
Chimp: Efficient Lossless Floating Point Compression
for Time Series Databases

Panagiotis Liakos
Athens University of

Economics and Business
Athens, Greece

panagiotisliakos@aueb.gr

Katia Papakonstantinopoulou
Athens University of

Economics and Business
Athens, Greece
katia@aueb.gr

Yannis Kotidis
Athens University of

Economics and Business
Athens, Greece
kotidis@aueb.gr

ABSTRACT

Applications in diverse domains such as astronomy, economics
and industrial monitoring, increasingly press the need for analyz-
ing massive collections of time series data. The sheer size of the
latter hinders our ability to efficiently store them and also yields
significant storage costs. Applying general purpose compression al-
gorithmswould effectively reduce the size of the data, at the expense
of introducing significant computational overhead. Time Series
Management Systems that have emerged to address the challenge
of handling this overwhelming amount of information, cannot suf-
fer the ingestion rate restrictions that such compression algorithms
would cause. Data points are usually encoded using faster, stream-
ing compression approaches. However, the techniques that contem-
porary systems use do not fully utilize the compression potential
of time series data, with implications in both storage requirements
and access times. In this work, we propose a novel streaming com-
pression algorithm, suitable for floating point time series data. We
empirically establish properties exhibited by a diverse set of time
series and harness these features in our proposed encodings. Our
experimental evaluation demonstrates that our approach readily

outperforms competing techniques, attaining compression ratios
that are competitive with slower general purpose algorithms, and
on average around 50% of the space required by state-of-the-art
streaming approaches. Moreover, our algorithm outperforms all
earlier techniques with regards to both compression and access time,
offering a significantly improved trade-off between space and speed.
The aforementioned benefits of our approach –in terms of all space
requirements, compression time and read access– significantly im-
prove the efficiency in which we can store and analyze time series
data.

PVLDB Reference Format:

Panagiotis Liakos, Katia Papakonstantinopoulou, and Yannis Kotidis.
Chimp: Efficient Lossless Floating Point Compression
for Time Series Databases. PVLDB, 15(11): 3058 - 3070, 2022.
doi:10.14778/3551793.3551852

PVLDB Artifact Availability:

The source code, data, and/or other artifacts have been made available at
https://github.com/panagiotisl/chimp.

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 15, No. 11 ISSN 2150-8097.
doi:10.14778/3551793.3551852

1 INTRODUCTION

Applications found in multiple industries, such as healthcare, fin-
ance, environmental monitoring and manufacturing, are producing
high quality information in the form of time-ordered data sequences
at an unprecedented rate [11, 32, 36]. Consequently, data analysts
are awash in petabytes of measurements that they need to har-
ness to deliver valuable and accurate insights. However, the sheer
volume of the generated time series data hardens the task of stor-
ing them for subsequent analysis, as the respective space required
translates to excessive storage costs [25]. One way to cope with the
increasing volume of data points is to compress them, to reduce the
overall space requirements, while also providing data analysts with
access to all historical data. Besides the obvious storage savings, the
reduced requirements would also improve the performance of read
queries, as fewer disk pages need to be read and more blocks can
be cached in memory. Nonetheless, general purpose compression
algorithms are quite expensive and their use would significantly
impede the ingestion of voluminous data sequences.

Indeed, Time Series Management Systems (TSMSs) [17], that
have recently emerged due to the growing need for systems that
efficiently handle the velocity and volume of time series data, pre-
dominantly avoid using general purpose compression algorithms.
Instead, to reduce the space requirements of storing both the meas-
urements and the respective timestamps, TSMSs adopt alternative,
faster compression approaches. When handling floating point time
series data, an effective compression technique is to perform a
bitwise XOR operation between the current value and the previ-
ous value. The resulting set of bits describing the difference is
likely to contain a lot of zeros, as neighboring data points do not
change significantly. This technique is the basis of many existing
approaches [13, 16, 24, 34], including Gorilla [33], the state-of-the-
art lossless compression algorithm currently employed in most
widely-used TSMSs. All these XOR-based floating point compres-
sion algorithms support compression over a stream of data and
are fast enough to handle the ingestion rate requirements of con-
temporary systems. However, despite their advantages and wide
adoption, their respective space savings are very modest and, in
any case, not on par with those of general purpose compression
algorithms.

In this paper, we perform a rigorous study of compression al-
gorithms suitable for floating point data to uncover the advantages
and disadvantages of different approaches. We also study various
real-world floating point time series and bring to light properties
that provide high compression potential. Our investigation shows
that when two consecutive floating point values are not identical,
their respective XORed value is not likely to have a large number of

https://doi.org/10.14778/3551793.3551852
https://github.com/panagiotisl/chimp
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3551793.3551852

trailing zeros. On the contrary, most resulting XORed values exhibit
a considerable number of leading zeros. Based on our findings, we
design and propose Chimp, a novel lossless streaming compres-
sion algorithm that preserves the compression and decompression
speed of earlier streaming approaches, while also providing signi-
ficant space savings that are competitive with slower, yet extremely
effective general purpose compression schemes.

Chimp builds upon the distribution of the number of leading
zeros to provide a very space efficient representation that is fre-
quently reused by successive values. Moreover, we induce impress-
ive compression rates by exploiting trailing zeros only when their
number is large enough to provide savings. Finally, we propose
a variant of our algorithm, termed Chimp128, that examines addi-
tional earlier values –besides the immediately previous one– to
compare with the current value. In this way, Chimp128 identifies
values that significantly boost our compression potential and help
us greatly outperform the current state-of-the-art streaming ap-
proaches. Due to our space savings and the use of a sophisticated
data structure that enables us to quickly retrieve the best candid-
ate values, Chimp128 offers impressive performance with regard to
compression speed as well. These findings establish our approach as
the undisputed preferable option for the compression of floating
point time series, as we provide space-efficiency that is equivalent
with up to 48𝑥 slower general purpose compression approaches
while also being at least as fast as the state-of-the-art streaming
approaches. Overall, our improvements with regards to all compres-
sion time, decompression time, and space requirements, directly
translate to significant tangible benefits for applications that work
with time series data.

We summarize here the key contributions of our proposed com-
pression algorithm. In particular, we:

• perform a survey of compression algorithms suitable for
floating point data and investigate their pros and cons.

• uncover and report important properties of floating point
time series towards fully exploiting their compression po-
tential, through a highly efficient streaming approach.

• significantly reduce the space requirements for compress-
ing floating point data, compared to state-of-the-art stream-
ing approaches. We show that our optimized representa-
tions offer improvements that reach up to 70% over earlier
approaches, requiring on average about half of the space.

• greatly outperform general purpose algorithms that provide
better compression ratio by offering up to 48 times faster
compression. We also outperform streaming techniques
in terms of speed as far as both compression and decom-
pression of the values are concerned, offering an overall
significantly improved trade-off between space and speed,
which clearly stands out compared to earlier efforts, stream-
ing or not.

2 PRELIMINARIES

We begin our discussion by providing definitions that will be useful
throughout the paper in Section 2.1. Next, we detail the standard we
use for the representation of floating point numbers in Section 2.2,
and discuss the state-of-the-art Gorilla compression scheme for
floating-point time series in Section 2.3.

sign

exponent
(11 bits)

fraction
(52 bits)

Figure 1: 64-bit IEEE 754 double precision floating point

format. One bit is used for the sign, 11 bits for the expo-

nent and 52 bits for the fraction.

2.1 Floating Point Time Series

We first provide necessary definitions in the context of our work:

Definition 2.1 (Time series). A time series 𝑇𝑆 is a sequence of
data points, represented as timestamp and value pairs, ordered by
time in increasing order: 𝑇𝑆 = ⟨(𝑡1, 𝑣1), (𝑡2, 𝑣2), . . .⟩. For each pair
(𝑡𝑖 , 𝑣𝑖) the timestamp 𝑡𝑖 represents the time when the value 𝑣𝑖 was
recorded.

Definition 2.2 (Bounded Time series). A time series 𝑇𝑆 that com-
prises a fixed number of 𝑛 data points 𝑇𝑆 = ⟨(𝑡1, 𝑣1), . . . , (𝑡𝑛, 𝑣𝑛)⟩
is a bounded time series.

Definition 2.3 (Floating Point Time series). A time series 𝑇𝑆 =

⟨(𝑡1, 𝑣1), (𝑡2, 𝑣2), . . .⟩ with 𝑣𝑖 ∈ R for all 𝑖 ∈ N, is a floating point

time series.

The following is an example of a floating point time series, with
each pair representing the timestamp, in seconds, since the record-
ing of measurements was initiated, and the respective values:

𝑇𝑆 = ⟨(0, 3.2), (5, 3.7), (10, 3.2), . . .⟩.
We can construct a bounded floating point time series by using a
subset of data points from 𝑇𝑆 , for example conditioning on 0 ≤
𝑡𝑖 ≤ 100.

In this paper our focus is on floating point time series, bounded
or not, and their representation using the double precision floating
point format that occupies 64 bits in memory.

2.2 IEEE 754 Double Precision Floating Point

Format

The IEEE Standard for Floating-Point Arithmetic (IEEE 754) is a
technical standard for floating-point computation and is currently
themost common representation for real numbers on computers [5].
First established in 1985, the standard addressed the inconsistencies
caused due to many diverse floating point implementations used
earlier, as each computer manufacturer developed its own floating
point system [31].

The standard specifies two basic formats, single and doublewhich
use a 32-bit single word and a 64-bit double word, respectively. The
single word format is not adequate for many applications, due to the
greater exponent range needed and -more frequently- the higher
precision required [31]. Figure 1 shows the three basic components
of the IEEE 754 double precision floating point data type:

• The sign (S) of the number: This one-bit field specifies
either 0 for positive or 1 for negative.

• The biased exponent (E) of the number in base 2. This
field contains 11 bits. The exponent is biased by 𝐵 = 1023.

• The fractional (F) part of the number’s significand in base
2. This field contains 52 bits.

A number 𝑥 has the following form in the double-precision floating-
point representation:

𝑥 = (−1)𝑆 × 2(𝐸−𝐵) × 1.𝐹
An exponent value of 1023, i.e., equal to B, represents the actual
zero. Exponents of −1023 (all 0s) and +1024 (all 1s) are reserved for
special numbers. Thus, the biased exponent ranges from −1022 to
+1023. The double precision floating point data type provides from
15 up to 17 significant decimal digits precision (2−53 ≈ 1.11×10−16).

2.3 Gorilla Compression

Gorilla [33] introduces a streaming compression scheme that is
suitable for double precision floating point numbers, as specified
in the IEEE 754 standard. Gorilla was proposed by Facebook as
part of an in-memory time series storage engine that was later
open-sourced as Beringei1 and is currently used as the default
encoding for floating point measurements in most well known time
series databases, including InfluxDB,2 IotDB3 [39], Prometheus,4
TimeScaleDB5 and M3.6

The compression scheme of Gorilla is a simplified version of the
algorithm discussed in [34]. More specifically, Gorilla discards the
expensive prediction phase featured in [34], and simply compares
the value to be compressed with the previous value. This simpli-
fication is based on the empirical observation that real-world time
series values do not change significantly when compared to their
neighboring data points. Therefore, consecutive values will often
have identical sign, exponent, as well as the first few bits of the
significand. Gorilla leverages this empirical property by computing
a simple XOR between the current and previous values, in an at-
tempt to come up with many successive leading and trailing zeros.
Then, Gorilla encodes these long runs of zeros storing only their
count, followed by the raw block of meaningful bits in-between
the leading and trailing zeros. More specifically, Gorilla uses the
following variable length encoding scheme:

• The first value is stored with no compression.
• If XOR with the previous value is zero, i.e., the values are

identical, store a single ‘0’ bit.
• When XOR is non-zero, calculate the number of leading and

trailing zeros in the XOR, store bit ‘1’ followed by either:
– Control bit ‘0’: If the block of meaningful bits falls

within the block of previous meaningful bits, i.e., there
are at least as many leading zeros and as many trailing
zeros as with the previous value, use that information
for the block position and just store the meaningful
XORed value.

– Control bit ‘1’: Store the length of the number of lead-
ing zeros in the next 5 bits, then store the length of
the meaningful XORed value in the next 6 bits. Finally
store the meaningful bits of the XORed value.

1https://github.com/facebookarchive/beringei
2https://github.com/influxdata/influxdb
3https://github.com/apache/iotdb
4https://github.com/prometheus/prometheus
5https://github.com/timescale/timescaledb
6https://github.com/m3db/m3

Algorithm 1: Gorilla
1 Function Gorilla (𝑣𝑎𝑙𝑢𝑒 , 𝑠)
2 if 𝑓 𝑖𝑟𝑠𝑡 = 𝑇𝑟𝑢𝑒 then

3 s.write_bits(value, 64);
4 𝑠.𝑓 𝑖𝑟𝑠𝑡 ← 𝐹𝑎𝑙𝑠𝑒 ;

5 else

6 𝑥𝑜𝑟𝑒𝑑_𝑣𝑎𝑙𝑢𝑒 ← 𝑣𝑎𝑙𝑢𝑒 ⊕ 𝑠.𝑝𝑟_𝑣𝑎𝑙𝑢𝑒 ;
7 if 𝑥𝑜𝑟𝑒𝑑_𝑣𝑎𝑙𝑢𝑒 = 0 then
8 s.write_bit(0);

9 else

10 s.write_bit(1);
11 𝑙𝑒𝑎𝑑 ← 𝑐𝑜𝑢𝑛𝑡_𝑙𝑒𝑎𝑑𝑖𝑛𝑔 (𝑥𝑜𝑟𝑒𝑑_𝑣𝑎𝑙𝑢𝑒) ;
12 𝑡𝑟𝑎𝑖𝑙 ← 𝑐𝑜𝑢𝑛𝑡_𝑡𝑟𝑎𝑖𝑙𝑖𝑛𝑔 (𝑥𝑜𝑟𝑒𝑑_𝑣𝑎𝑙𝑢𝑒) ;
13 if 𝑙𝑒𝑎𝑑 ≥ 𝑠.𝑝𝑟_𝑙𝑒𝑎𝑑 & 𝑡𝑟𝑎𝑖𝑙 ≥ 𝑠.𝑝𝑟_𝑡𝑟𝑎𝑖𝑙 then
14 s.write_bit(0);
15 𝑐𝑒𝑛𝑡𝑒𝑟_𝑏𝑖𝑡𝑠 ← 64 − 𝑠.𝑝𝑟_𝑙𝑒𝑎𝑑 − 𝑠.𝑝𝑟_𝑡𝑟𝑎𝑖𝑙 ;
16 s.write_bits(value[s.pr_lead:-s.pr_trail], center_bits);

17 else

18 s.write_bit(1);
19 s.write_bits(lead, 5);
20 𝑐𝑒𝑛𝑡𝑒𝑟_𝑏𝑖𝑡𝑠 ← 64 − 𝑙𝑒𝑎𝑑 − 𝑡𝑟𝑎𝑖𝑙 ;
21 s.write_bits(center_bits, 6);
22 s.write_bits(xored_value»trail, center_bits);
23 𝑠.𝑝𝑟_𝑙𝑒𝑎𝑑 ← 𝑙𝑒𝑎𝑑 ;
24 𝑠.𝑝𝑟_𝑡𝑟𝑎𝑖𝑙 ← 𝑡𝑟𝑎𝑖𝑙 ;

25 s.𝑝𝑟_𝑣𝑎𝑙𝑢𝑒 ← 𝑣𝑎𝑙𝑢𝑒 ;

This operation is detailed in Algorithm 1. We note that Gorilla
uses flags ‘0’, ‘10’, and ‘11’ to signify three different cases. Thus,
Gorilla clearly favors the case of consecutive identical values, as the
respective flag, i.e., ‘0’, uses a single bit. Moreover, Gorilla attempts
to jointly exploit similarities in the number of leading and trailing
zeros of consecutive XORed values. Naturally, such a case would
work best when the expected number of both leading and trailing
zeros is large and relatively stable. In what follows, we perform a
rigorous study to investigate whether these design principles of
Gorilla are aligned with properties exhibited by a diverse set of
real-world and synthetic time series datasets.

3 PROPERTIES OF REAL-WORLD TIME SERIES

The original focus of Gorilla is on compressing time series values
that could be both floating point or integer numbers. Yet, there exist
much more efficient schemes for compressing integer time series,
such as: (i) Delta encoding, (ii) Delta-of-delta encoding, (iii) Run-
length encoding, and (iv) Simple-8b [7]. Thus, TSMSs opt to exploit
the aforementioned algorithms when dealing with integer numbers
and achieve greater savings than what the Gorilla scheme can
offer [8]. In the context of TSMSs, Gorilla is exclusively used for
compressing floating point data. Also, similarly to other time-aware
schemes [22], timestamps are compressed separately.

Here, we study various diverse and predominantly real-world
time series to investigate the properties that floating point values
exhibit, and whether these properties are inline with the design
principles of Gorilla. The dataset we use comprises the fourteen
time series listed in Table 2 and is detailed in Section 5.1.

3.1 Trailing Zeros

Figure 2 shows the distribution of the number of trailing zeros
that result when performing bitwise XOR between two consecutive
values for all the time series of our dataset. We observe that with the

https://github.com/facebookarchive/beringei
https://github.com/influxdata/influxdb
https://github.com/apache/iotdb
https://github.com/prometheus/prometheus
https://github.com/timescale/timescaledb
https://github.com/m3db/m3

City-temp

Stocks-UK

Stocks-USA

Stocks-DE

IR-bio-temp

Wind-dir

PM10-dust

Dew-point-temp

Air-pressure

Basel-wind

Basel-temp

Bitcoin-price

Bird-migration

Air-sensor

 0 20 40 60 80 100

64 bits %6-63 bits %0-5 bits %

Trailing bits distribution

6
4

b
i
t
s

%

6
-
6
3

b
i
t
s

%

0
-
5

b
i
t
s

%

Figure 2: Average number of trailing zeros in the XOR with

the previous value for various time series datasets.

0.2: 00111111 11001001 10011001 10011001 10011001 10011001 10011001 10011010
0.4: 00111111 11011001 10011001 10011001 10011001 10011001 10011001 10011010
0.8: 00111111 11101001 10011001 10011001 10011001 10011001 10011001 10011010
2.2: 01000000 00000001 10011001 10011001 10011001 10011001 10011001 10011010

(a) Common trailing bits with 0.2

0.002: 00111111 01100000 01100010 01001101 11010010 11110001 10101001 11111100
0.004: 00111111 01110000 01100010 01001101 11010010 11110001 10101001 11111100

(b) Common trailing bits with 0.002

Figure 3: Floating point numbers for which XORwould result

in many trailing zeros.

exception of two time series, namely PM10-dust and Air-pressure,
it is rather unlikely for two consecutive values to be identical. For
most of the time series examined there are limited cases of resulting
XORed values with 64 trailing zeros. Moreover, we observe that
with very high probability the resulting values have less than six
trailing zeros. Therefore, the design choice of Gorilla to reserve six
bits to denote the number of trailing zeros,7 actually increases the
space requirements of simply storing the actual bits. Finally, there
are only three datasets for which there is a significant number of
cases of trailing zeros in the range 6−63, i.e., City-temp, Stocks-UK,
and PM10-dust. The first two use a single decimal digit and, as we
can see in Figure 3a, there are many cases in which the XOR of
different values with this precision causes a considerable number
of trailing zeros in that range. PM10-dust uses 3 decimal digits, but
certain fractional parts, such as the ones of Figure 3b, are much
more frequent than others in this dataset. In most of the time series
of Figure 2, we can clearly see that there are very few cases of
resulting values with trailing zeros in the range 6 − 63.

3.2 Leading Zeros

The first twelve digits of a double floating point number represent
the sign and exponent, as we can see in Figure 1. Therefore, we
expect measurements whose values do not change significantly to
have many common leading bits. Figure 4 depicts the distribution
of the number of leading zeros that result when applying bitwise

7Gorilla implicitly denotes the number of trailing bits by storing the number of mean-
ingful bits (Line 21 of Algorithm 1).

 0

 5

 10

 15

 20

 25

 30

 0 4 8 12 16 20 24 28 32

P
e
r
c
e
n
t
a
g
e

Bits

Zero leading bits

City−temp
Stocks−UK

Stocks−USA
Stocks−DE

IR−Bio−temp
Wind−dir

PM10−dust
Dew−point−temp
Air−pressure
Basel−wind
Basel−temp

Bitcoin price
Bird migration

Air sensor

Figure 4: Distribution of the number of leading zeros in the

XOR with the previous value for various time series datasets.

The resulting values exhibit a considerable amount of leading

zeros, with very limited cases in the range 1-7.

XOR between two consecutive values for all the time series of our
dataset. As we can see, for most time series the result usually has at
least 12 leading zeros, meaning that both the sign and the exponent
of the XORed values are identical. This is not the case for City-temp,
PM10-dust, and Wind-dir that often exhibit smaller runs of leading
zeros, in the range 8 − 12. This means that the exponent is not
identical, but quite similar, as a few of its less significant bits are
different. We also notice in Figure 4 that Air-pressure is the only
dataset whose successive values produce a large number of leading
zeros when XORed. This is due to the large integer part the values
of this dataset have, which causes similarity between consecutive
values with regards to all sign, exponent, and the first bits of the
significand. However, even for the Air-pressure dataset, XORed
values rarely have more than 30 leading zeros.

3.3 Revisiting Gorilla Compression

The investigation we performed using various diverse time series
uncovered several properties that allow for effective compression.
Here, we discuss whether the design principles of Gorilla exploit
these properties sufficiently.

3.3.1 Flag Bits. Figure 5 shows the three different cases of XORed
values that Gorilla considers, along with their respective flag bit
sequences, i.e., ‘0’, ‘10’, and ‘11’. The use of a single ‘0’ bit represents
the case of a zero XORed value, that results when two consecutive
measurements are identical. However, the results shown in Figure 2
indicate that this is usually not the most frequent case. In fact,
we see that there are only two datasets in which the frequency
of zero XORed values is larger than 30%. Therefore, a different
assignment of flags that would use the smallest bit sequence for
a more frequent case would be beneficial towards obtaining an
improved compression ratio.

3.3.2 Length of Meaningful XORed Value (Center Bits). In the right-
most case of Figure 5, applied to non-zero XORed values whose
block of meaningful bits does not fall within the block of previous

vt⊕vt-1

write:

'0' (1 bit)

center bits

write '0' write '1'

write:

'1' (1 bit)

leading count (5 bits)

center count (6 bits)

center bits

result=0 result≠0

leadingt ≥ leadingt-1 leadingt < leadingt-1

Figure 5: Gorilla compression algorithm.

meaningful bits, Gorilla stores the length of the meaningful XORed
value using 6 bits. This allows for omitting all trailing zero bits,
whose number can be derived from the length of leading zero bits
and the length of the meaningful XORed value. However, Figure 2
shows that when two consecutive values are not identical, the num-
ber of trailing zeros in the XORed values is usually less than 6.
Therefore, this strategy of Gorilla clearly leads to spending more
bits than what the respective projected savings actually are. If we
explicitly stored the trailing zeros when their number is small, we
would be able to save these 6 bits, as we could derive the length of
the meaningful XORed value directly from the number of leading
zeros.

3.3.3 Previous Block Position. In the bottom-left case of Figure 5,
used when the block of meaningful bits of a non-zero XORed value
falls within the block of previous meaningful bits, Gorilla uses
the existing information for the block position and just stores the
meaningful XORed value. More often than not, however, the value
to be stored has more leading or trailing zeros than the previous
block position specifies.

Table 1 reports for every time series of our dataset the average
total leading and trailing zero bits, along with averages of zero
bits that this strategy fails to utilize. We see that a considerable
percentage of both leading and trailing zero bits is not exploited.
With regard to leading zero bits, the loss due to the grouping of
meaningful bits that Gorilla applies, is at least as equal to the space
required to specify the actual number of leading zeros, i.e., 5 bits,
for 11 out of 14 datasets. Moreover, in the last row of Table 1 we see
that this strategy leads Gorilla to explicitly store on average 6.49
leading zero bits, a figure that is larger than the prospective gain.

Table 1 also shows that for 13 out of 14 time series almost all

trailing zero bits are not utilized. This is particularly important for
City-temp and PM10-dust that exhibit a large average number of
trailing zero bits and thus, the respective unexploited potential is
substantial. The Stocks-UK time series stands out in Table 1, as
Gorilla generally manages to take advantage of its trailing bits.
However, we must note that there are large parts of Stocks-UK that

Table 1: Average leading and trailing bits, and the respective

bit that remain unexploited due to the grouping of meaning-

ful bits that Gorilla uses.

Dataset

Av. leading bits Av. trailing bits

total unexploited total unexploited

City-temp 14.18 8.85 9.20 9.19
Stocks-UK 21.71 5.38 17.26 2.44
Stocks-USA 22.14 4.62 0.99 0.96
Stocks-DE 21.86 4.84 1.1 1.09
IR-bio-temp 16.84 7.45 1.28 1.27
Wind-dir 11.95 7.27 2.04 2.03
PM10-dust 12.52 4.36 7.69 7.36
Dew-point-temp 16.59 5.54 1.19 1.19
Air-pressure 24.62 6.3 1.11 1.09
Basel-wind 12.19 10.71 1.07 1.06
Basel-temp 13.69 8.01 2.31 2.31
Bitcoin-price 18.9 5.25 1.07 1.07
Bird-migration 20.05 7.23 1.02 1.01
Air-sensor 19.27 5.0 0.99 0.99
Average 17.61 6.49 3.45 2.36

have only 0.5 precision, which causes many resulting XORed values
with 40 or more trailing zero bits. For the rest of Stocks-UK values
that have 0.1 precision, the trailing zero bits that are not utilized
are almost equal to the total trailing zero bits, similarly to all other
datasets. Therefore, the grouping of meaningful bits that Gorilla
uses is not a suitable strategy for trailing zero bits either. Overall,
the results of Table 1 clearly demonstrate that Gorilla’s attempt to
jointly exploit the number of both leading and trailing zeros is not
particularly successful. Instead, this design choice very often leads
to spending additional space.

4 OVERVIEW

In this section, we first provide the details of our novel compression
algorithm. Then, we investigate how we can further exploit the
previously encountered values of a time series and propose a variant
of our algorithm, that further improves its efficiency.

4.1 Our Chimp Algorithm

We discuss here our Chimp8 algorithm for compressing floating
point time series. Similar to Gorilla, Chimp is a lossless streaming
compression algorithm, suitable for settings in which high through-
put rates are essential, as in the case of TSMSs. The latter have
widely adopted Gorilla as the de facto standard for compressing
floating point time series, even though Gorilla’s original scope was
both integer and floating point data. In the following we provide
the details of Chimp and discuss its novel key aspects that better
exploit the properties of floating point time series.

4.1.1 Possible Flag Sequences. Our empirical investigation showed
that identical consecutive measurements are not very frequent in
floating point time series. Thus, the design choice of Gorilla to use a

8Chimps are smaller in size compared to Gorillas, and they are known to have bigger
brains, which makes them more intelligent.

vt⊕vt-1

write:

'0' (1 bit)

non-lead bits

write '0' write '1'

write:

'1' (1 bit)

leading count (3 bits)

non-lead bits

trailing_count>log264 trailing_count≤log264

leadingt=leadingt-1

write:

'0' (1 bit)

write:

'1' (1 bit)

leading count (3 bits)

center count (6 bits)

center bits

result=0 result≠0

leadingt≠leadingt-1

Figure 6: Chimp compression algorithm.

smaller flag sequence to signify this case is not particularly effective
when focusing exclusively on floating point data. We considered
assigning a smaller flag sequence to a more frequent case. However,
differentiating between 4 cases instead of 3, opens up further op-
portunities for significant savings. Therefore, we designed Chimp
to use a total of four 2-bit-long flag sequences. These four different
cases are illustrated in Figure 6.

4.1.2 Representing the Length of Leading Zero Bits. Similarly to
earlier approaches [13, 16, 24, 33, 34], Chimp uses a bitwise XOR op-
eration to exploit similarities between consecutive measurements.
More specifically, the intent of this operation is to generate a res-
ulting value with long runs of leading and trailing zeros. Our in-
vestigation over a diverse set of predominantly real-world floating
point time series, showed that the resulting XORed values rarely
have more than 30 leading zeros. Thus, the design choice of Gorilla
to use 5 bits for the representation of up to 31 leading zeros is suffi-
cient for most cases. However, we can come up with an improved
representation of the number of leading zeros using 4 bits, instead
of 5, at 2-bit granularity. In particular, we use mapping 𝑓 : 𝐴→ 𝐵,
where 𝐴 = {0, 1, . . . , 2𝑛 − 1}, 𝐵 = {0, 1, . . . , 2𝑛−1 − 1}, and 𝑛 ∈ N,
given by

𝑓 (𝑥) =
{︄
𝑥
2 , when x is even, and
𝑥−1
2 , when x is odd

(1)

to encode the run of leading zeros using one fewer bit. In addition,
we use mapping 𝑓 ′ : 𝐵 → 𝐶 , where 𝐶 = {0, 2, . . . , 2𝑛 − 2}, given by
𝑓 ′(𝑥) = 2𝑥 , to decode the run of leading zeros. It is evident that the
above mappings are lossy in the case of odd numbers, with an error
that is always equal to 1. Therefore, to preserve all information for
odd numbers, we have to encode a zero bit along with the remaining
XORed value. Despite this fact, this representation is always at least
as compact as that of Gorilla, as shown below.

Theorem 1. Given a 64-bit sequence 𝑠 to be represented as a run
of its leading zeros followed by its raw remaining bits, encoding the
run using 𝑛 − 1 bits at 2-bit granularity is at least as space-efficient
as encoding it using 𝑛 bits at 1-bit granularity.

Proof. Let’s assume that 𝑠 is even. Using Eq.(1) we can represent
without error any even whole number smaller than 2𝑛 using 𝑛 − 1
bits. Thus, by encoding the run of leading zeros with 𝑛 − 1 bits
at 2-bit granularity instead of 𝑛 bits at 1-bit granularity, we save
exactly one bit without increasing the length of the remaining bits.
Now, let’s assume that 𝑠 is odd. Using Eq.(1), we can encode any odd
natural number smaller than 2𝑛 using just𝑛−1 bits, with error 𝜖 that
is always equal to 1. To obtain a lossless representation, we store the
extra zero together with the remaining bits. This will increase the
length of the remaining bits by exactly one bit. However, encoding
the run using 𝑛 − 1 bits instead of 𝑛 bits retains the overall space
requirements unchanged. □

We can further improve the space efficiency of the leading zeros
representation by exploiting their distribution, shown in Figure 4.
We observe that small values of runs are rarely encountered. Thus,
our final design for Chimp uses only 3 bits to represent up to 24 lead-
ing zeros with an exponentially decaying step between the mapped
values. The actual steps used are 0, 8, 12, 16, 18, 20, 22, 24 and provide
Chimp with improved compression gains compared to the 4-bit rep-
resentation with 2-bit granularity for all time series of our dataset.
More specifically, the 4-bit representation with 2-bit granularity
offers an average compression gain of 0.51 bits per value, whereas
the 3-bit representation that uses steps with exponential decay
provides an average gain of 0.95 bits per value.

4.1.3 Specifying the Length of the Meaningful XORed Value. Our
rigorous study of consecutive XORed values revealed that long
runs of trailing zeros are rather rare. Given the above observation,
Chimp differentiates between resulting XORed values, depending on
whether their number of trailing zeros exceeds a certain threshold,
as we see in Figure 6. We set this threshold to 6, i.e., the bit length
necessary to specify the maximum number of meaningful bits in
any XORed value. Therefore, when the number of trailing zeros
is less than or equal to this threshold, we write the entire XORed
value, except its leading zero bits. As the number of trailing zeros
is at most 6 in these cases, it is always cheaper to include the zeros
in the meaningful part of the XORed value and avoid wasting 6 bits
to explicitly specify their length.

4.1.4 Using the Previous Number of Leading Zero Bits. Table 1
shows that the grouping of consecutive XORed values with respect
to the common part of their meaningful bits, that Gorilla applies
to avoid specifying its position, is not very effective. Chimp limits
the encoded representation of the number of leading zeros to just
3 bits. Moreover, we specify the number of meaningful bits only
when it exceeds the bits we need to spend to do so. Still, there exist
cases in which we can capitalize on similarities with regard to the
number of leading zeros in consecutive XORed values to induce
further savings.

Chimp considers two cases of XORed values whose number
of trailing zeros is less than a certain threshold. When a value’s
number of leading zeros is exactly equal to the previous value’s
number of leading zeros, we can simply write a single ‘0’ control bit,
instead of spending 3 bits to specify this number again. Otherwise,
we write control bit ‘1’ as well as the number of leading zeros. We
note here that using our 3-bit representation of leading zero bits,
different numbers are mapped to the same value, e.g., 16 and 17

Algorithm 2: Chimp
1 Function Chimp(𝑣𝑎𝑙𝑢𝑒 , 𝑠)
2 if 𝑠.𝑓 𝑖𝑟𝑠𝑡 = 𝑇𝑟𝑢𝑒 then

3 s.write_bits(value, 64);
4 𝑠.𝑓 𝑖𝑟𝑠𝑡 ← 𝐹𝑎𝑙𝑠𝑒 ;

5 else

6 𝑥𝑜𝑟𝑒𝑑_𝑣𝑎𝑙𝑢𝑒 ← 𝑣𝑎𝑙𝑢𝑒 ⊕ 𝑠.𝑝𝑟_𝑣𝑎𝑙𝑢𝑒 ;
7 𝑙𝑒𝑎𝑑 ← 𝑏𝑖𝑛_𝑐𝑜𝑢𝑛𝑡_𝑙𝑒𝑎𝑑𝑖𝑛𝑔 (𝑥𝑜𝑟𝑒𝑑_𝑣𝑎𝑙𝑢𝑒) ;
8 𝑡𝑟𝑎𝑖𝑙 ← 𝑐𝑜𝑢𝑛𝑡_𝑡𝑟𝑎𝑖𝑙𝑖𝑛𝑔 (𝑥𝑜𝑟𝑒𝑑_𝑣𝑎𝑙𝑢𝑒) ;
9 if 𝑡𝑟𝑎𝑖𝑙 > 6 then
10 s.write_bit(0);
11 if 𝑥𝑜𝑟𝑒𝑑_𝑣𝑎𝑙𝑢𝑒 = 0 then
12 s.write_bit(0);

13 else

14 s.write_bit(1);
15 s.write_bits(lead, 3);
16 𝑐𝑒𝑛𝑡𝑒𝑟_𝑏𝑖𝑡𝑠 ← 64 − 𝑙𝑒𝑎𝑑 − 𝑡𝑟𝑎𝑖𝑙 ;
17 s.write_bits(center_bits, 6);
18 s.write_bits(xored_value»trail, center_bits);

19 else

20 s.write_bit(1);
21 if 𝑙𝑒𝑎𝑑 = 𝑠.𝑝𝑟_𝑙𝑒𝑎𝑑 then

22 s.write_bit(0);
23 s.write_bits(xored_value, 64-lead);

24 else

25 s.write_bit(1);
26 s.write_bits(lead, 3);
27 s.write_bits(xored_value, 64-lead);

28 𝑠.𝑝𝑟_𝑙𝑒𝑎𝑑 ← 𝑙𝑒𝑎𝑑 ;

29 𝑠.𝑝𝑟_𝑣𝑎𝑙𝑢𝑒 ← 𝑣𝑎𝑙𝑢𝑒 ;

are both mapped to 100 and are thus, considered equal. This favors
the first case of our strategy, and therefore, our overall approach
becomes very effective in terms of exploiting leading zero bits.

4.1.5 DetailedChimpCompression. Chimp performs a bitwise XOR
between the current and previous value and encodes the result with
the following variable length encoding scheme.

• The first value is stored with no compression.
• When XORwith the previous value has more than 6 trailing

zeros, store a single ‘0’ bit followed by either:
– Control bit ‘0’: If the result is zero, i.e., the values are

identical.
– Control bit ‘1’: If the result is not zero, store the length

of the number of leading zeros in the next 3 bits, then
store the length of the meaningful XORed value in the
next 6 bits. Finally store the meaningful bits of the
XORed value.

• When XOR has 6 or less trailing zeros, store a single ‘1’ bit
followed by either:
– Control bit ‘0’: If the number of leading zeros is exactly

equal to the previous leading zeros, use that informa-
tion and just store the meaningful XORed value.

– Control bit ‘1’: Store the length of the number of lead-
ing zeros in the next 3 bits, then store the length of
the meaningful XORed value in the next 6 bits. Finally
store the meaningful bits of the XORed value.

This operation is portrayed with the diagram of Figure 6 and de-
tailed in Algorithm 2. To come up with a single precision variation
of Chimp we simply substitute 64 with 32 in Lines 3, 16, 23, and 27,
as well as 6 with 5 in Lines 9 and 17.

1
City-temp - 16

128

1
Stocks-UK - 16

128

1
Stocks-USA - 16

128

1
Stocks-DE - 16

128

1
IR-bio-temp - 16

128

1
Wind-dir - 16

128

1
PM10-dust - 16

128

1
Dew-point-temp - 16

128

1
Air-pressure - 16

128

1
Basel-wind - 16

128

1
Basel-temp - 16

128

1
Bitcoin-price - 16

128

1
Bird-migration - 16

128

1
Air-sensor - 16

128

 0 20 40 60 80 100

64 bits %6-63 bits %0-5 bits %

Trailing bits distribution

6
4

b
i
t
s

%

6
-
6
3

b
i
t
s

%

0
-
5

b
i
t
s

%

Figure 7: Average number of trailing zeros in the XOR with

the best of 1, 16, and 128 previous values, respectively, for

various time series datasets.

4.2 Exploiting Earlier Values with Chimp128
An important aspect that impacts the effectiveness of Chimp is
the similarity of consecutive values. In the case of identical val-
ues, Chimp spends only two flag bits to represent the second in-
stance. Equivalently, when the similarity between the values causes
a XORed result with many leading and trailing zeros, Chimp is able
to reduce the overall space requirements significantly. However,
our investigation and the results of Figure 2 in particular, indicate
that such cases are not very common, especially when working
with measurements of high precision. Even the slightest changes
generate very different binary representations.

In Figure 7, we perform the same investigation computing the
bitwise XOR operation with the last 16 and 128 values, respectively,
instead of using just the immediately previous value. We then pick
the value that produces the most trailing zeros. We remind the
reader that Gorilla uses 6 bits to denote the number of trailing
zeros, so we report the percentage of values below and above this
threshold, together with identical values (64 bits). It is evident
from the figure that there is great potential with regard to finding
similar measurements when exploiting more than one previous
values. Naturally, as the number of earlier values examined grows,
so does the probability of finding good matches for the current
measurement. The improvement is evident in most time series
when using just 16 previous values. Setting this number to 128,
results in very few cases of XORed values with less than 6 trailing
zeros for all the time series of our dataset. On the contrary, we very
often find an identical value, or –at the very least– a large number
of trailing zeros.

vt⊕vb128

write:

'0' (1 bit)

non-lead bits

write '0' write '1'

write:

'1' (1 bit)

leading count (3 bits)

non-lead bits

trailing_count>log2128+log264 trailing_count≤log2128+log264

leadingt=leadingt-1

write:

previous (log128 bits)

'0' (1 bit)

write:

previous (log128 bits)

leading count (3 bits)

'1' (1 bit)

center count (6 bits)

center bits

result=0 result≠0

leadingt≠leadingt-1

Figure 8: Chimp128 compression algorithm.

The diagram of Figure 8 illustrates the encoding scheme of
Chimp128, that make use of 128 previous values, instead of a single
one. The bitwise XOR operation in Chimp128 is performed between
the current value 𝑣𝑡 and the best of 128 previous values in terms of
most trailing zeros, 𝑣𝑏128 . If the resulting number of trailing zeros
surpasses the number of bits needed to denote the previous value
used (𝑙𝑜𝑔2128 bits) plus the number of bits required to specify the
number of meaningful bits (𝑙𝑜𝑔264 bits), then we make use of and
actually store the previous value used (two bottom-left cases of
Figure 8). Otherwise, the use of 𝑣𝑏128 is not particularly useful and,
due to the flexibility of Chimp, we can use the immediately previous
value 𝑣𝑡−1 instead, and avoid wasting additional bits to denote the
previous value used (two bottom-right cases of Figure 8).

Despite the impressive compression potential of using previous
values, performing a considerable number of XOR operations to find
the best match is costly. We are interested, however, in providing
compression that is fast enough to cope with the ingestion rates
that contemporary time series databases need to handle. To this
end, Chimp128 uses a circular (ring) buffer of size 128 to hold the
most recent values and an array of size 214 (2𝑙𝑜𝑔264+𝑙𝑜𝑔2128+1) to
quickly come up with a suitable previous value. More specifically,
we place every value 𝑣𝑖 we encounter in the 𝑖%128 position of the
ring buffer. We also place 𝑖 in the 𝑣𝑖 & (214−1) position of the array.
That is, we use the less significant bits of 𝑣𝑖 to come up with the
position in the array. In this way, while compressing a new value
𝑣 𝑗 , we can retrieve in constant time the most recent value already
encountered with at least 14 identical trailing bits, by looking in the
𝑣 𝑗 & (214 − 1) position of the array. If this value is within the 128
previous data points, i.e., if 𝑗−𝑖 ≤ 128, we can use it to compress our
new value. Even though this approach evicts some of the previous
values examined, we will show in our experimental evaluation that
our respective compression ratio loss is negligible. On the contrary,
the compression time speed-up gains are significant. Moreover, the
respective 33𝐾𝐵 of memory requirements are very modest.

5 EXPERIMENTAL EVALUATION

We implemented our compression algorithm using Java and tested
its performance against 10 approaches suitable for lossless or lossy

Table 2: Details of our 14 time series (first) and 5 non time

series datasets (last).

Dataset Size Timespan

Decimal

Source

Digits

T
i
m
e
s
e
r
i
e
s

City-temp 2,905,887 25 years 1 UDayton
Stocks-UK 115,146,731 1 year 1 INFORE
Stocks-USA 374,428,996 1 year 2 INFORE
Stocks-DE 45,403,710 1 year 3 INFORE
IR-bio-temp 380,817,839 7 years 2 NEON
Wind-dir 199,570,396 6 years 2 NEON
PM10-dust 222,911 5 years 3 NEON
Dew-point-temp 5,413,914 3 years 3 NEON
Air-pressure 137,721,453 6 years 5 NEON
Basel-wind 124,079 14 years 7 meteoblue
Basel-temp 124,079 14 years 9 meteoblue
Bitcoin-price 2,741 1 month 4 InfluxDB
Bird-migration 17,964 1 year 5 InfluxDB
Air-sensor 8,664 1 hour 17 InfluxDB

G
e
n
e
r
a
l

Food-prices 2,050,638 - 4 WFP
POI-lat 424,205 - 5 Kaggle
POI-lon 424,205 - 5 Kaggle
Blockchain-tr 231,031 - 4 Blockchair
SD-bench 8,927 - 1 Kaggle

floating point data compression. Our implementation as well as
reproducible tests are publicly available.9 This repository also fea-
tures reproducible tests for most of the alternative approaches,
namely Xz [1], Brotli [6], LZ4 [2], Zstd [4], Snappy [3], FPC [9],
Gorilla [33], PMC-MR [21] and Swing [12]. Additionally, we have
extended the widely used InfluxDB time series database that origin-
ally uses the Gorilla compression scheme to also feature Chimp.10
In this section, we first present the dataset and technical details
on our experiments. Then, we proceed with the evaluation of our
algorithm by answering the following questions:

• What are the space requirements of Chimp compared to
earlier approaches?

• Is Chimp as fast as other streaming compression algorithms
with regards to compression and access time?
• How does the trade-off of Chimp between compression

ratio and compression time compare to other approaches?
• Does the single precision variation of Chimp provide com-

pression savings?
• How does Chimp compare with lossy approaches?

5.1 Experimental Setting

We ran our experiments on a computer running Xubuntu 20.04
with an Intel® CoreTM i5-4590, with a CPU frequency of 3.30GHz
and a 6MB L3 cache, and a total of 16GB DDR3 1600MHz RAM.
In all experiments we set the block size to 1,000 data points. For
the general purpose compression algorithms, we use the default
settings of the open source HBase implementations.11

9https://github.com/panagiotisl/chimp
10https://github.com/panagiotisl/influxdb
11https://github.com/apache/hbase/tree/master/hbase-compression

https://github.com/apache/hbase/tree/master/hbase-compression

Our dataset consists of 14 time series and 5 non time series
datasets from diverse sources. Even though real-world floating point
measurements often have precision of one or two decimal digits,
we include in our experiments time series with higher precision to
showcase the wide applicability of our approach. The properties
of the time series used in our experiments are listed in Table 2 and
are thoroughly discussed below:

• City-temp: Dataset created by the University of Dayton
with the temperature of major cities of the world.12
• Stock Exchange Datasets: Time series containing stock

exchange price data used in INFORE project.13 We extracted
a total of three time series:
– Stocks-UK: UK stocks with a single decimal digit.
– Stocks-USA: USA stocks with two decimal digits.
– Stocks-DE: German stocks with three decimal digits.

• NEON datasets: Below we list several datasets made pub-
licly available by The National Science Foundation’s Na-
tional Ecological Observatory Network (NEON).
– IR-bio-temp: Infrared biological temperature, i.e., sur-

face temperature[29].
– PM10-dust: Near real-time measurements of PM10 in

the atmosphere using a optical sensor[28].
– Air-pressure: Barometric pressure corrected to sea

level and surface level[27].
– Dew-point-temp: Relative dew point temperature.

Observations are made by sensors located on the buoy
in lakes and rivers[30].

– Wind-dir: Two-dimensional wind direction[26].
• meteoblue datasets: Basel, Switzerland historical weather

data, that are available without any restrictions.14
– Basel-wind: Wind-speed data points for Basel.
– Basel-temp: Temperature measurements for Basel.

• InfluxDB datasets: Datasets made available by InfuxDB,
that uses Gorilla.15
– Bitcoin-price: Bitcoin-US dollar exchange rate data

from the CoinDesk API.
– Bird-migration: Sample data adapted from the Move-

bank: Animal Tracking dataset,16 representing animal
migratory movements throughout 2019.

– Air-sensor: Synthetic dataset with random noise, con-
taining sample air sensor data.

• Non time series datasets:
– Food-prices: Global Food Prices data from the World

Food Programme for December 2020.17
– POI-lat / POI-lon: Points of interest derived by pars-

ing Wikipedia.18
– Blockchain-tr: Bitcoin transactions’ values for a single

day (2022-03-26).19
– SD-bench: SSD & HDD benchmark scores.20

12https://www.kaggle.com/sudalairajkumar/daily-temperature-of-major-cities
13https://zenodo.org/record/3886895#.YbM_6ZuxVqu
14https://www.meteoblue.com/en/weather/archive/export/basel_switzerland
15https://github.com/influxdata/influxdb2-sample-data
16https://www.kaggle.com/pulkit8595/movebank-animal-tracking
17https://data.humdata.org/dataset/wfp-food-prices
18https://www.kaggle.com/datasets/ehallmar/points-of-interest-poi-database
19https://gz.blockchair.com/bitcoin/transactions/
20https://www.kaggle.com/datasets/alanjo/ssd-and-hdd-benchmarks

5.2 Compression Ratio

We start our evaluation by measuring the space required to com-
press each of the 19 datasets. We observe in Table 3 that general
purpose compression algorithms perform much better than the two
earlier streaming approaches examined here, namely FPC and Gor-
illa. Our Chimp is always better than these two approaches, with an
average relative improvement of 8.3% and 9.6%, respectively. These
reduced space requirements are a result of several techniques we
employ to induce savings. More specifically, Chimp does not group
values with respect to the number of both their leading and trailing
zeros, and thus, exploits long runs of zeros much more effectively.
In addition, Chimp does not waste bits to represent trailing zeros of
insignificant size, as this would increase the overall space require-
ments, as is the case with Gorilla. Finally, Chimp uses an improved
representation of the leading zeros that uses up to two bits less
than the respective representation of Gorilla.

Table 3 also shows the performance of our overall approach that
also utilizes more than one previous values. In particular, we include
results for Chimp128, that examines 128 previous values, and selects
the one that produces the most trailing zeros when performing
bitwise XOR with the current value. Chimp128 provides impressive
compression savings that are on average 39% and 40% better than
FPC and Gorilla, respectively. This percentage raises up to 44% for
both approaches, if we consider only the 14 time series. The slightly
smaller improvement obtained for the non time series datasets is
due to the absence of a time-based ordering, that would increase the
usefulness of exploiting previous values. We also see that Chimp128
is better than two of the general purpose compression schemes,
and very competitive against the rest, especially when focusing on
the time series of our dataset.

We also see in Table 3 that the smallest compression gains we
obtain for time series datasets are for Air-Sensor, which is a syn-
thetic dataset. This is expected as the values are random and due to
the large number of decimal digits used it is quite rare to come up
with a lot of similar values in a single block. Equivalently, the 1BTC
to USD exchange rate values reported in the Bitcoin-price time
series, exhibit large fluctuations, which limit the compression gains
we can achieve through compressing runs of trailing zeros. In fact,
for both these time series the compression gains of all streaming
approaches steam mostly from exploiting their leading zero bits
distribution.

5.3 Compression Time

Time series databases usually write incoming data firstly in un-

compressed format into a write-ahead log. Values are grouped into
blocks and are stored in a persistent file format using a compressed

representation at a later stage. Still, we aim for fast compression
algorithms that do not cause CPU overheads, that would have an
impact on the ingestion rate that a time series database would
provide.

Table 4 shows the average time required for the compression
of a default sized block of 1,000 values for the all time series and
non time series datasets of our experimental setting. The results are
averages of multiple executions. We observe that our approaches
are at least twice as fast as the most efficient general purpose com-
pression algorithm, i.e., Snappy, which is however not as effective

https://www.kaggle.com/sudalairajkumar/daily-temperature-of-major-cities
https://zenodo.org/record/3886895#.YbM_6ZuxVqu
https://www.meteoblue.com/en/weather/archive/export/basel_switzerland
https://github.com/influxdata/influxdb2-sample-data
https://www.kaggle.com/pulkit8595/movebank-animal-tracking
https://data.humdata.org/dataset/wfp-food-prices
https://www.kaggle.com/datasets/ehallmar/points-of-interest-poi-database
https://gz.blockchair.com/bitcoin/transactions/
https://www.kaggle.com/datasets/alanjo/ssd-and-hdd-benchmarks

Table 3: Compression size results in bits/value.Chimp is always better than earlier streaming approaches.Chimp128 exploitsmore

previous values and provides impressive savings over streaming approaches, offering compression ratios that are competitive

against general purpose encoding algorithms.

Dataset

General Purpose Compression Streaming Compression

Xz Brotli LZ4 Zstd Snappy FPC Gorilla Chimp Chimp128

T
i
m
e
s
e
r
i
e
s

City-temp 14,04 15,31 27,64 17,90 24,30 55,16 58,72 46,21 22,92
Stocks-UK 7,61 8,54 19,84 10,32 15,80 46,15 33,45 31,27 16,70
Stocks-USA 7,19 8,11 18,16 9,92 14,68 36,02 36,43 34,67 12,06
Stocks-DE 8,80 9,96 20,63 12,06 16,83 44,54 45,63 42,88 13,46
IR-bio-temp 13,82 16,05 29,13 20,19 25,58 48,52 50,33 46,39 18,94
Wind-dir 12,66 14,98 26,95 17,88 22,02 58,12 59,62 54,31 19,80
PM10-dust 6,55 7,21 15,03 8,50 12,52 27,79 26,91 24,40 13,64
Dew-point-temp 20,92 25,16 38,34 29,65 38,60 53,63 54,42 51,57 32,49
Air-pressure 14,35 14,96 21,66 17,23 21,61 24,07 23,96 22,92 19,23
Basel-wind 36,77 38,93 44,20 38,96 47,57 58,75 63,63 56,09 45,65
Basel-temp 22,22 25,10 34,67 26,06 34,51 57,58 60,19 54,10 30,12
Bitcoin-price 40,29 46,46 55,20 47,64 63,19 52,22 52,50 49,68 47,17
Bird-migration 24,97 27,11 35,50 29,12 34,00 48,14 50,24 45,92 28,37
Air-sensor 50,16 54,22 64,32 58,53 64,10 52,56 52,98 49,54 49,56
Time series average 20,03 22,29 32,23 24,57 31,09 47,38 47,79 43,57 26,44

N
o
n
t
i
m
e
s
e
r
i
e
s Food-prices 16,32 17,87 27,65 19,96 26,28 43,53 37,94 27,92 24,59

POI-lat 39,30 41,94 50,19 43,08 52,81 60,65 65,95 57,80 47,71
POI-lon 43,97 46,46 54,16 47,67 57,24 63,77 66,07 62,71 54,55
Blockchain-tr 45,00 47,82 54,90 48,50 59,11 60,10 62,83 58,25 53,16
SD-bench 8,12 8,98 19,05 10,65 15,70 37,74 40,25 35,10 17,00
Non time series average 30,54 32,61 41,19 33,97 42,23 53,16 54,61 48,36 39,40

Table 4: Compression and decompression time per block

(1,000 values) in `sec for the time series of our experimental

setting as well as our non time series datasets.

Algorithm

Compression (`𝑠) Decompression (`𝑠)

Time series Non time series Time series Non time series

Xz 1,679.69 1,641.85 298.67 405.59
Brotli 1,409.54 1,430.53 59.67 69.65
LZ4 1,199.04 1,188.53 25.29 25.63
Zstd 163.27 180.99 56.64 60.29
Snappy 89.56 93.43 34.17 35.12
FPC 56.05 61.73 38.03 46.50
Gorilla 39.28 43.86 31.79 34.86
Chimp 31.18 31.02 30.68 31.10
Chimp128 35.81 42.68 28.47 34.38

in its compression ratio compared to Chimp128. General purpose
algorithms that provide better compression ratio are between 4.5
and 47.9 times slower than Chimp128. We also see that the design
choice of Gorilla to drop the expensive predictors of FPC, does
speed-up its compression time. However, due to its simplicity and
reduced space requirements, our Chimp is the fastest approach. The
calculations it performs to produce a compressed representation
have a cost similar to that of Gorilla. Yet, the resulting bit sequences
of Chimp are smaller, due to its improved compression ratio. Each
bit sequence is written into a bit-stream while processing the values
of each block. Bit level precision writes are costly, and thus, the

overall compression time of Chimp is smaller, as it writes fewer
bits to this stream.

Chimp128 selects the best of 128 previous values to use for the
bitwise XOR operation with the current value. We first retrieve
the most recent previous value with similar trailing bits, using the
structure discussed in Section 4.2. If this value is within the last 128
previous values, we use it to perform an XOR operation with the
current value. Otherwise, we use the immediately previous value.
These additional actions cause Chimp128 to spend more time than
Chimp or Gorilla to calculate the compressed bit sequence of each
block. However, the compression time speed-up due to the creation
of smaller bit-streams is also evident in the case of Chimp128, on
account of its impressive space savings. Therefore, as we see in
Table 4, Chimp128 is faster than Gorilla with regard to compression
time. This effect is less evident for the non time series datasets, as
the respective space savings are smaller.

We note here, that the speed-up reported in Table 4 could not
be realized without using the structure discussed in Section 4.2.
Indeed, examining the use of all 128 previous values would lead to
an average compression time per block of 125.82 `𝑠𝑒𝑐 . At the same
time, the additional compression savings would be negligible, as we
would achieve on average 47% improvement over earlier streaming
approaches, instead of 45%, as reported in Table 3.

5.4 Decompression Time

We continue our experimental evaluation by measuring the time
required to retrieve the actual values from the compressed blocks.
Table 4 reports the average time required for decompressing a

 30

 100

 1000

 2000

 0 10 20 30 40 50 60

C
o
m
p
r
e
s
s
i
o
n

t
i
m
e

p
e
r

b
l
o
c
k

(

µ
s
)

(
l
o
g
a
r
i
t
h
m
i
c

s
c
a
l
e
)

Bits/value

Chimp
Chimp128
Gorilla

FPC
Snappy

Zstd
LZ4

Brotli
Xz

Figure 9: Trade-off between compression time (`𝑠 in log scale)

and space (bits/value) for various algorithms. The evident

superiority of Chimp128 establishes our approach as the un-

disputed preferable option for compressing floating point

values in the context of time series data.

default sized block of 1,000 values for all time series and non time
series datasets of our experimental setting. Again, reported results
are averages of multiple executions.

We observe that the LZ4 general purpose compression algorithm
is the fastest approach in terms of decompression time. However,
given its poor performance in terms of compression time, LZ4 is
not suitable for time series compression. Our Chimp and Chimp128
algorithms provide equivalent performance in terms of decompres-
sion time, while offering much faster compression than LZ4. Our
two approaches are faster than all other algorithms listed in Table 4,
even though most of them provide a satisfactory level of perform-
ance. The speed-up against streaming efforts is again attributed
to the improved compression ratio of our approach. The original
values of each block are reconstructed by reading the respective
compressed bit sequence. Reading the sequence at bit level precision
takes up a significant part of the overall decompression time. The
smaller the compressed bit sequence, the faster the decompression
operation.

5.5 Compression Space and Time Trade-off

Figure 9 illustrates for all algorithms of our experimental setting
the trade-off between compression time and ratio achieved for the
time series of our dataset. We see that Chimp surpasses the speed of
streaming approaches while also providing reduced space require-
ments. Chimp128 is equivalently fast and offers space savings that
are competitive with significantly slower general purpose compres-
sion algorithms. The evident superiority of Chimp128 as depicted
in Figure 9 establishes our approach as the undisputed preferable
option for compressing floating point values in the context of time
series data.

Table 5: Compression size results for 32-bit versions of al-

gorithms in bits/value.

Algorithm (32-bit) Time series Non time series

Xz 13.60 22.18
Brotli 15.36 22.26
LZ4 23.81 27.18
VictoriaMetrics 23.36 23.48
Zstd 16.76 22.85
Snappy 24.12 28.51
Gorilla 22.53 28.03
Chimp 19.60 26.80
Chimp64 17.04 26.31

5.6 Single Precision and Lossy Compression

We conclude our experimental results by investigating the perform-
ance of our approaches using 32-bit single precision floating point
numbers, and a comparison with lossy compression techniques.

Table 5 shows the space requirements of different general pur-
pose and streaming approaches when compressing the time series
and non time series datasets of our setting using single precision.
As we are dealing with 32-bit instead of 64-bit numbers, we re-
port results for Chimp64 instead of Chimp128, that exploits only
64 previous values. Again, we see that both Chimp and Chimp64
outperform Gorilla, as well as three general purpose approaches.
Therefore, our techniques are fully applicable on single precision
floating point numbers and provide significant improvement over
the state-of-the-art. Xz, Brotli and Zstd offer lower compression
ratios at the expense of prohibitively larger CPU overhead.

Table 6 shows results for two lossy compression algorithms,
namely PMC-MR and Swing. Using binary search we find and
report the error 𝜖 required for each of the two techniques to yield
lower compression ratios than what our Chimp128 achieves. We
also report the 𝜖

𝜎 percentage, where 𝜎 is the standard deviation of
the values of each dataset. PMC-MR performs better than Swing.
However, Table 6 clearly shows that the 𝜖 that both these techniques
need to surpass the performance of Chimp128 is prohibitive. For
instance, a ±4 margin of error in temperature values, or ±31.94 in
bitcoin prices would severely limit any analysis performed in the
respective datasets. The performance of both techniques regarding
the non time series datasets are even poorer. As an example, the
required ±4 margin of error for coordinates means we can roughly
tell what large state or countrywe are in. Therefore, such techniques
are more suitable in applications such as continuous “always-on”
monitoring, in which we are not interested in the actual values and
instead, we simply need to guarantee a given error bound.

6 RELATEDWORK

We review here existing approaches that provide lossless streaming
compression of 64-bit IEEE double-precision floating-point values,
appropriate for the high ingestion speed that is necessary for TSMSs.
We omit discussions on earlier efforts that are not applicable in a
streaming I/O setting [10, 14], and lossy approximation techniques
that do not retain exact values [12, 20, 21, 23].

Table 6: Compression size results for lossy approaches in

bits/value. We set the error 𝜖 to a value large enough to

provide a better compression ratio than Chimp128. We also

report 𝜖/𝜎 for each dataset.

Dataset

PMC-MR Swing

Bits/value 𝜖 𝜖/𝜎 Bits/value 𝜖 𝜖/𝜎
City-temp 13.68 4 19% 17.29 4 37%
Stocks-UK 15.66 0.25 0% 18.48 0.25 1%
Stocks-USA 7.2 0.03 1% 11.42 0.03 3%
Stocks-DE 12.43 0.015 6% 15.75 0.015 25%
Basel-temp 27.00 0.5 11% 25.56 0.25 21%
Basel-wind 40.67 0.5 7% 36.21 0.5 26%
Air-sensor 38.33 0.01 0% 35.40 0.008 0%
Bird-migration 23.11 0.016 0% 20.16 0.03 1%
Bitcoin-price 41.57 31.97 2% 42.32 31.94 8%
Air-pressure 10.18 0.004 3% 4.97 0.008 5%
Dew-point-temp 31.92 0.07 4% 34.94 0.06 18%
PM10-dust 7.84 0.004 0% 6.89 0.008 1%
IR-bio-temp 12.46 0.13 3% 10.61 0.13 7%
Wind-dir 12.46 0.25 43% 15.56 0.25 87%
Food-prices 20.85 16 0% 19.60 32 1%
POI-lat 42.87 4 19% 47.56 4 74%
POI-lon 51.78 8 11% 52.73 15.99 172%
Blockchain-tr 50.58 128 0% 51.75 128 0%
SSD-bench 9.46 253.4 47% 14.40 255.91 88%

Engelson et al. [13] predict values using polynomial extrapol-
ation of values in previous time steps. By treating the actual and
predicted floating point values as integers, they perform two’s com-
plement integer subtraction which results in a compressible run of
leading zeros or ones. This run is compactly stored and is followed
by the remaining raw trailing bits.

The work of Ratanaworabhan et al. [34] employs a slightly modi-
fied DFCM [15] value predictor and performs bitwise XOR between
the next value to be compressed and the predicted value. The res-
ult is then encoded using fixed-width leading-zero count that is
followed by the raw transmission of all trailing bits. Four-bits are
used to represent the leading zero count at half-byte granularity,
allowing for up to 64 leading zeros. The offered throughput rates
are significantly faster than those of general purpose compressors.

The FPC [9] lossless compression algorithm, employs two value
predictors, i.e., FPC [35] and DFCM, to come up with the best
prediction of the two. As in [34], a bitwise XOR between the next
value to be compressed and the predicted value is performed and
the result is effectively compressed by exploiting the leading zero
count. FPC additionally spends one bit for each encoded value to
specify which predictor was used.

Gorilla [33] improves the efficiency of earlier floating point com-
pression algorithms [9, 24, 34] by discarding their expensive pre-
dictions schemes. Instead of predicting the next value, Gorilla opts
to simply compare the actual value with the previous one by per-
forming a bitwise XOR operation. In the context of time series
datasets, the resulting values usually exhibit long runs of leading
and trailing zeros. The simplicity, throughput and compression
ratio of Gorilla have helped towards its wide adoption, making it

the de facto standard for compressing floating point data in TSMSs.
Our approach is in turn inspired by Gorilla. However, our focus is
exclusively on floating point time series, which allows for applying
novel design principles and helps provide significant improvements
to both compression ratio and throughput rate.

VictoriaMetrics [38] converts floating-point values to integer
values by applying a 10𝑥 multiplier and employs general purpose
compression algorithms on top of the encoded data to increase its
compression ratio. However, converting to integer values results in
precision loss, whereas general purpose compression algorithms
are slower than approaches currently used in the context of time
series databases [37]. Instead, our focus is on supporting lossless

compression over a stream of data.
In another line of work [18], Jensen et al. offer a multi-model

compression approach that uses multiple model types to adapt as
each time series’ structure changes over time by choosing the most
appropriate compression scheme. An extension of this work [19] ad-
ditionally exploits correlation between different time series through
a multi-model group compression approach that groups time series
while also compressing them using multiple models. Both these
approaches consider Gorilla as their algorithm of choice for lossless
compression of floating point time series. Therefore, the contribu-
tion of our Chimp algorithm is orthogonal to any such approaches.

7 CONCLUSIONS AND FUTUREWORK

In this paper we introduce the Chimp lossless streaming compres-
sion algorithm for floating point time series. Similarly to earlier
approaches, Chimp is based on a bitwise XOR operation between
the current and previous values, as neighboring data points do not
change significantly. However, here we uncover and exploit prop-
erties that floating point time series exhibit to offer a significantly
improved encoding in terms of both space-efficiency and access
to the compressed information. In addition, we argue that using
only the immediately previous value severely limits the possibility
of obtaining a highly compressible set of difference bits. Thus, we
propose Chimp128, a variant of our algorithm that exploits addi-
tional earlier values, and helps us achieve compression rates. The
experimental evaluation of our algorithms shows that we attain
a significantly lower, often less than half, compression ratio than
earlier streaming approaches. At the same time, general purpose en-
codings that provide better compression ratio are between 4.5 and
47.9 times slower than our approach. In this regard, our algorithms
empower the execution of algorithms on massive collections of
time series data, in settings where the use of existing methods is
prohibitive due to space requirements or simply too inefficient.

We plan to extend our work by investigating lossy streaming
compression techniques that allow for recreating the time series
within a very small error bound and further reduce the space re-
quirements and access times.

ACKNOWLEDGMENTS

This work has received funding from the Hellenic Foundation for
Research and Innovation (HFRI) and the General Secretariat for
Research and Technology (GSRT), under grant agreement No 779.

REFERENCES

[1] 2009. The .xz File Format. (2009). Retrieved May 21, 2022 from https://tukaani.
org/xz/xz-file-format.txt

[2] 2011. LZ4. Retrieved May 21, 2022 from https://lz4.github.io/lz4/
[3] 2011. snappy. Retrieved May 21, 2022 from http://google.github.io/snappy/
[4] 2015. Zstd. Retrieved May 21, 2022 from https://facebook.github.io/zstd/
[5] 2019. IEEE Standard for Floating-Point Arithmetic. IEEE Std 754-2019 (Revision

of IEEE 754-2008) (2019), 1–84. https://doi.org/10.1109/IEEESTD.2019.8766229
[6] Jyrki Alakuijala, Andrea Farruggia, Paolo Ferragina, Eugene Kliuchnikov, Robert

Obryk, Zoltan Szabadka, and Lode Vandevenne. 2018. Brotli: A General-Purpose
Data Compressor. ACM Trans. Inf. Syst. 37, 1 (dec 2018), 30. https://doi.org/10.
1145/3231935

[7] Vo Ngoc Anh and Alistair Moffat. 2010. Index compression using 64-bit words.
Softw. Pract. Exp. 40, 2 (2010), 131–147. https://doi.org/10.1002/spe.948

[8] Timescale Blog. 2020. Time-series compression algorithms, explained. https:
//blog.timescale.com/blog/time-series-compression-algorithms-explained/. Ac-
cessed: 2022-02-03.

[9] Martin Burtscher and Paruj Ratanaworabhan. 2007. High Throughput Com-
pression of Double-Precision Floating-Point Data. In 2007 Data Compression

Conference (DCC 2007), 27-29 March 2007, Snowbird, UT, USA. IEEE Computer
Society, 293–302. https://doi.org/10.1109/DCC.2007.44

[10] Huamin Chen, Jian Li, and Prasant Mohapatra. 2004. RACE: time series com-
pression with rate adaptivity and error bound for sensor networks. In 2004 IEEE

International Conference on Mobile Ad-hoc and Sensor Systems, Fort Lauderdale, FL,

USA, October 25-27, 2004. 124–133. https://doi.org/10.1109/MAHSS.2004.1392089
[11] Antonios Deligiannakis, Yannis Kotidis, and Nick Roussopoulos. 2007. Dissem-

ination of compressed historical information in sensor networks. VLDB J. 16, 4
(2007), 439–461. https://doi.org/10.1007/s00778-005-0173-5

[12] Hazem Elmeleegy, Ahmed K. Elmagarmid, Emmanuel Cecchet,Walid G. Aref, and
Willy Zwaenepoel. 2009. Online Piece-wise Linear Approximation of Numerical
Streams with Precision Guarantees. Proc. VLDB Endow. 2, 1 (2009), 145–156.
https://doi.org/10.14778/1687627.1687645

[13] Vadim Engelson, Dag Fritzson, and Peter Fritzson. 2000. Lossless Compression of
High-Volume Numerical Data from Simulations. In Data Compression Conference,

DCC 2000, Snowbird, Utah, USA, March 28-30, 2000. 574. https://doi.org/10.1109/
DCC.2000.838221

[14] Florin Ghido. 2004. An Efficient Algorithm for Lossless Compression of IEEE
Float Audio. In 2004 Data Compression Conference (DCC 2004), 23-25 March 2004,

Snowbird, UT, USA. IEEE Computer Society, 429–438. https://doi.org/10.1109/
DCC.2004.1281488

[15] B. Goeman, H. Vandierendonck, and K. de Bosschere. 2001. Differential FCM:
increasing value prediction accuracy by improving table usage efficiency. In Pro-

ceedings HPCA Seventh International Symposium on High-Performance Computer

Architecture. 207–216. https://doi.org/10.1109/HPCA.2001.903264
[16] Lawrence Ibarria, Peter Lindstrom, Jarek Rossignac, and Andrzej Szymczak. 2003.

Out-of-core Compression and Decompression of Large n-dimensional Scalar
Fields. Comput. Graph. Forum 22, 3 (2003), 343–348. https://doi.org/10.1111/1467-
8659.00681

[17] Søren Kejser Jensen, Torben Bach Pedersen, and Christian Thomsen. 2017. Time
Series Management Systems: A Survey. IEEE Trans. Knowl. Data Eng. 29, 11
(2017), 2581–2600. https://doi.org/10.1109/TKDE.2017.2740932

[18] Søren Kejser Jensen, Torben Bach Pedersen, and Christian Thomsen. 2018. Mod-
elarDB: Modular Model-Based Time Series Management with Spark and Cas-
sandra. Proc. VLDB Endow. 11, 11 (2018), 1688–1701. https://doi.org/10.14778/
3236187.3236215

[19] Søren Kejser Jensen, Torben Bach Pedersen, and Christian Thomsen. 2021. Scal-
able Model-Based Management of Correlated Dimensional Time Series in Mod-
elarDB+. In 37th IEEE International Conference on Data Engineering, ICDE 2021,

Chania, Greece, April 19-22, 2021. IEEE, 1380–1391. https://doi.org/10.1109/
ICDE51399.2021.00123

[20] Eamonn J. Keogh, Stefano Lonardi, and Chotirat (Ann) Ratanamahatana. 2004.
Towards parameter-free data mining. In Proceedings of the Tenth ACM SIGKDD In-

ternational Conference on Knowledge Discovery and Data Mining, Seattle, Washing-

ton, USA, August 22-25, 2004. 206–215. https://doi.org/10.1145/1014052.1014077

[21] Iosif Lazaridis and Sharad Mehrotra. 2003. Capturing Sensor-Generated Time
Series with Quality Guarantees. In Proceedings of the 19th International Conference
on Data Engineering, March 5-8, 2003, Bangalore, India, Umeshwar Dayal, Krithi
Ramamritham, and T. M. Vijayaraman (Eds.). 429–440. https://doi.org/10.1109/
ICDE.2003.1260811

[22] Panagiotis Liakos, Katia Papakonstantinopoulou, Theodore Stefou, and Alex
Delis. 2022. On Compressing Temporal Graphs. In 38th IEEE International Con-

ference on Data Engineering, ICDE 2022, Kuala Lumpur, Malaysia, May 9-12, 2022.
IEEE, 1301–1313. https://doi.org/10.1109/ICDE53745.2022.00102

[23] Jessica Lin, Eamonn Keogh, Stefano Lonardi, and Bill Chiu. 2003. A Symbolic
Representation of Time Series, with Implications for Streaming Algorithms
(DMKD ’03). 2–11. https://doi.org/10.1145/882082.882086

[24] Peter Lindstrom and Martin Isenburg. 2006. Fast and Efficient Compression of
Floating-Point Data. IEEE Transactions on Visualization and Computer Graphics

12, 5 (sep 2006), 1245–1250. https://doi.org/10.1109/TVCG.2006.143
[25] Yaser Mansouri, Adel Nadjaran Toosi, and Rajkumar Buyya. 2017. Data Storage

Management in Cloud Environments: Taxonomy, Survey, and Future Directions.
ACM Comput. Surv. 50, 6, Article 91 (dec 2017), 51 pages. https://doi.org/10.
1145/3136623

[26] National Ecological Observatory Network (NEON). 2021. 2D wind speed and
direction (DP1.00001.001). https://doi.org/10.48443/S9YA-ZC81

[27] National Ecological Observatory Network (NEON). 2021. Barometric pressure
(DP1.00004.001). https://doi.org/10.48443/RXR7-PP32

[28] National Ecological Observatory Network (NEON). 2021. Dust and particulate
size distribution (DP1.00017.001). https://doi.org/10.48443/4E6X-V373

[29] National Ecological Observatory Network (NEON). 2021. IR biological temperat-
ure (DP1.00005.001). https://doi.org/10.48443/JNWY-B177

[30] National Ecological Observatory Network (NEON). 2021. Relative humidity
above water on-buoy (DP1.20271.001). https://doi.org/10.48443/Z99V-0502

[31] Michael L Overton. 2001. Numerical computing with IEEE floating point arithmetic.
SIAM.

[32] Themis Palpanas. 2016. Big Sequence Management: A glimpse of the Past,
the Present, and the Future. In SOFSEM 2016: Theory and Practice of Computer

Science - 42nd International Conference on Current Trends in Theory and Practice

of Computer Science, Harrachov, Czech Republic, January 23-28, 2016, Proceedings.
63–80. https://doi.org/10.1007/978-3-662-49192-8_6

[33] Tuomas Pelkonen, Scott Franklin, Paul Cavallaro, Qi Huang, Justin Meza, Justin
Teller, and Kaushik Veeraraghavan. 2015. Gorilla: A Fast, Scalable, In-Memory
Time Series Database. Proc. VLDB Endow. 8, 12 (2015), 1816–1827. https://doi.
org/10.14778/2824032.2824078

[34] Paruj Ratanaworabhan, Jian Ke, and Martin Burtscher. 2006. Fast Lossless Com-
pression of Scientific Floating-Point Data. In 2006 Data Compression Conference

(DCC 2006), 28-30 March 2006, Snowbird, UT, USA. IEEE Computer Society, 133–
142. https://doi.org/10.1109/DCC.2006.35

[35] Y. Sazeides and J.E. Smith. 1997. The predictability of data values. In Proceedings

of 30th Annual International Symposium on Microarchitecture. 248–258. https:
//doi.org/10.1109/MICRO.1997.645815

[36] Abhishek B. Sharma, Franjo Ivancic, Alexandru Niculescu-Mizil, Haifeng Chen,
and Guofei Jiang. 2014. Modeling and analytics for cyber-physical systems in
the age of big data. SIGMETRICS Perform. Evaluation Rev. 41, 4 (2014), 74–77.
https://doi.org/10.1145/2627534.2627558

[37] Aliaksandr Valialkin. 2019. VictoriaMetrics: achieving better compression than
Gorilla for time series data. https://faun.pub/victoriametrics-achieving-better-
compression-for-time-series-data-than-gorilla-317bc1f95932. Accessed: 2022-
05-31.

[38] VictoriaMetrics. 2022. VictoriaMetrics: fast, cost-effective and scalable mon-
itoring solution and time series database. https://github.com/VictoriaMetrics/
VictoriaMetrics. Accessed: 2022-02-03.

[39] Chen Wang, Xiangdong Huang, Jialin Qiao, Tian Jiang, Lei Rui, Jinrui Zhang,
Rong Kang, Julian Feinauer, Kevin A. McGrail, Peng Wang, Diaohan Luo, Jun
Yuan, Jianmin Wang, and Jiaguang Sun. 2020. Apache IoTDB: Time-Series
Database for Internet of Things. Proc. VLDB Endow. 13, 12 (2020), 2901–2904.
https://doi.org/10.14778/3415478.3415504

https://tukaani.org/xz/xz-file-format.txt
https://tukaani.org/xz/xz-file-format.txt
https://lz4.github.io/lz4/
http://google.github.io/snappy/
https://facebook.github.io/zstd/
https://doi.org/10.1109/IEEESTD.2019.8766229
https://doi.org/10.1145/3231935
https://doi.org/10.1145/3231935
https://doi.org/10.1002/spe.948
https://blog.timescale.com/blog/time-series-compression-algorithms-explained/
https://blog.timescale.com/blog/time-series-compression-algorithms-explained/
https://doi.org/10.1109/DCC.2007.44
https://doi.org/10.1109/MAHSS.2004.1392089
https://doi.org/10.1007/s00778-005-0173-5
https://doi.org/10.14778/1687627.1687645
https://doi.org/10.1109/DCC.2000.838221
https://doi.org/10.1109/DCC.2000.838221
https://doi.org/10.1109/DCC.2004.1281488
https://doi.org/10.1109/DCC.2004.1281488
https://doi.org/10.1109/HPCA.2001.903264
https://doi.org/10.1111/1467-8659.00681
https://doi.org/10.1111/1467-8659.00681
https://doi.org/10.1109/TKDE.2017.2740932
https://doi.org/10.14778/3236187.3236215
https://doi.org/10.14778/3236187.3236215
https://doi.org/10.1109/ICDE51399.2021.00123
https://doi.org/10.1109/ICDE51399.2021.00123
https://doi.org/10.1145/1014052.1014077
https://doi.org/10.1109/ICDE.2003.1260811
https://doi.org/10.1109/ICDE.2003.1260811
https://doi.org/10.1109/ICDE53745.2022.00102
https://doi.org/10.1145/882082.882086
https://doi.org/10.1109/TVCG.2006.143
https://doi.org/10.1145/3136623
https://doi.org/10.1145/3136623
https://doi.org/10.48443/S9YA-ZC81
https://doi.org/10.48443/RXR7-PP32
https://doi.org/10.48443/4E6X-V373
https://doi.org/10.48443/JNWY-B177
https://doi.org/10.48443/Z99V-0502
https://doi.org/10.1007/978-3-662-49192-8_6
https://doi.org/10.14778/2824032.2824078
https://doi.org/10.14778/2824032.2824078
https://doi.org/10.1109/DCC.2006.35
https://doi.org/10.1109/MICRO.1997.645815
https://doi.org/10.1109/MICRO.1997.645815
https://doi.org/10.1145/2627534.2627558
https://faun.pub/victoriametrics-achieving-better-compression-for-time-series-data-than-gorilla-317bc1f95932
https://faun.pub/victoriametrics-achieving-better-compression-for-time-series-data-than-gorilla-317bc1f95932
https://github.com/VictoriaMetrics/VictoriaMetrics
https://github.com/VictoriaMetrics/VictoriaMetrics
https://doi.org/10.14778/3415478.3415504

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Floating Point Time Series
	2.2 IEEE 754 Double Precision Floating Point Format
	2.3 Gorilla Compression

	3 Properties of Real-world Time Series
	3.1 Trailing Zeros
	3.2 Leading Zeros
	3.3 Revisiting Gorilla Compression

	4 Overview
	4.1 Our Chimp Algorithm
	4.2 Exploiting Earlier Values with Chimp128

	5 Experimental Evaluation
	5.1 Experimental Setting
	5.2 Compression Ratio
	5.3 Compression Time
	5.4 Decompression Time
	5.5 Compression Space and Time Trade-off
	5.6 Single Precision and Lossy Compression

	6 Related Work
	7 Conclusions and Future Work
	Acknowledgments
	References

