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ABSTRACT

FlinkCEP is the Complex Event Processing (CEP) API of the Flink
Big Data platform. The high expressive power of the language of
FlinkCEP comes at the cost of cumbersome parameterization of
the queried patterns, acting as a barrier for FlinkCEP’s adoption.
Moreover, properly configuring a FlinkCEP program to run over
a computer cluster requires advanced skills on modern hardware
administration which non-expert programmers do not possess. In
this work (i) we build a novel, logical CEP operator that receives
CEP pattern queries in the form of extended regular expressions
and seamlessly re-writes them to FlinkCEP programs, (ii) we build a
CEP Optimizer that automatically decides good job configurations
for these FlinkCEP programs. We also present an experimental eval-
uation which demonstrates the significant benefits of our approach.

CCS CONCEPTS

• Information systems → Query optimization; • Computer

systems organization → Distributed architectures.

KEYWORDS

Big Data; FlinkCEP; Complex Event Processing; Optimizer

ACM Reference Format:

Nikos Giatrakos, Eleni Kougioumtzi, Antonios Kontaxakis, Antonios Deli-

giannakis, and Yannis Kotidis. 2021. EasyFlinkCEP: Big Event Data Ana-

lytics for Everyone. In Proceedings of the 30th ACM International Confer-

ence on Information and Knowledge Management (CIKM ’21), November 1–5,

2021, Virtual Event, QLD, Australia. ACM, New York, NY, USA, 5 pages.

https://doi.org/10.1145/3459637.3482094

1 INTRODUCTION

Complex Event Processing (CEP) enables analysts to express busi-
ness rules as patterns and directly query incoming streams of data
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to detect these patterns [11, 12, 14]. For instance, in the maritime
domain, CEP is utilized to detect illegal activities at sea based on
vessel position streams [4, 5]. Or, in the financial sector, sequences
of increasing, decreasing trend events on stock trade time series
express price swing patterns [17, 18].

In the CEP context, rapid streams of data are processed online to
timely report detected Complex business Events (CEs). CEs consist
of simpler events in the form of singleton, looping, sequencing or
other patterns with the use of quantifiers. CEP queries additionally
include (a) contiguity conditions (a.k.a. selection strategies [12]) to
determine whether we are allowed to ignore events of the incoming
streams that are irrelevant to the monitored pattern or not, (b) event
consumption policies, to denote how many matches an event may
be assigned to, and (c) windowing operations [12, 14, 19].

To handle the volume and velocity of Big Streaming Data, Big
Data platforms such as Apache Flink [9] have emerged. They focus
on scaling-out the computation to a number of machines in a com-
puter cluster/cloud, working in parallel on portions of the streams,
to speed up continuous analytic outcomes. Flink includes a native
API, namely FlinkCEP [10], for CEP analytics. FlinkCEP provides
a CEP language of high expressive power [7, 15] and also allows
for parallel processing to ensure rapid delivery of CEP analytics.
Nonetheless, there are certain barriers in FlinkCEP’s adoption.

First, FlinkCEP requires business analysts, who know how to
define business rules (i.e., the CEs to be monitored) but are usually
non-expert programmers, to write code in Scala or Java. Second, pat-
tern expression and parameterization involves cumbersome nota-
tions which makes the whole code writing process error-prone [12].
Third, submitting a FlinkCEP program to get executed as a job on a
Flink cluster requires advanced skills on properly configuring and
optimizing the usage of the available hardware resources which,
more often than not, business event analysts do not possess.

To overcome the barrier posed by coding directly in FlinkCEP,
we build a novel, logical CEP operator that receives as input CEP
pattern queries in the form of extended regular expressions [1, 2,
6, 15, 22, 25] and seamlessly re-writes them to FlinkCEP programs.
To offload domain experts from computer cluster administration
decisions, we build a CEPOptimizer that automatically decides good
configurations for executing the transformed FlinkCEP code on a
computer cluster.We implement a prototype, namely EasyFlinkCEP,
in the open-source platform of the INFORE project 1 and present
experiments demonstrating the benefits of our approach.

1https://infore-project.eu/, https://bitbucket.org/infore_research_project/,
https://github.com/eleniKougiou/Flink-cep-automation
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Figure 1: EasyFlinkCEP Operator to FlinkCEP Program

2 THE EasyFlinkCEP OPERATOR

The EasyFlinkCEP Operator [29] is a logical operator allowing
the business event analyst to be oblivious of FlinkCEP’s language
and, instead of coding, to focus on rapidly defining CEP queries.
This is done by simply specifying (P1) a regular expression (Regex)
denoting the CEs to be detected, (P2) the contiguity condition, (P3)
the consumption policy and (P4) window specifications [19, 24].

FlinkCEP [10] supports the following contiguity conditions (i)
Strict Contiguity: where matching events appear strictly one after
the other in the incoming stream(s), (ii) Relaxed Contiguity: where
non-matching events appearing in-between the matching ones
are ignored, and (iii) Non-Deterministic Relaxed Contiguity: that
allows non-deterministic actions between matching events. For
event consumption, basic options include: (i) NO_SKIP: produce all
matches (ii) SKIP_TO_NEXT: discard partial matches that started
with the same CE (iii) SKIP_PAST_LAST_EVENT: discard partial
matches after CEmatch started but before it ends. Twomore options
are SKIP_TO_FIRST[p] and SKIP_TO_LAST[p] that are similar to
SKIP_TO_NEXT and SKIP_PAST_LAST_EVENT, respectively, but
use a pattern 𝑝 to dictate the start (resp. last) event in the CE [10].

By integrating the EasyFlinkCEP operator on top of the stream-
ing extension of a popular data science platform, RapidMiner Stu-
dio [26], users can draw workflows by simply dragging and drop-
ping operators on a canvas. The parameters (P1)-(P4) are specified
using graphical components. The first step after prescribing (P1)-
(P4) is to press a submit button. The queried pattern is then handled
by the EasyFlinkCEP Parser and Regex Analyzer (Figure 1) which
processes and translates the Regex into a FlinkCEP program. Regex,
i.e., (P1) may include disjunction, negation, quantifiers and the wild
char. For example 𝑎{2, 5}𝑏?(𝑐 |𝑑) denotes that we seek between 2
and 5 appearances of event 𝑎, followed by zero or one event 𝑏, fol-
lowed by events 𝑐 or 𝑑 . The final FlinkCEP program is created by
the EasyFlinkCEP API Translator (Figure 1) which also adds to the
created code the user specifications for (P2)-(P4).

Our experience shows that the EasyFlinkCEP Operator can re-
duce the time required to define and deploy new CEP analytics
workflows from day(s) to minutes. To understand why, compare
EasyFlinkCEP’s simple Regex 𝑎𝑏+ and graphical definition of (P2)-
(P4), with Listing 1 which provides part of the FlinkCEP code in
Java querying for an equivalent pattern.

EasyFlinkCEP creates code ready to get executed as a FlinkCEP
job in a computer cluster. But before job submission, the application
has to specify the computer cluster resources, i.e., parallelism, of
that FlinkCEP job. In our architecture (Figure 1) the EasyFlinkCEP
Optimizer automates such cluster configuration decisions.

Listing 1: Java code in FlinkCEP for detecting 𝑎𝑏+ patterns

1 // −−−−−− Create pattern "a b+" −−−−−−
2 Pattern<Event, ?> pattern = Pattern .<Event>begin(" start " , skipStrategy ) .where(new

SimpleCondition<>() {
3 @Override
4 public boolean filter (Event value) {
5 return value .getName(). startsWith ( "a" ) ;}
6 }) . followedBy("next" ) .where(new SimpleCondition<>() { // followedBy for Relaxed Contiguity
7 @Override
8 public boolean filter (Event value) {
9 return value .getName(). startsWith ( "b" ) ;}
10 }) .oneOrMore().consecutive () ; // oneOrMore().consecutive () for b+
11 PatternStream<Event> patternStream = CEP.pattern( input , pattern ) ;

3 THE EasyFlinkCEP OPTIMIZER

Challenges. FlinkCEP operators internally function on automata [7,
12, 16]. Briefly, these automata have simple events (such as 𝑎, 𝑏 in
Listing 1) as their states and the occurrence of involved simple
events triggers transitions from one state to another. Whenever an
automaton reaches a final state, we say that a full match has been
completed and a CE is outputted. But for an automaton that is in
a non-final state, FlinkCEP has to keep and process all the partial
matches that are valid based on the chosen contiguity, consumption
andwindow specifications, since thesemay produce full matches for
future streaming tuples. Therefore, FlinkCEP may have to process
simultaneously multiple partial matches with each streaming tuple,
which obviously affects CEP performance in terms of throughput,
i.e. number of tuples being processed per time unit. Some relaxed
contiguity strategies may produce a number of partial matches that
grows exponentially to the number of input events [3, 31]. On the
other hand, these partial matches may be reduced based on the
specified window and consumption policy [12, 21]. Event consump-
tion policies may also act as a bottleneck for a CEP operator, for
example, halting its parallel execution to check if a given event has
been consumed by other parallel instances of a pattern [12, 20].

Hence, it is hard to come up with an analytic formula to de-
scribe the expected performance of a CEP query and, therefore,
the EasyFlinkCEP Optimizer treats a Regex as a black-box function
attempting to learn its behavior–performance in terms of through-
put for various parallelism degrees, contiguity, consumption and
window specs. To do that, it encompasses the Benchmarking and
the Cost Modeler Submodules (Figure 1).
The EasyFlinkCEP Benchmarking Submodule. When a pre-
viously unseen Regex, interpreted into a FlinkCEP program, is
submitted, the Benchmarking Submodule of the EasyFlinkCEP Op-
timizer (Figure 1) performs a number of micro-benchmarking itera-
tions, before actually deploying the CEP query in production. These
micro-benchmarks focus only on the interpreted Regex and each
runs a series of smaller scale FlinkCEP jobs, of limited duration
each, testing the Regex under different sets of (Regex, contiguity,
consumption, window, parallelism) specifications. Note that the
submitted FlinkCEP program has fixed such specifications (exclud-
ing parallelism which is to be prescribed by the optimizer), while
the Benchmarking Submodule runs jobs with different (contiguity,
consumption, window) parameters. The aim is to learn Regex’s
expected throughput under different such specs and build a perfor-
mance model that can be used any future time the same Regex is
submitted, even if the exact specs are altered.

Micro-benchmarks may be executed over actual samples of data
from the involved streams or on synthetic data streams produced
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Figure 2: EasyFlinkCEP BO-based Optimizer Operation.

by data generators. The EasyFlinkCEP Optimizer collects statistics
about the achieved throughput of each micro-benchmark using
JMX [30]. The benchmarking process reserves cluster resources
from other Flink jobs (only for a previously unseen Regex, though)
and, thus, we want to keep these micro-benchmarks to a minimum.
The EasyFlinkCEP Cost Modeler Submodule. To sum up, we
have a black-box function we wish to learn to estimate the through-
put of the submitted (and any similar) FlinkCEP program under
different parallelism configurations. We further want to accomplish
that, using a limited number of benchmarks. This setup perfectly
fits to a Bayesian Optimization (BO) approach [27, 28].

The first time we see a new Regex we know nothing about its
expected throughput (Figure 2a). Therefore, the Benchmarking Sub-
module chooses a few 𝑥 =(contiguity, consumption, window, paral-
lelism) instances from the set of possible specification combinations
and submits micro-benchmarks to the Flink cluster (right-hand side
of Figure 1). Throughput statistics are monitored and are com-
piled in an initial benchmarking set 𝐷𝑖𝑛𝑖𝑡 fed to the Cost Modeler
upon the completion of the corresponding jobs. The outcome of
the micro-benchmarks is a series of (contiguity, consumption, win-
dow, parallelism, throughput) tuples which will be used as training
data. The BO approach used by the Cost Modeler builds an ini-
tial performance model fitting a Gaussian Process Regressor (GRP)
around 𝐷𝑖𝑛𝑖𝑡 , as shown in Figure 2b. Then, the Cost Modeler uses
an acquisition function 𝑎(𝑥) in order to determine the (contiguity,
consumption, window, parallelism) instance that should be used in
the next micro-benchmark. The acquisition function determines
the next micro-benchmark in order to improve the GPR in terms
of describing the true throughput. Acquisition functions bargain
exploitation and exploration. Exploitation means determining the
next 𝑥 point to be in areas where GPR predicts high/low values for
throughput and exploration means choosing 𝑥 where the prediction
uncertainty (e.g. variance) is high. Both correspond to high 𝑎(𝑥)
values and the goal is to optimize (maximize) 𝑎(𝑥) to determine the
next benchmark (Figure 2c). Commonly used Acquisition Functions
are Expected Improvement (EI), Lower Confidence Bound (LCB),
Maximum Probability of Improvement (MPI) or Entropy Search. Af-
ter a number of such micro-benchmark submission and GPR update
iterations, EasyFlinkCEP’s Cost Modeler ends up with an accurate
GPR model that will be used in the future by the EasyFlinkCEP
Optimizer every time the same Regex with any (contiguity, con-
sumption, window) specifications is submitted (Figure 2d). Trained
GPRs models are developed using the scikit-optimize [23] library.

When an interpreted FlinkCEP program with a specific (Regex,
contiguity, consumption, window) is submitted, the EasyFlinkCEP
Optimizer asks the trained GPR for a throughput estimation on 𝑥
values composed of its (contiguity, consumption, window) specifi-
cations and various parallelism levels. For each queried parallelism
level we have a different 𝑥 . So the GPR replies backwith the through-
put values on the blue line in Figure 2d crossed at these 𝑥 s. Among
these responses, the EasyFlinkCEP Optimizer will choose the level
of parallelism that achieves the highest increase in throughput
with the minimum number of provisioned resources, i.e., the lowest
parallelism, and will configure the respective FlinkCEP job to run
accordingly. Applications of this scheme are provided in Section 4.
EasyFlinkCEP & Best Practices.We list a set of best practices,
applied in Section 4, extracted from EasyFlinkCEP’s adoption in
the scenarios of Section 1.
(1) 𝐷𝑖𝑛𝑖𝑡 should be constructed by sampling with probability ∼10%
from all possible (contiguity, consumption, window, parallelism)
combinations of the specification space.
(2) Choosing LCB as an acquisition function results in GPRs that can
better capture the trends in the benchmarked operator’s through-
put, compared to EI or MPI, with a lower number of BO iterations.
(3) The number of BO iterations required by LCB to establish accu-
rate GPRs correspond to 1/3 of all possible (contiguity, consumption,
window, parallelism) specifications.
(4) Contiguity, consumption, and parallelism in the 𝑥 axis of Fig-
ure 2 are categorical features and also window values can be easily
discretized based on the number of tuples in the window or its
time duration. Therefore, we suggest the GPR model to get param-
eterized with a weighted Hamming Distance Kernel using equal
weights for each specification category.
(5) The developed cost model can incrementally get updated for
specific (Regex, contiguity, consumption, window, parallelism) with
statistics from currently deployed CEP queries, avoiding the need
for further micro-benchmarks.

4 EXPERIMENTS

In this sectionwe provide experimental results on the EasyFlinkCEP
Operator, the performance of the produced FlinkCEP programs and
the ability of the EasyFlinkCEP Optimizer to devise good FlinkCEP
job execution configurations. All experiments were run in a VM
with 16 cores and 16GB of main memory running Ubuntu 18.04
using the latest version of Flink. The input and output streams were
instantiated as Kafka topics using a broker running in the same
machine. We used 8 stock streams with 2M simple events each
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(16M in total). Each stream was populated using events denoted as
lower case latin characters. In this particular scenario, we monitor
patterns involving stock trade price trends with the following nota-
tion 𝑎: decreasing trend, 𝑏: increasing trend, 𝑐: steady trend and 𝑑 :
undetermined trend. We use a Regex of the form 𝑎𝑏{1, 3}𝑐 |𝑑 and
a tumbling (i.e., disjoint) window of 128 events per stream after
discussions with the domain experts. The default consumption pol-
icy was NO_SKIP, but we vary that parameter as well. To increase
the complexity in terms of partial matches (Section 3), we further
inject 125K CEs at random positions within the input streams.

In Figure 3a we plot the achieved throughput (processed input
events/sec) of the interpreted FlinkCEP program as we vary the
degree of parallelism in the EasyFlinkCEP operator and the desired
contiguity condition. We notice that all instances of the operator
scale by increasing the parallelism except for the execution of the
strict contiguity with parallelism = 8, as in that case, the speed of
the operator is capped by the rate of reading data from Kafka. As
expected, selecting the relaxed or the non-deterministic contigu-
ity conditions results is significantly smaller throughput due to
increased number of partial pattern matches monitored before de-
tecting CEs and the larger number of CEs produced (see Section 3).

In Figure 3b we repeat the experiment with parallelism = 1 and
vary the contiguity condition and consumption policy. Using a
consumption policy that skips events after a match benefits mainly
the relaxed and non-deterministic contiguities, as it helps limit the
number of partial matches monitored and CEs produced.

Our next set of experiments concentrates on the number of
required micro-benchmarks and the effectiveness of the EasyFlink-
CEP Optimizer in devising good job execution configurations. Fig-
ure 3c plots the prediction accuracy of the trained BO model. In
the horizontal axis we include the number of executed micro-
benchmarks which correspond to BO iterations. In the first vertical
axis (left-hand side of Figure 3c) we measure the 𝐿1 error, then
normalize the vertical axis to improve readability and include sepa-
rate lines for the median and the average such error. In the second
vertical axis (right-hand side of Figure 3c) we measure the 𝑅2 score
between BO predictions and actual throughput values. The con-
cept is to use 𝐿1 to deduce the prediction error in terms of absolute
throughput values, i.e. |𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡−𝑎𝑐𝑡𝑢𝑎𝑙𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 |,
but also 𝑅2 score to check the intuition that if the EasyFlinkCEP Op-
timizer (Cost Modeler in particular) can at least capture the trends
of throughput, instead of the absolute values, it will still devise
good job configurations. As Figure 3c demonstrates, the 𝐿1 error
drops below 5% after 20 BO iterations, while 𝑅2 score exceeds 80%
after, roughly, 10 micro-benchmarks – BO iterations.

To test our intuition, in Figure 4, we use a BO model trained
with just 1/3 of the possible micro-benchmarks (red vertical line in
Figure 3c where 𝑅2 score > 80% ) and we compare the optimal Flink-
CEP configurations versus those prescribed by the EasyFlinkCEP
Optimizer. The horizontal axis holds grouped triplets of all possible
specifications regarding parallelism, consumption and contiguity
for our Regex. The vertical axis plots the increase (percentage) in
throughput upon increasing parallelism. We use two lines for the
predicted throughput increase (predDiff) and the true one (trueDiff).
The optimal job configuration is the one that achieves the highest
increase in throughput with the lowest parallelism. So for instance,
for the first triplet, the best FlinkCEP configuration under (Strict
Contiguity, NO_SKIP) is to set parallelism to 2, since this paral-
lelism provides the highest increase in throughput using the lowest
possible resources (2 VMs or task slots etc). This is captured by
EasyFlinkCEP since the (not necessarily the same) maximum for
the corresponding predDiff, trueDiff lines is reached for the same
value of parallelism. The same holds for the last two (8th and 9th)
triplets under Non-Deterministic Contiguity and SKIP_TO_NEXT,
SKIP_TO_LAST, respectively. Despite the fact that the maximum
throughput increase value differs for the predDiff, trueDiff lines,
they both show that the maximum is achieved by increasing paral-
lelism to a value of 4. On the contrary, for the third triplet (Strict
Contiguity, SKIP_TO_LAST) the maximum throughput increase is
for setting parallelism to 8 (trueDiff), while predDiff erroneously
shows that this happens for parallelism=2.

As the marks in Figure 4 show, 8/9 times the EasyFlinkCEP
Optimizer devises good job configurations. In 6 out of 9 possible
consumption, contiguity specifications, the EasyFlinkCEP Opti-
mizer configured the FlinkCEP job in the optimal way (� signs),
2/9 times it devised the second best configuration (� signs), while
only 1/9 times (× sign) it reached a bad decision. Therefore, just
capturing the throughput trends in terms of 𝑅2 is proved sufficient
to automatically devise good FlinkCEP job configurations, using
just 1/3 (12/36) possible micro-benchmarks.

5 CONCLUSIONS

We present EasyFlinkCEP, a CEP component operating on top of a
state-of-the-art parallel CEP engine, namely FlinkCEP. EasyFlink-
CEP offers (i) the EasyFlinkCEPOperator which abstracts the details
of coding directly on FlinkCEP, and (ii) the EasyFlinkCEP Optimizer
to optimize FlinkCEP jobs executed in a Flink cluster of choice. Thus,
business event analysts can focus on rapidly defining CEP queries
and then exploit the processing capacity of modern hardware with-
out any cluster administration background knowledge.
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