprints of this article, please send e-mail to:

1041-4347/05/$20.00 � 2005 IEEE Published by the IEEE Computer Society

transactions for which the underlying relation is never
materialized. In particular, in this paper, we focus on
network management applications that monitor active
network sessions. A session in the telephony network is a
phone call and the distribution of interest that of the length
of the active calls in the network. The notion of a session
extends naturally to other domains (Web session, IP-flows).
While our core RSS algorithm can be applied directly for
monitoring the distribution of such calls, we have been able
to adapt this algorithm to the particular characteristics of
the application. Our solution is based on a histogram
representation of the domain that allocates RSSs for the
most voluminous parts of the distribution, while the rest of
the domain is approximated using simpler statistics. The
new algorithm has space requirements similar to those of
the core RSS algorithm, but provides a lot more accurate
estimates on real data sets, as our experiments demonstrate.

Despite the commercial use of quantiles, their popularity
in database literature and their obvious fundamental
importance in DBMSs, no comparable solutions were
known previously for maintaining approximate quantiles
efficiently with similar a priori guarantees. To our knowl-
edge, this is the first streaming algorithm that provides
a priori guarantees in the dynamic setting. Previously
known one-pass quantile estimation algorithms that pro-
vide quality and performance guarantees either do not
handle delete operations or they do not provide strong
guarantees in the presence of deletes. Still, a comparison of
our work with previous work must be kept in perspective
since the insert-only and insert/delete settings are, strictly
speaking, incomparable requirements, leading to different
algorithmic goals and even to incomparable statements of
cost—our cost depends on the size of the universe, whereas
most previous work states cost in terms of the size of the
relation. An application that has only inserts of data can
demand better performance than an application facing
inserts and deletes; previous results will be somewhat
better than ours in the insert-only case. Our result is a
general purpose technique that gives reasonable guarantees
in the case of insert-only data and gives the first strong
guarantees in the case of arbitrary inserts and deletes.

1.1 Two Applications for Dynamic Quantiles

The focus of our experimental analysis is on realistic data
sets drawn from AT&T’s voice network. Voice switches
constantly generate flows of Call Detail Records (CDRs) that
describe the activity of the network. Ad hoc analysis as part
of network management focuses on active voice calls, that is,
calls currently in progress at a switch. The goal is to get an
accurate, but succinct representation of the length of all
active calls and monitor the distribution over time.

Transactions in this context consist of the start and end of
every call as observed by the switch. Each such action is
monitored in order to maintain the distribution of all active
calls in the network. Our algorithm fits nicely in this
strongly dynamic context. In Section 6, we use archived call
detail records to test our framework. Our experimental
results show that it can accurately monitor the underlying
distribution using a very small footprint (on the order of a
few KBytes for call volume exceeding 2 million voice calls
over a period of a day).

IP-networking applications also operate on session data.
Network routers handle IP flows: a series of packets
associated with a source/destination IP pair and specific
start and end times. The “relation” at any point consists of
active flows: A new flow that is initiated is considered an
insert and any terminated flow is considered a delete. Our
algorithm applies here ideally. CISCO routers generate one
flow trace record per flow consisting of source/destination
IP address, start and end time of the flow, type and size of
the flow, and other ISP specific information [10]. In this
context, our algorithm can be used for tracking active
IP flows using flow data traces that are constantly generated
from IP routers.

Voice and IP networks are challenging places for
employing database infrastructure for network manage-
ment. In fact, this need has already inspired several ongoing
projects within the database community, e.g., the STREAM
project at Stanford, the HIMALAYA project at Cornell, etc.
Our work adds to this growing genre. An important aspect
of network monitoring is that operations data is mostly
distributed. As we discuss below, using our algorithm, one
can process network data where it is collected, communicate
only small RSS-summaries to a central location, then
approximate quantiles for the combined data set without
any accuracy loss attributable to the distributed setting. This is
advantageous compared with techniques that require all the
raw data to be sent to a centralized location.

2 RELATED WORK

Since the early 1970s, there has been much focus on finding
the median of a static data set. Following the breakthrough
result of [7] that there is a comparison-based algorithm to
find the median (and all the quantiles) in OðNÞ worst-case
time, more precise bounds have been derived on the precise
number of comparisons needed in the worst case [29].

A series of algorithms have been developed for finding
quantiles in the insert-only (“incremental”) model. The idea
presented in [28] leads to an algorithm that maintains an
Oððlog2 �NÞ=�Þ space data structure, which gets updated for
each insert. Using this data structure, �-quantiles can be
produced that are a priori guaranteed to be �-approximate.
This algorithm was further extended in [6], [26] to be more
efficient in practice and improved in [21] to use only
Oððlog �NÞ=�Þ space and time. The approach in these papers
is to maintain a “sample” of the values seen thus far, but the
sample is chosen deterministically by enforcing various
weighting conditions. Earlier, [28] had shown that any
p-pass algorithm needs space �ðN1=pÞ to compute quantiles
exactly and, so, one needs to resort to approximation in
order to get small space and fast algorithms.

A different line of research has been to use randomiza-
tion so that the output is �-approximate �-quantiles with
probability of at least 1� � for some prespecified prob-
ability � of “failure.” The intuition is that allowing the
algorithms to only make probabilistic guarantees will
potentially make them faster or use smaller space. In [26],
[27], an Oð1� log

2 1
� þ 1

� log
2 log 1

�Þ space and time algorithm was
given for this problem. Note that this is independent of N ,
dependent only on probability of failure and approximation
factor. Other one-pass algorithms [3], [9], [24] do not

2 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 17, NO. 7, JULY 2005

provide a priori guarantees; however, performance of these
algorithms on various data sets has been experimentally
investigated. Both [27] and [21] also presented extensive
experiments on the incremental model.

Despite the extensive literature above on probabilistic/
deterministic, approximate/exact algorithms for finding
quantiles in the incremental model, we do not know of a
significant body of work that directly addresses the
problem of dynamic maintenance of quantiles with a priori
guarantees. Even though many of the algorithms that have
been devised for the incremental setting can be extended to
support a delete operation, such extensions do not provide
strong guarantees in the computation of quantiles.

A novel algorithm that handles deletions has been
proposed in [17] for dynamic maintenance of equi-depth
histograms, which are �-quantile summaries. Using a notion
of error different from ours, the authors present an
algorithm based on the technique of a “backing sample”
(an appropriately maintained random sample [17], [34]) and
provide a priori probabilistic guarantees on equi-depth
histogram construction. This algorithm works well when
deletions are infrequent, but, in general, it is forced to
rescan the entire relation in presence of frequent deletes. In
fact, the authors say “based on the overheads, it is clear that the
algorithm is best suited for insert-mostly databases or for data
warehousing environments.”

Another related line of research is the maintenance of
wavelet coefficients in presence of inserts and deletes. This
was investigated in [18], [33], where the emphasis was on
maintaining the largest (significant) coefficients. In [20], an
algorithm was provided for dynamically maintaining
V-Opt histograms. No a priori guarantees for finding
quantiles can be obtained by using these algorithms.

Our techniques borrow some intuition from stream
results [8], [11], [15], [20], [21], [23], where a “sketch”of a
signal is used to summarize it. A sketch is any linear
projection of the signal against a random vector. Thus,
sketches include random samples as well as random subset
sums. The basic sketching technique using linear projec-
tions was introduced in [4] (AMS sketches) for estimating the
self-join sizes of relations in a dynamic context. The
popularity of AMS sketches stems from their simplicity.
As shown, such sketches can be generated with limited
space using any family of four-wise independent random
variables. More exotic random vectors have been employed
in [8], [11], [18], [22] for tuning these sketches for different
applications. In [8], the authors introduce the CountSketch
for estimating the most frequent items in the data stream.
CountSketches extend AMS sketches in that each entry
(counter) in the AMS sketch is replaced with a hash table of
multiple counters. This solves the problem of having high
frequency items spoil estimates of lower frequency items
when colliding in the same bucket. In our technique, we use
a different method of decomposing the domain into dyadic
intervals of different resolutions. Our technique is moti-
vated by the requirement of the quantile estimation
algorithm for obtaining accurate rangesum estimates over
the distribution.

At an abstract level, the RSSs that our algorithm
manipulates are hierarchical sketches over the data domain.

Beyond this abstraction, algorithmic details of our work
differ from all of the above results and, in particular, the

time used by our algorithm to produce quantiles is much
less than the time used by the previous results. Random
subset sums require less randomness in their construction

compared with AMS sketches. In fact, as we show in
Section 4, any family of pairwise independent variables

suffices, making construction and use of RSSs a lot simpler.
In a recent publication ([12]), the authors introduced the

Count-Min sketches as an improvement over previous

sketch-based data structures. Count-Min sketches improve
previously known space bounds from 1=�2 to 1=� while

requiring sublinear (in the size of the structure) update cost,
unlike, for instance, the sketches of [4] whose update cost is
proportional to the size of the sketch. By replacing RSSs with

Count-Min sketches while keeping the hierarchical con-
struction we describe in this paper, we can reduce the space

requirements of our quantile estimation algorithm from
Oðlog2 jU j logðlogðjUjÞ=�Þ=�2Þ to Oðlog2 jUj logðlogðjU jÞ=�Þ=�Þ,
i.e., a 1=� improvement. A similar speedup is obtained in the
computation of the �-quantiles utilizing our technique of
breaking each range-sum query into a set of point-estimates

over dyadic intervals of different resolutions.

3 APPROXIMATE QUANTILE ESTIMATION

3.1 Problem Definition

We consider a relational database and focus on some

numerical attribute. The domain of the attribute is
U ¼ f0; . . . ; jUj � 1g, also called the Universe.1 In general,

the domain may be a different discrete set or it may be real-
valued and has to be appropriately discretized. Our results
apply in either setting, but we omit those discussions. In

what follows, we assume that the size of the domain jU j is
known a priori and is a power of two. In Section 4.4, we

discuss the general case when U is unknown.
At any time, the database relation is a multiset of items

drawn from the universe. We can alternately think of this as

an array A½0 � � � jUj � 1�, where A½i� represents the number
of tuples in the relation with value i in that attribute.
Transactions consist of inserts and deletes. Insert(i) adds a

tuple of value i, i.e., A½i� A½i� þ 1 and delete(i) removes
an existing tuple with value i, i.e.,A½i� A½i� � 1. LetAt be

the array after t transactions and let Nt ¼
P

i At½i�; we will
drop the subscript t whenever it is unambiguous from

context.
Our goal is to estimate �-quantiles on demand. In other

words, we need to find the tuples with ranks k�N , for
1 � k < 1=�. We will focus on computing �-approximate

�-quantiles. That is, we need to find a jk such that

ðk�� �ÞN �
X
i�jk

A½i�

and

X
i<jk

A½i� � ðk�þ �ÞN

GILBERT ET AL.: DOMAIN-DRIVEN DATA SYNOPSES FOR DYNAMIC QUANTILES 3

1. We use jU j to denote the size of the domain.

for k ¼ 1; . . . ; 1=�� 1. The set of j1; . . . ; j 1
��1

will be the

�-quantiles approximate up to ��N . If � ¼ 0, then we seek

the exact quantiles.
Our goal is to solve this problem using sublinear

resources. It would be ideal, of course, to use space no
more than the 1=� that it takes to store the quantiles, but
that appears to be unrealistic since the quantiles may
change substantially under inserts and deletes. Therefore, in
the spirit of prior work, our data structure will use space
that is polylogarithmic in the universe size, which is
typically much less than the size of the data set.
Furthermore, we will only use time per operation nearly
linear in the size our data structure, namely, polylogarith-
mic in the universe size.

If no transactions are allowed, we refer to the problem as
static. If only insertions are allowed, we refer to it as
incremental and, when both insertions and deletions are
allowed, we refer to it as dynamic. It is obvious that, in a
database system, At½i� � 0 at any time t since one cannot
delete a tuple that is not present in the relation. A sequence
of transactions is called well-formed if it leads toAt½i� � 0; we
will consider only well-formed sequences of transactions in
this paper.

3.2 Our Main Algorithmic Result

We present a new technique for the problem of dynamically
estimating quantiles. At the core of our algorithm lies an
Oðlog2 jUj logðlogðjU jÞ=�Þ=�2Þ space representation of A. This
gets updated with every insertion as well as deletion. When
quantiles are demanded, we can estimate, without having to
access the data, all the quantiles on demand, each guaranteed
a priori to be accurate to within user-specified precision
��N with user-specified probability 1� � of success.

3.3 Challenges and Limitations

We now provide some more intuition into the problem of
maintaining quantiles under inserts and deletes.

3.3.1 Recovering the Residual Distribution

In order to understand the challenge of maintaining
approximate quantiles using small space, let us consider
the following example: Our goal will be to maintain four
quartiles to within moderate error of �0:1N . Suppose a
transaction stream consists of one million insertions
followed by 999,996 deletions, leaving N ¼ 4 items in the
relation. Our problem specification essentially requires that,
with high probability, we recover the database exactly.2 A
space-efficient algorithm knows very little about a data set
of size one million and it does not knowwhich 999,996 items
will be deleted; yet, ultimately, it must recover the four
surviving items. Although this is a contrived example, it
illustrates the difficulty with maintaining order statistics in
the face of deletes which dramatically change the data
distribution.

Some incremental algorithms ([17], [21], [26]) work by
sampling the data, either randomly and obliviously or with

care to make sure the samples are spaced appropriately.
Some of these techniques give provable results in the
incremental setting. In the dynamic setting, however, a
sample of the million items in the database at its peak size
will be of little use at the time of the query in the example
above since the sample is unlikely to contain any of the four
eventual items. To apply known sampling algorithms, one
needs to sample from the net data set at every point in time,
which is difficult if there is severe cancellation. For
example, in [16], the author addresses the problem of
sampling from the net data set after inserts and deletes and
states that “if a substantial portion of the relation is deleted, it
may be necessary to rescan the relation in order to preserve the
accuracy of the guarantees.”

3.3.2 Handling Distributed Session Data

Some of these issues with sampling arise when one wants to
merge several data sets, even without deleting anything.
That is, suppose there are two data sets for which we have
samples, constructed either carefully or at random. It is not
immediately clear how to combine the samples in a
reasonable way. It is possible that the combined sample
will be different from the sample that would have been
produced directly from the combined data set.

Even with severe cancellation, quantiles of dynamic data
can still be easy if the insertions and deletions come from,
say, the same uniform distribution on a range and the
relation always “covers” the range (even if, asymptotically,
there are as many deletes as inserts). In that case, the net
data set is also from the uniform distribution, so the
quantiles of the net data set are approximately the same as
the corresponding quantiles in the data set of insertions
(ignoring deletions).

In general, however, severe cancellation is possible and
the net distribution can be quite different from the
distribution on insertions. Furthermore, all distributions
can each change over time. In particular, we consider session
data in Section 5. A session, such as a phone call, generates
an insertion when the session starts and a deletion when the
phone call ends. (The value i of the insertion and deletion is
the start time.) Thus, the data set at any time consists of the
active sessions and we can ask questions like “what is the
median duration, start to present, of active sessions?” For
session data, note that:

. The steady-state size of the data set may be constant
or slowly growing so that there is severe cancellation
of insertions with deletions.

. The distribution of insertions changes with time (by
definition).

. If sessions typically have positive duration, then the
distribution on insertions is different from the
distribution on deletions.

4 THE RSS ALGORITHM FOR MAINTAINING

QUANTILES

In this section, we will first present the high-level view of
our algorithm with the main idea. Then, we will present
specific details. In what follows, E½X� and var½X� denote the
expected value and the variance of a random variable X,

4 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 17, NO. 7, JULY 2005

2. For each pair i1; i2 of consecutive items in such a small relation, a
quantiles algorithm gives us some j with i1 � j � i2. One can learn all four
items exactly by making a few queries about �-quantiles for � slightly less
than 1=4 on a database consisting of the four original items and a few
additional inserted items with strategic, known values.

respectively. At first, we will assume that jU j is known to
the algorithm; later, we will remove this assumption.

4.1 High-Level View of the Algorithm

In order to compute approximate �-quantiles, we need a
way to approximate A with a priori guarantees. In fact, our
algorithm works by estimating range-sums of A over dyadic
intervals. A dyadic interval Ij;k is an interval of the form
½k2logðjU jÞ�j; ðkþ 1Þ2logðjU jÞ�j � 1�, for j and k integers. The
parameter j of a dyadic interval is its resolution level from
coarse: I0;0 ¼ U , to fine: IlogðjU jÞ;i ¼ fig. There are logðjU jÞ þ 1
resolution levels and 2jU j � 1 dyadic intervals altogether in
a tree-like structure. We will drop indexes j; k when
referring to a dyadic interval unless it is required from
the context.

We describe the main idea behind our algorithm here.
The simplest form of a dyadic interval estimate is a point
estimate, A½i�. We proceed as follows: Let S be a (random)
set of distinct values, each drawn from the universe with
probability 1/2. Let AS denote A projected onto the set S
and let k AS k¼

P
i2S A½i� denote the number of items with

values in S. We keep k AS k (a single number known as a
Random-Subset-Sum (RSS)) for each of several random sets S.
Observe that the expected value of k AS k is 1

2 k A k since
each point is in S with probability 1

2 .
For A½i�, consider E½k AS k ji 2 S�, which can be esti-

mated by looking at counts k AS k only for the Ss that
contain i (close to half of all Ss, with high probability). One
can show that this conditional expected value is A½i� þ 1

2 k
AUnfig k since the contribution of i is always counted but
the contribution of each other point is counted only half the
time. Since we also know k A k , we can estimate A½i� as

2 A½i� þ 1

2
k AUnfig k

� �
� k A k :

It turns out that this procedure yields an estimate good to
within �N , additively, if we take an average of Oð1=�2Þ
repetitions.

We can similarly be in position to estimate the number of
data set items on any dyadic interval in U , up to ��N , by
repeating the procedure for each dyadic resolution level up
to logðjUjÞ. A set S in this case is a collection of dyadic
intervals from the same level, each taken with probability
1/2. A similar argument as above applies.

By writing any interval as a disjoint union of at most
logðjU jÞ dyadic intervals, we can estimate the number of
data set items in any interval. Now, we can perform
repeated binary searches to find the quantiles left to right
one at a time (i.e., first, second, etc.).

The entire algorithm relies on summarizing A using
RSSs. Each item in 0; . . . ; jU j � 1 participates in the con-
struction of RSSs. In other words, we summarize the
Universe using RSSs. This is a departure from previous
algorithms for finding quantiles, which rely on keeping a
sample of specific items in the input data set.

4.2 Algorithm Details

We will first describe our data structure and its main-
tenance before describing our algorithm for quantile
estimation and presenting its analysis and properties.

4.2.1 Our Data Structure and Its Maintenance

For each resolution level j of dyadic intervals, we do the

following: Pick a subset of the intervals Ij;k at level j. Let S

be the union of these intervals and let k AS k be the count

of values in the data sets that are projected onto S (formally,
k AS k¼

P
i2S A½i�) . We repeat this process

num copies ¼ 24 logðlogðjUjÞ=�Þ logðjU jÞ=�2

times and get sets S1; . . . ; Snum copies (per level). The counts

k ASl
k for all sets that we have picked comprise our

Random Subset Sum summary structure. In addition, we

store (and maintain) k A k¼ N exactly.
We maintain these RSSs during inserts/deletes as

follows: For insert(i), for each resolution level j, we quickly

locate the single dyadic interval Ij;k into which i falls
(determined by the high order bits of i in binary). We then

quickly determine those sets Sl that contain Ij;k. For each

such set, we increase by one the counter for k ASl
k . For

deletions, we simply decrease the counters. This process

can be extended to handle batch insertions/deletion by

increasing/decreasing the counters with appropriate

weights.
An important technical detail is how to store and index

various Sls, which are random subsets. The straightforward

way would be to store them explicitly, perhaps as a bitmap.

But, this would use space OðjU jÞ, which we cannot afford.

For our algorithm, we instead store certain random seeds of
size Oðlog jU jÞ bits and compute a (pseudorandom) function

that explicitly shows whether i 2 Sl or not. For this, we use

the standard three-wise independent random variable
construction shown below since it works well with our

dyadic construction. We note that, for our algorithms, any

pairwise random variable construction would suffice.
We need a generator Gðs; iÞ ¼ Si that quickly outputs the

ith bit of the set S, given i and a short seed s for S. In
particular, the generator takes a Oðlog jU jÞ-bit seed and can

be used to generate sets S of size OðjU jÞ. The generator G is

the extended Hamming code, e.g.,

1 1 1 1 1 1 1 1
0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1

0
BB@

1
CCA;

which consists of a row of 1s and then all the columns, in

order. So, for each resolution level j, there is a G of size
ðjþ 1Þ � 2j. Then, Gðs; iÞ is the seed s of length jþ 1 dotted

with the ith column of G modulo 2, which is efficient to

compute—note that the ith column of G is a 1 followed by

the binary expansion of i. This construction is known to
provide 3-wise independent random variables [5]. We will

use this property extensively when we analyze our

algorithm.

4.2.2 Estimating Quantiles

Our algorithm for estimating quantiles relies on estimating

sum of ranges, i.e., k AI k for intervals I. First, we focus on

dyadic intervals and then extend it to general intervals.

Then, we show how to compute the quantiles:

GILBERT ET AL.: DOMAIN-DRIVEN DATA SYNOPSES FOR DYNAMIC QUANTILES 5

1. Computing k AI k for dyadic intervals I. Recall that
k AI k is simply the number of values in the data set
that fall within the interval I. Given dyadic
interval Ij;k, we want an estimate k AIj;k k� of
k AIj;k k . We consider the random sets only in the
resolution level j. Recall that there are num copies
such sets. Again, using the pseudorandom construc-
tion, quickly test each set to see whether it contains
Ij;k and ignore the remaining sets for this interval.
An atomic computation for k AIj;k k is 2 k ASl

� k A k
for ASl

corresponding to a set Sl containing Ij;k.
2. Computing k AI k for arbitrary intervals. Given an

arbitrary interval I, write I as a disjoint union of at
most logðjU jÞ dyadic intervals Ij;k. For each Ij;k,
group the atomic computations into 3 logðlogðjUjÞ=�Þ
groups of 8 logðjUjÞ=�2 each and take the average in
each group. We can get an estimate for I by
summing one such average for each of the dyadic
intervals Ij;k. Since we have 3 logðlogðjU jÞ=�Þ groups,
this creates 3 logðlogðjU jÞ=�Þ atomic estimates for I.
Their median is the final estimate k AI k� .

In what follows, it is more convenient to

regard our estimate k AI k� as an overestimate,

k AI k�k AI k��k AI k þ�N , by using a value of

� half as big as desired at top level and adding
�
2N to each estimate.

3. Computing the quantiles. We would like to estimate

�-approximate �-quantiles. Recall that � is fixed in

advance. For k ¼ 1; . . . ; 1�� 1, we want a jk such that

k A½0;jkÞ k¼ ðk�� �ÞN . Here, jk is the value with rank

k�, not to be confused with the resolution level j. For

each prefix I, we can compute k AI k� as described

above. Using binary search, find a prefix ½0; jkÞ such
that k A½0;jkÞ k�< k�N �k A½0;jkþ1Þ k� and return jk.

Repeat for all values of k.

We call the entire algorithm for the discovery and

maintenance of quantiles the RSS algorithm.

4.2.3 Analysis of the RSS Algorithm

First, we consider the correctness of our algorithm in the

lemma below and then summarize its performance in a

theorem.

Lemma 1. The RSS algorithm estimates each quantile to within

� k A k¼ �N with probability at least 1� �.

Proof. First, fix a resolution level j. Consider the set S

formed by putting each dyadic interval Ij;k at level j into S

with probability 1=2 as we did. In what follows, we drop

the resolution level when indexing a dyadic interval, so

Ik ¼ Ij;k. Let Xk be a random variable defined by

Xk ¼
2 k AIk k; Ik 2 S;
0; otherwise

�

and let X ¼
P

k Xk. Suppose we are presented with an

interval Ik0 , dyadic at level j. We have, using 3-wise

independence (pairwise will do),

E½XjIk0 2 S� ¼ 2 k AIk0
k þ

X
k 6¼k0

E½Xk�

¼ 2 k AIk0
k þ

X
k 6¼k0
k AIk k

¼ k AIk0
k þ k A k :

ð1Þ

Also, since k AIk0
k� X �k AIk0

k þ2 k A k ,

var½XjIk0 2 S� �k A k2 :

Each prefix I is the disjoint union of r � logðjUjÞ
dyadic intervals at different levels, I ¼ Ik1 [Ik2 [� � � [Ikr .
Let Sj be a random set of intervals at level j and let Y be
the sum of corresponding X estimates. Then, summing
(1) over j,

E½Y j8j Ikj 2 Sj� ¼k AI k þr k A k;

so E½Y j8j Ikj 2 Sj� � r k A ¼k AI k , as desired. (Note
that we have stored k A k exactly.) Also,

var½Y j8j Ikj 2 Sj� � logðjUjÞ k A k2 :

It follows that, if we let Z be the average of
8ðlogðjUjÞ=�2Þ repetitions of Y , the conditional expectation
of Z � r k A k is k AI k and the conditional variance of
Z � r k A k is at most �2N2=8. By the Chebyshev
inequality, jZ � r k A k � k AI k j < �N with probability
at least 7=8. Finally, if we take 3 logðlogðjUjÞ=�Þ ¼
3ðlogð1=�Þ þ log logðjU jÞÞ copies of Z and take a median,
by the Chernoff inequality, jZ � r k A k � k AI k j < �N
with probability at least 1� �= logðjU jÞ. Both Chebyshev
and Chernoff inequalities can be found in [5] and
averaging arguments similar to the above can be found,
for example, in [4].

We performed binary search to find a jk such that
k A½0;jkÞ k�< k�N �k A½0;jkþ1Þ k� . It follows that

k A½0;jkÞ k � k A½0;jkÞ k�
< k�N

� k A½0;jkþ1Þ k�
� k A½0;jkþ1Þ k þ�N;

as desired.
To estimate a single quantile, we will, logðjUjÞ times,

estimate k AI k on a prefix I in the course of binary
search. Since each estimate fails with probability
�= logðjUjÞ, the probability that any estimate fails is at
most logðjU jÞ times that, i.e., �. tu

Therefore, by summing up space used and the time
taken for algorithms we have described, we can conclude
the following.

Theorem 2. The RSS algorithm uses

O log2ðjU jÞ log t logðjU jÞ
��

� �
=�2

� �

space and provides �-approximate �-quantiles with prob-
ability at least 1� � for t queries. The time for each insert or
delete operation and the time to find each quantile on demand
are proportional to the space.

6 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 17, NO. 7, JULY 2005

Note that we can find a single quantile with cost

Oððlog2ðjUjÞ logðlogðjU jÞ=�ÞÞ=�2Þ. If we make t queries, each

of which requests 1=� quantiles, we need the probability of

each failure to be less than ��=t in order that the probability

of any failure to be less than �. This accounts for the cost

factor logðt=�Þ.

4.3 Some Observations on the RSS Algorithm

Our approach of summarizing the universe using RSSs has

interesting implications for our algorithm which we

summarize here:

. The RSS algorithm may return a quantile value
which was not seen in the input. In general, in the
face of severe cancellation, an algorithm with space
less than N cannot keep track of which items are
currently in the data set.

. The distribution on values returned by the
RSS algorithm depends only on the data set active
at the time of the query. Thus, one can change the
order of insertions and deletions (e.g., batch them)
without affecting results.

. Our RSSs are composable, that is, if updates are
generated in two separate locations, each location
can compute random subset sums on its data,
using preagreed common random subsets (seeds).
The subset sums for the combined data set is just
the sum of the two subset sums. Hence, we can
compute the quantiles of the combined data set
very quickly from their RSSs alone. Notice that no
loss in accuracy is generated from this process.
The resulting �-quantiles will be the same had we
directed all transactions to a single RSS (of the
same size) and computed the quantiles there. It is
OK if either or both of the individual data sets are
ill-formed, provided the combined data set is well-
formed. For example, a car rental agency franchise
can insert a record with the model year of a car as
the car is rented out and a (possibly different)
franchise can delete the record when the car is
returned. Thus, the various franchises may com-
pute on ill-formed data sets. To estimate the
median age of cars on the road, the franchises
need only share the subset sums, not the large
data sets; since the combined data set is well-
formed, the computation on the combined RSS is
correct.

. Because RSSs are composable, our entire algorithm
is easily parallelizable. If data is arriving quickly (for
example, in the case of IP network operations data),
the data can be sent to an array of parallel machines
for processing. Of course, the cumulative space
requirements of the RSSs will be multiplied by the
number of parallel machines used. Results can be
composed at the end.

4.4 Extension to When the Universe Size Is
Unknown

In the previous section, we assumed that the universe size is

known in advance. In practice, this may not be the case;

fortunately, our algorithm can easily adapt to an increasing

universe, with modest increased cost factor of at most
log2 logðjU jÞ compared with knowing the universe size in
advance.

We start the algorithm as above, with a predicted range
½0; u� 1� for U . Suppose we see an insertion of i � u ¼ jU j,
where, at first, we assume i < u2. Then, before processing i,
we update the RSS data structure in two ways. First, we
construct random subsets at each of the new (coarser)
resolution levels. We initialize the corresponding RSSs to
zero or to the stored value k A k , as appropriate. For each
of the resolution levels already present, we extend each
random subset to the new universe by picking a new seed
to specify membership within ½u; u2Þ. (We keep both the old
and the new seed for this random subset since we’ll need
both to decide membership on all of ½0; u2Þ.) Each new RSS
at these resolution levels maintains itsr old value, which
remains correct in the context of the new universe ½0; u2Þ
since no elements in ½u; u2Þ have yet been seen. It remains to
analyze the costs of the data structure.

Suppose the largest item seen is i	 and let u	 be the
smallest power of 2 greater than i	. Thus, if we knew i	
in advance, we would use a single instance of RSS on a
universe of size u	, with cost fðu	Þ for f given in
Theorem 2. The multi-instance data structure we con-
struct has the largest instance on a universe of size u2

	
and log logðu2

	Þ instances altogether. Thus, the time and
space costs of the multi-instance data structure are at
most Oðfðu2	Þ log logðu	ÞÞ. Since the dependence on u of f

is polylogarithmic, the cost of the multi-instance data set
is just the factor log logðu	Þ compared with knowing u	 in
advance. An additional cost factor of 2 log j is needed for
the jth instance, j ¼ 1; 2; . . . ; log logðu	Þ, to drive down the
probability of failure to 1=j2 so that the overall probabilityP

j
1
j2

remains bounded. The claimed overhead factor
Oðlog2 logðjU jÞÞ follows.

4.5 Handling Infinite Resolution Domains

We can perform a similar process for items that fall between
elements of the universe. For example, suppose the
universe consists of all text strings of length 20. For ease
of exposition, assume that the text strings are actually bit
strings. If we see a string of length 21, it falls equally spaced
between two strings of length 20. We can extend the
universe to include finer resolution levels in a way
analogous to the way we extended the universe to include
coarser levels above, with only a moderate cost increase
compared with knowing the universe in advance. Of
course, there are additional heuristics that one can employ
for certain cases. For instance, if the dictionary mainly
consists of small strings, it will be more efficient to handle
large strings as an exception and store them aside in a
different data structure.

4.6 The RSS½‘� Algorithm
For the coarsest few levels, say, to level ‘, it is more efficient
to store exact subset sums for each of the (few) dyadic
intervals at that level. This immediately lets us get k AI k
for any I dyadic at that level, in time Oð1Þ. Furthermore, if
space is at a premium, we can store just the subset sums for
the dyadic intervals at level ‘ itself since any coarser interval

GILBERT ET AL.: DOMAIN-DRIVEN DATA SYNOPSES FOR DYNAMIC QUANTILES 7

can be written as the disjoint union of dyadics at level ‘. We
refer to such an implementation as RSS½‘�.

5 RSS-HISTOGRAMS FOR SESSION DATA

In general, the RSS algorithm is designed for arbitrary
dynamic data. In practice, there may be empirical proper-
ties of the data that can be exploited to save space in the
data structure. Previous algorithms considered dynamic
data that is mostly insertions or close to uniform on a
known range. In this section, we consider yet other common
assumptions and show how the RSS algorithm and another
simple algorithm (described below) can be combined to
exploit these assumptions.

We assume that the domain of A is time, discretized in
some sensible fashion (e.g., seconds, minutes) depending on
the application. Our focus is on network monitoring
applications that generate session data (i.e., call detail,
IP flows). Our goal is to provide approximate quantile
computations for the duration (start to present) of active
sessions. We use the following paradigm: Each time a
session starts at time ti, we add 1 to A½ti� and, when the
session ends, we subtract 1 from A½ti� (notice ti is the start-
time of the session in both cases). We call the first operation
an “insertion” and the latter a “deletion.” Our algorithm
directly approximates quantiles for the start time; it is easy
to see that the current time minus the kth �-quantile start
time is the ð1� k�Þth quantile duration, and that approx-
imate quantiles for start time are equivalent to approximate
quantiles for duration.

Observe that our setup typically has several interesting
characteristics:

. The range of possible values (start times) constantly
changes as old sessions end and new sessions begin.
This is markedly different from data drawn from an
unknown distribution that fully covers a known
range.

. The data is subject to severe cancellation. One
expects that, in the long run, each phone call that
is started is also finished.

. Insertions happen only at the right. That is, a new
start time can only be the current time.3 Deletions
can occur anywhere.

In practice, sometimes one can assume a minimum
utilization level on the observed network element Nmin at
time t, i.e.,

Nt ¼
X
ti

At½ti� � Nmin:

Note that, even with large Nmin in force, a stream may still
be subject to severe cancellation and to a shifting range of
values.

If there’s a large Nmin and insertions only occur at the
right, then one can use a simpler algorithm, similar to [13].
The algorithm, at steady state,4 maintains a histogram in
which the bucket sizes are as follows:

. All buckets have size at most �Nmin.

. Any two consecutive buckets have combined size
greater than �Nmin.

When the most recent bucket grows to size �Nmin (due to a
net surplus of inserts over deletions from this bucket), it is
sealed and a new most recent bucket is started. When some
pair of consecutive buckets get a combined size of at most
�Nmin, the two are merged.

By assumption, Nt � Nmin, so �Nmin � �Nt. If we answer
quantile queries from the boundaries of buckets, the error is
at most �Nmin � �Nt, which is allowed. By assumption,
insertions only occur at the right, so buckets other than the
most recent will never grow, so they will never be bigger
than �Nmin. The number of buckets at time t is bounded
above, by OðNt=ð�NminÞÞ, which, depending on Nt=Nmin,
may be much more efficient than RSSs.

If either of these assumptions fails, however, the above
algorithm will be incorrect and something like RSSs are
needed. For instance, Nmin may be small, even zero. Then,
the number of histogram buckets, Nt=ð�NminÞ, will be
unacceptably large. Furthermore, although insertions only
occur at the current time, there may be a delay in reporting
them. For instance, we may have several network elements
that periodically propagate their data to a local processing
node for further processing and summarization. We may
still want approximate quantiles with respect to the best-
effort available data. If insertions can occur in buckets of
size at least �Nt, then the histogram algorithm will fail.

We now address data where Nmin is small or insertions
are delayed but there is a bound to the delay of insertions.
We propose the RSS_hist data structure, a hybrid between
the RSS and histogram, that is provably correct, yet
provides some of the space savings of the histogram
structure. We partition the universe into intervals. Data in
each interval is tracked either by a counter, as in the above
histogram algorithm, or by an RSS. The interval for the most
recent data is always tracked by an RSS because insertions
(which may be delayed) may occur in the interior of that
interval. Intervals where the count is greater than �Nmin are
also tracked by an RSS; other intervals are tracked by
counters.

We need to say how to update this structure:

. By construction, all intervals where (possibly de-
layed) insertions are allowed are tracked by RSSs,
which are updated in the usual way.

. When the time length of the most recent interval gets
to some parameter �U , that interval is sealed and a
new interval is started. At this point, both of the two
most recent intervals are tracked by an RSS since
insertions will be possible in both intervals.

. Two consecutive intervals tracked by counters with
a combined sum of at most �Nmin are merged into a
combined interval tracked by a single counter.

. If a deletion occurs in an interval tracked by an RSS
making the count drop to �Nmin and the interval is

8 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 17, NO. 7, JULY 2005

3. Below, we also consider sessions whose start is not reported to us
immediately. The effect will be that insertions become restricted only to
happen near the right.

4. At the outset, one may either preload the structure with at least
Nmin active sessions hypothesized to exist or, in practice, expect to miss the
sessions active at the start of monitoring. In the latter case, we ignore
deletions of start times prior to the start of monitoring since these refer to
sessions never entered into the data structure.

old enough that insertions are no longer possible, the
RSS is demoted to a single counter for the interval.

By varying �U and our conservative estimate Nmin for
the true minimum utilization, we can tune the space used.

Note that, as Nmin gets small, intervals are likely to have
more than �Nmin elements in which case they are likely to be
tracked by RSSs instead of counters (so the best Nmin to use
is the maximum true value). As �U gets smaller, there are

likely to be more intervals in which delayed insertions are
allowed and, so, RSSs are needed. But, if �U is too big, as
an extreme, we get just a single RSS and no benefit of using
counters. The ideal balance is a situation in which RSSs are

used only where needed and counters are used for vast
sparse portions of the universe.

6 EXPERIMENTS

In [19], we have presented an experimental study of the

performance of the RSS algorithm for synthetic and real

data sets that contain mix of insert and delete operations.

Here we focus on the performance of RSS and RSS_hist

using archived Call Detail Records (CDRs) from AT&T’s

network. Switches constantly generate flows of CDRs that

describe the activity of the network. Ad hoc analysis as part

of network management focuses on active voice calls, that is,

calls currently in progress at a switch. The goal is to get an

accurate, but succinct representation of the length of all

active calls and monitor the distribution over time.

The basic question we want to answer is how to compute

the median length of ongoing calls at any given point in

time, i.e., what is the median length of a call that is currently

active in the network? We then focus on other quantiles.
Our data is presented here as a stream of transactions of

the form

ðtime stamp; orig tel; start time; flagÞ;

where time stamp indicates the time an action has

happened (start/end of a call), orig tel is the telephone

number that initiates the call, start time indicates when a

call was started, and flag has two values: +1 for indicating

the beginning of the call and �1 for indicating the end of the

call. The actual CDRs carry a lot of additional information

that is not required for this discussion.

Given this data, we define a virtual arrayA½ti� that counts
the number of phone calls started at time ti. This array can
be maintained in the following manner: Each time a phone
call starts at time ti, we add 1 to A½ti� and, when the call
ends, we subtract 1 from A½ti� (notice ti is the start time in
both cases). For example, the following CDRs:

describe two phone calls. The first originates from number
999-000-0000, starts at 12:00, and ends at 12:10, while the
second originates from number 999-000-0001 at 12:01 and
lasts for two minutes.

We used a data set of 2.2 million CDRs (4.4 million

records since each phone call generates two records in our

schema) covering a period of 18 hours. Fig. 1 shows the

number of active calls over time; we take one snapshot

every 10,000 records. There are up to 35,000 active calls at

peak times. We first executed the RSS_hist algorithm with

parameters � ¼ 0:1, Nmin ¼ 20; 000, and �U ¼ 2; 048 sec-

onds (i.e., around 35 minutes). We further rounded all

bucket boundaries at times later than the start of monitoring

by some multiple of �U . We assumed that all insertions

occur at the right. Fig. 2 plots the size of the histogram over

time. (Note that the size of an RSS is about 3.7KB and there

were either one, two, or three RSSs throughout the

experiment.) The maximum memory footprint was slightly

below 11KB with the number of buckets in the histogram

varying between 1 and 6.
Fig. 3 plots the error in computing the median of the

ongoing calls (in resolution of 1 second) over time (we

probed for estimates every 10,000 records). We notice that

the actual error is well below the � value used. By cross-

checking these errors with Fig. 1, we notice that the method

is extremely accurate even during periods when the

number of call is less than Nmin (20,000). In Fig. 4, we

repeated this experiment using RSSs and also an imple-

mentation of the algorithm presented in [17] for incremental

maintenance of approximate histograms (denoted Hist in

the figure). This algorithm uses a “backing sample,” which

GILBERT ET AL.: DOMAIN-DRIVEN DATA SYNOPSES FOR DYNAMIC QUANTILES 9

Fig. 1. Active phone calls over time. Fig. 2. Size of RSS_hist over time.

is an approximate random sample of the data set kept up-

to-date in the presence of insert/delete operations. The

backing sample is based on the Reservoir Sampling technique

by Vitter [34]. No rescans were allowed as the focus of this

study is on streaming data. Both algorithms were set up to

use 11KB of space, i.e., the maximum footprint size of the

RSS_hist histogram. Note that an error of � in computing

the median indicates that the rank returned is :5� �. So, an

error of � ¼ 0:5 indicates useless output. In Fig. 5, we

further plot the average error for all �-quantiles for � ¼ 0:10

(deciles). For a more clear view, the y-axis (errors) is

logarithmic. In this figure, note that the maximum error of

the kth �-quantile is maxðk�; 1� k�Þ.

In Fig. 6, we summarize the results for several runs of the
RSS_hist algorithm, varying Nmin and fixing � ¼ 0:1. The
x-axis plots the average error over all deciles and all
snapshots (4,110 values), while the y-axis shows the average
and maximum memory size of the hybrid histogram for
that error.

Up to this point, we concentrated on the absolute

quantile error of the approximation, which is the focus of

this paper. As noted earlier, the maximum error of the kth

�-quantile is maxðk�; 1� k�Þ. An implication of the quantile

computation is that, on sparse areas of the data distribution,

quantile boundaries can be chosen loosely without sacrifice

in the quality of the approximation. In fact, we exploit this

observation in the RSS_hist algorithm. If the location of

the quantile of interest is given by index i1 (in

f0 . . . jUj � 1g), a quantile approximation algorithm that

outputs index i2 with, e.g., i2 > i1, will produce an error

proportional to
Pi2

j¼i1þ1 A½j�. In sparse areas, the actual error

of the quantile computation will be small or even zero when

there are no data points between i1 and i2. For most

applications, this does not seem to have severe implications.

When monitoring session data, the actual index value (ti) of

the quantile computation is important in order to interpret

the results. For a better view of the approximation obtained,

we plot in Fig. 7 the error (in seconds) of the approximation

of the median length of the active calls over time. The errors

for the other deciles were similar. We notice that RSS_hist

10 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 17, NO. 7, JULY 2005

Fig. 3. Actual error in computation of median for � ¼ 0:1.

Fig. 4. Error in computation of median.

Fig. 5. Average error for all � ¼ 0:1 quantiles (log y-axis).

Fig. 6. Maximum and average footprint size of RSS_hist for different

errors.

Fig. 7. Error in estimation of median-length (RSS_hist).

provides a very accurate estimate of the median length of

the calls; the computed median is, on average, within

4.3 seconds of the real value (which was around 4 minutes

on the average).

7 CONCLUSIONS

We have presented an algorithm for maintaining dynamic
quantiles of a relation in the presence of both insert as well
as delete operations. The algorithm maintains a small-space
representation (RSSs) that summarizes the universe and the
underlying distribution of the data within it. This algorithm
is novel in that, without having to access the relation, it can
estimate each quantile to within user-specified precision.
Previously published algorithms provide no such guaran-
tees under the presence of deletions.

Our guarantees are in terms of the universe size and not
in the size of the relation, the number of transactions, or the
ratio of insertions over deletions. The algorithm maintains a
small-space representation (RSSs) that summarizes the
universe and the underlying distribution of the data within
it. Furthermore, it can be adapted for cases where the
universe size or resolution change. In this paper, we
focused on session data as part of network monitoring
applications. We have been able to devise a hybrid
histogram data structure that uses RSSs for approximating
the distribution of active network sessions over time. To our
knowledge, our algorithm is the first to provide strict
guarantees in this setup.

REFERENCES

[1] R. Agrawal, T. Imielinski, and A. Swami, “Mining Associations
between Sets of Items in Massive Databases,” Proc. ACM
SIGMOD, pp. 207-216, May 1993.

[2] R. Agrawal and R. Srikant, “Mining Quantitative Association
Rules in Large Relational Tables,” Proc. ACM SIGMOD, pp. 1-12,
June 1996.

[3] R. Agrawal and A. Swami, “A One-Pass Space-Ecient Algorithm
for Finding Quantiles,” Proc. Conf. Management of Data, 1995.

[4] N. Alon, Y. Matias, and M. Szegedy, “The Space Complexity of
Approximating the Frequency Moments,” Proc. ACM Symp.
Theory of Computing, pp. 20-29, 1996.

[5] N. Alon and J.H. Spencer, The Probabilistic Method. New York:
Wiley and Sons, 1992.

[6] K. Alsabti, S. Ranka, and V. Singh, “A One-Pass Algorithm for
Accurately Estimating Quantiles for Disk-Resident Data,” Proc.
Very Large Data Bases Conf., pp. 346-355, 1997.

[7] M. Blum, R.W. Floyd, V.R. Pratt, R.L. Rivest, and R.E. Tarjan,
“Time Bounds for Selection,” J. Computer and System Sciences, vol. 7,
no. 4, pp. 448-461, 1973.

[8] M. Charikar, K. Chen, and M. Farach-Colton, “Finding Frequent
Items in Data Streams,” Proc. 29th Int’l Colloquium Automata,
Languages, and Programming, 2002.

[9] F. Chen, D. Lambert, and J.C. Pinheiro, “Incremental Quantile
Estimation for Massive Tracking,” Proc. Int’l Conf. Knowledge
Discovery and Data Mining, pp. 516-522, Aug. 2000.

[10] Cisco NetFlow, http://www.cisco.com/warp/public/732/net
flow/, 1998.

[11] G. Cormode, M. Datar, P. Indyk, and S. Muthukrishnan,
“Comparing Data Streams Using Hamming Norms (How to Zero
In),” Proc. Very Large Data Bases Conf., pp. 335-345, 2002.

[12] G. Cormode and S. Muthukrishnan, “An Improved Data Stream
Summary: The Count-Min Sketch and Its Applications,” LATIN,
pp. 29-38, 2004.

[13] M. Datar, A. Gionis, P. Indyk, and R. Motwani, “Maintaining
Stream Statistics over Sliding Windows,” Proc. 13th ACM-SIAM
Symp. Discrete Algorithms, 2002.

[14] D.J. DeWitt, J.F. Naughton, and D.A. Schneider, “Parallel Sorting
on a Shared-Nothing Architecture Using Probabilistic Splitting,”
Proc. Conf. Parallel and Distributed Information Systems, pp. 280-291,
1991.

[15] A. Dobra, M. Garofalakis, J. Gehrke, and R. Rastogi, “Processing
Complex Aggregate Queries over Data Streams,” Proc. ACM
SIMGOD, pp. 61-72, June 2002.

[16] P. Gibbons, “Distinct Sampling for Highly-Accurate Answers to
Distinct Values Queries and Event Reports,” Proc. Very Large Data
Bases Conf., pp. 541-550, 2001.

[17] P. Gibbons, Y. Matias, and V. Poosala, “Fast Incremental
Maintenance of Approximate Histograms,” Proc. Very Large Data
Bases Conf., pp. 466-475, 1997.

[18] A.C. Gilbert and Y. Kotidis, S. Muthukrishnan, and M.J. Strauss,
“Surfing Wavelets on Streams: One-Pass Summaries for Approx-
imate Aggregate Queries,” Proc. Very Large Data Bases Conf., pp. 79-
88, 2001.

[19] A.C. Gilbert, Y. Kotidis, S. Muthukrishnan, and M.J. Strauss,
“How to Sumamtize the Universe: Dynamic Maintenance of
Quantiles,” Proc. Very Large Data Bases Conf., pp. 454-465, 2002.

[20] A.C. Gilbert, S. Guha, P. Indyk, Y. Kotidis, S. Muthukrishnan, and
M.J. Strauss, “Fast, Small-Space Algorithms for Approximate
Histogram Maintenance,” Proc. 34th ACM Symp. Theory of
Computing, pp. 389-398, 2002.

[21] M. Greenwald and S. Khanna, “Space-Efficient Online Computa-
tion of Quantile Summaries,” Proc. ACM SIGMOD, pp. 58-66, May
2001.

[22] P. Indyk, “Stable Distributions, Pseudorandom Generators,
Embeddings and Data Stream Computation,” Proc. 41st Symp.
Foundations of Computer Science, pp. 189-197, 2000.

[23] P. Indyk, N. Koudas, and S. Muthukrishnan, “Identifying
Representative Trends in Massive Time Series Data Sets Using
Sketches,” Proc. Very Large Data Bases, pp. 363-372, 2000.

[24] R. Jain and I. Chlamtac, “The P 2 Algorithm for Dynamic
Calculation of Quantiles and Histograms without Storing Ob-
servations,” Comm. ACM, vol. 28, no. 10, 1985.

[25] T. Johnson, S. Muthukrishnan, P. Dasu, and V. Shkapenyuk,
“Mining Database Structure; or, How to Build a Data Quality
Browser,” Proc. ACM SIGMOD, 2002.

[26] G.S. Manku, S. Rajagopalan, and B.G. Lindsay, “Approximate
Medians and Other Quantiles in One Pass and with Limited
Memory,” Proc. ACM SIGMOD, 1998.

[27] G.S. Manku, S. Rajagopalan, and B.G. Lindsay, “Random
Sampling Techniques for Space Efficient Online Computation of
Order Statistics of Large Data Sets,” Proc. ACM SIGMOD, pp. 251-
262, 1999.

[28] J.I. Munro and M.S. Paterson, “Selection and Sorting with Limited
Storage,” Theoretical Computer Science, vol. 12, pp. 315-323, 1980.

[29] M.S. Paterson, “Progress in Selection,” technical report, Univ. of
Warwick, Coventry, U.K., 1997.

[30] V. Poosala, “Histogram-Based Estimation Techniques in Database
Systems,” PhD dissertation, Univ. of Wisconsin-Madison, 1997.

[31] V. Poosala and Y.E. Ioannidis, “Estimation of Query-Result
Distribution and Its Application in Parallel-Join Load Balancing,”
Proc. Very Large Data Bases Conf., pp. 448-459, 1996.

[32] V. Poosala, Y.E. Ioannidis, P.J. Haas, and E.J. Shekita, “Improved
Histograms for Selectivity Estimation of Range Predicates,” Proc.
ACM SIGMOD, pp. 294-305, 1996.

[33] Y. Matias, J. Vitter, and M. Wang, “Dynamic Maintenance of
Wavelet-Based Histograms,” Proc. Very Large Data Bases Conf.,
pp. 101-110, Sept. 2000.

[34] J.S. Vitter, “Random Sampling with a Reservoir,” ACM Trans.
Math. Software, vol. 11, no. 1, pp. 37-57, 1985.

GILBERT ET AL.: DOMAIN-DRIVEN DATA SYNOPSES FOR DYNAMIC QUANTILES 11

Anna Gilbert received the SB degree from the
University of Chicago and the PhD degree from
Princeton University, both in mathematics. She
is an assistant professor in the Mathematics
Department at the University of Michigan. From
1998 to 2004, she was a member of technical
staff at AT&T Labs-Research in Florham Park,
New Jersey. From 1997 to 1998, she was a
postdoctoral fellow at Yale University and AT&T
Labs-Research. Her interests include analysis,

probability, networking, and algorithms.

Yannis Kotidis received the BSc degree in
electrical engineering and computer science
from the National Technical University of
Athens and the MSc and PhD degrees in
computer science from the University of Mary-
land. He is a senior technical specialist at
AT&T Labs-Research in Florham Park, New
Jersey. His interests include data warehousing,
approximate query processing, sensor/stream
databases, and data integration.

S. Muthukrishnan graduated from the Cour-
ant Inst of Mathematical Sciences; his thesis
work was on probabilistic games and pattern
matching algorithms. He was a postdoctoral
researchers working on computational biology
for a year, on the faculty at the University of
Warwick, United Kingdom, and has been at
Bell Labs and then at AT&T Research and
Rutgers University. His research explores
fundamental algorithms as well as algorithms

applied to databases, networking, compression, scheduling, etc.

Martin J. Strauss receives the AB degree from
Columbia University and the PhD degree from
Rutgers University, both in mathematics, and
spent a year at Iowa State University and seven
years at AT&T before joining the University of
Michigan. He is an assistant professor in the
Math and Electrical Engineering and Computer
Science Departments at the University of Michi-
gan. He has written several articles in algo-
rithms, complexity theory, cryptography, and

computer security, mathematical approximation theory, and other topics.
Dr. Strauss is currently interested in algorithms for massive data sets.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

12 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 17, NO. 7, JULY 2005

