
Noname manuscript No.
(will be inserted by the editor)

Efficient Range Query Processing in Metric Spaces over

Highly Distributed Data

Christos Doulkeridis · Akrivi Vlachou ·

Yannis Kotidis · Michalis Vazirgiannis

Received: date / Accepted: date

Abstract Similarity search in P2P systems has attracted a lot of attention

recently and several important applications, like distributed image search, can

profit from the proposed distributed algorithms. In this paper, we address the

challenging problem of efficient processing of range queries in metric spaces,

where data is horizontally distributed across a super-peer network. Our ap-

proach relies on SIMPEER [13], a framework that dynamically clusters peer

data, in order to build distributed routing information at super-peer level.

SIMPEER allows the evaluation of exact range and nearest neighbor queries

in a distributed manner that reduces communication cost, network latency,

bandwidth consumption and computational overhead at each individual peer.

In this paper, we extend SIMPEER by focusing on efficient range query pro-

cessing and providing recall-based guarantees for the quality of the result re-

trieved so far. This is especially useful for range queries that lead to result

sets of high cardinality and incur a high processing cost, while the complete

result set becomes overwhelming for the user. Our framework employs statis-

Christos Doulkeridis · Akrivi Vlachou · Yannis Kotidis · Michalis Vazirgiannis
Department of Informatics, Athens University of Economics and Business, Greece
E-mail: {cdoulk,avlachou,kotidis,mvazirg}@aueb.gr

2

tics for estimating an upper limit of the number of possible results for a range

query and each super-peer may decide not to propagate further the query and

reduce the scope of the search. We provide an experimental evaluation of our

framework and show that our approach performs efficiently, even in the case

of high degree of distribution.

Keywords Similarity search · peer-to-peer · range queries

1 Introduction

During the last decades, the vast number of independent data sources and the

high rate of data generation make central assembly of data at a single location

infeasible. As a consequence, data management and storage become increas-

ingly distributed. Moreover, as the number of participating sources increases,

traditional client-server solutions are prone to bottleneck risks and therefore do

not scale. Peer-to-peer (P2P) systems emerge as a powerful model for search-

ing huge amounts of data distributed over independent sources in a completely

distributed and self-organizing way.

In real-life P2P application scenarios, there exist some peers (called super-

peers) that have special roles, due to enhanced capabilities. Super-peer infras-

tructures [29,30] harness the merits of both centralized and distributed archi-

tectures. Super-peer networks tackle the scaling and ”single-point-of-failure”

problems of centralized approaches, while exploiting the advantages of the

completely distributed approach, where each peer builds an index over its own

data. Super-peers accept a limited number of connections from peers and be-

come responsible for building and maintaining a summary index over their

peers’ data. In addition, each super-peer maintains information about neigh-

boring super-peers in the network (for example following the notion of routing

indices [11]) for routing queries to remote peers.

3

Similarity search in metric spaces has received considerable attention in the

database research community [6,16,21]. The objective is to find all objects that

are similar to a given query object, such as a digital image, a text document

or a DNA sequence. Numerous interesting applications can be deployed over a

super-peer infrastructure that supports similarity search in metric spaces. In

particular, distributed image retrieval, document retrieval in digital libraries,

distributed search engines (e.g. for multimedia content), file sharing, as well

as distributed scientific databases, are all examples of applications that can be

realized over the proposed framework.

In this paper, we focus on the challenging problem of efficient similarity

query processing for metric spaces in highly distributed P2P systems. Our ap-

proach, called SIMPEER, relies on a super-peer infrastructure and users who

wish to participate, register their machines to the P2P system and each peer

stores its own data. In order to make its data searchable by other peers, each

peer autonomously clusters its data using a standard clustering algorithm, and

sends the cluster descriptions as data summarization to its super-peer. Each

super-peer maintains the cluster descriptions of its associated peers. Further-

more, to keep the information in a manageable size, each super-peer applies a

clustering algorithm on the cluster descriptions of its peers, which results in a

new set of cluster descriptions, also referred to as hyper-clusters, which sum-

marize the data objects of all peers connected to the super-peer. Thus, each

super-peer stores an abstract description of the data stored by its adjacent

peers.

The remaining challenge is to answer queries over the entire super-peer net-

work. Instead of flooding queries at super-peer level, we build routing indices

based on the hyper-cluster descriptions that enable selective query routing only

to super-peers that may actually be responsible of peers with relevant results.

The routing index construction is based on communicating the hyper-cluster

4

descriptions that are further summarized into a set of routing clusters. This

leads to a three-level clustering scheme, which summarizes the data stored at

the peers at different level of detail, and enables efficient query processing, in

terms of local computation costs, communication costs and overall response

time for both range and k-NN queries. During query processing, each super-

peer that receives the query, first uses its routing clusters to forward the query

to those neighboring super-peers, which either have local results or some of

their neighbors store query results. Then, the super-peer forwards the query

only to the subset of its peers that hold data that may appear in the result

set. Finally, each super-peer collects the results of its associated peers and the

queried neighboring super-peers and sends the result set back to the query-

ing peer. SIMPEER always retrieves the exact result set and by exploiting

the routing indices, super-peers that can not contribute any results are not

contacted during query processing.

Even though SIMPEER supports both range and k-nearest neighbor queries1,

in this paper we focus on range queries and deal with an intrinsic problem of

range queries, namely the varying cardinality of the result. One limitation of

range queries, in contrast to nearest neighbor queries, is that the cardinality

of the result set is not known in advance, but can be anything between zero

and the size of the data in the whole network. Consequently, the choice of an

inappropriate value for the query range often leads to very few or too many

query results. In the first case, a new range query has to be posed with a larger

range, which leads to redundant processing cost. In the second case, more than

necessary objects are retrieved, which again leads to increased processing cost.

In our case of distributed query processing, the high cardinality of the result

1 Nearest neighbor queries are processed by mapping them into range queries by employing
distributed radius estimation techniques [13].

5

set incurs high processing and transfer costs, while contacting a large number

of super-peers.

In order to alleviate this problem, in our proposed framework, we enrich

the cluster information with statistical information that allows us to calcu-

late the quality of the already retrieved result set, in terms of recall. Then,

each super-peer is able to estimate, the potential number of retrievable results

compared to the already retrieved answers. This enables recall-based query

routing, since the query can be forwarded to some neighbors only, and still

guarantee sufficient recall values. Our approach is applicable for several ap-

plication scenarios. The simplest scenario is that the user sets a threshold in

advance, which requires that only x% of the total results for a given query

are enough, in order to reduce the response time. More interesting is the case

that any super-peer may decide that the query result set is too large to be

useful for the user, and bounds the search by a threshold, thus reducing the

query processing cost through partial query evaluation. Each super-peer may

take into consideration its workload and the availability in resources and de-

fine an appropriate threshold. Notice that our approach is easily extensible

to progressive range query evaluation, since each super-peer can keep track

of the evaluated queries and the paths pruned by the threshold. Then, each

super-peer is able to deliver only the additional data objects, if the objects

retrieved so far are not sufficient for the user.

The key contributions of our work are:

– We present similarity search algorithms for metric spaces, suitable for un-

structured P2P settings, where peers are organized in a super-peer archi-

tecture.

– Our framework is based on a novel three-level clustering scheme that is

maintained by super-peers, in order to avoid processing on peers and super-

6

peers that can not contribute to the result set. We introduce several pruning

techniques that can speed up the evaluation of queries.

– To avoid huge and overwhelming result sets of range queries, we introduce

statistics attached to the cluster information, that allow any super-peer to

estimate the result set size and the already achieved result quality.

– We demonstrate how recall-based query routing is facilitated, while only

data objects that belong to the query result set are retrieved. Our partial

result set has guaranteed recall value. Furthermore, we effectively handle

cycles in the network during query routing, as cycles affect the estimation

of recall.

– We discuss the maintenance and construction cost of our framework and

demonstrate that our approach provides a feasible solution for P2P simi-

larity search.

Section 2 provides an overview of related work and in Section 3 we present

the system overview. In Section 4, we present the necessary construction phase,

while the actual query processing is described in Section 5. Thereafter in Sec-

tion 6, our technique for recall-based range queries is introduced. In Section 7

the maintenance of routing indices is discussed. The experimental results are

presented in Section 8, and finally we conclude in Section 9.

2 Related Work

The design of efficient indexing and query processing techniques over high-

dimensional datasets has become an important research area, because of sev-

eral database applications such as multimedia retrieval and time series match-

ing that deal with high-dimensional data representations. In such applications,

an important issue is to retrieve similar objects to a given query object. Typical

7

operations for similarity search include range and k-nearest neighbor (k-NN)

queries.

Most algorithms assume that data objects are represented in a d-dimensional

Euclidean space. Nevertheless, centralized indexing approaches [7,31,17] have

also been proposed to handle efficient similarity search in metric spaces. A

dynamic balanced index structure, called M-tree, for similarity search in met-

ric spaces, was presented in [7]. A branch-and-bound technique is proposed

to efficiently retrieve the k-nearest neighbor data objects. In [8], a cost model

for querying the M-tree is developed that uses the distance distribution of

objects. iDistance [31,17] is a state-of-the-art indexing method for similarity

search that transforms the problem of similarity search to an one-dimensional

interval search problem. For a survey of similarity query processing in metric

spaces see [6,16].

Similarity search in P2P systems has attracted a lot of attention recently,

however most existing approaches focus mainly on structured P2P systems

or on building an overlay network that groups together peers with similar

content. Recently, MCAN [14] and M-Chord [23] were proposed to handle

similarity search in metric spaces, employing a structured P2P network. Both

approaches focus on parallelism for query execution, motivated by the fact that

in real-life applications, a complex distance function is typically expensive to

compute. MCAN uses a pivot-based technique that maps data objects to an

N -dimensional vector space, while M-Chord uses the principle of iDistance [17]

to map objects into one-dimensional values. Afterwards, both approaches dis-

tribute the mapped objects over an underlying structured P2P system, namely

CAN [25] and Chord [28] respectively. Queries are transformed into a series of

interval queries, executed on existing distributed structured P2P networks. It

is worth noticing that data preprocessing (clustering and mapping) is done in

a centralized fashion, and only then data is assigned to peers. Relevant to this

8

work, Batko et al. [3] present a comparative experimental evaluation of four

distributed similarity search techniques (VPT*, GHT*, MCAN, M-Chord).

VPT* and GHT* [2] are two distributed metric index structures where the

dataset is distributed among peers participating in the network.

Recent works for similarity search in P2P systems focus on building a

suitable overlay topology. A general solution for P2P similarity search for vector

data is proposed in [1], named SWAM. Unlike structured P2P systems, peers

autonomously store their data, and efficient search is based on an overlay

topology that brings nodes with similar content together. However, SWAM

is not designed for metric spaces. A P2P framework for multi-dimensional

indexing based on a tree-structured overlay is proposed in [19]. LSH forest [4]

stores documents in the overlay network using a locality-sensitive hash function

to index high-dimensional data for answering approximate similarity queries.

Another approach that focuses of semantic content search over distributed

document collections is described in [26], where a hierarchical summary index

is built over a super-peer architecture. In [12], Datta et al. study range queries

over trie-structured overlays.

Most approaches that address range query processing in P2P systems rely

on space partitioning and assignment of specific space regions to certain peers.

A load-balancing system for range queries that extends Skip Graphs is pre-

sented in [27]. The use of Skip Graphs for range query processing has also been

proposed in [15]. Several P2P range index structures have been proposed, such

as Mercury [5], P-tree [9], BATON [18]. A variant of structured P2P for range

queries that aims at exploiting peer heterogeneity is presented in [24]. In [22],

the authors propose NR-tree, a P2P adaptation of the R*-tree, for querying

spatial data. Routing indices stored at each peer are used for P2P similarity

search in [20]. Their approach relies on a freezing technique, i.e. some queries

are paused and can be answered by streaming results of other queries. Re-

9

Symbols Description

d Data dimensionality
n Dataset cardinality
Np Number of peers
Nsp Number of super-peers
DEGp Degree of peer
DEGsp Degree of super-peer
kp Peer clusters
ksp Super-peer clusters
LCp={Ci : (Ki, ri)} List of peer clusters
LHC={HCi : (Oi, r

′

i
)} List of hyper-clusters

LRC={RCi : (Ri, r
′′

i
)} List of routing clusters

Fig. 1 Overview of symbols.

SP
A

P
A
 P
B
 P
C

Peer Level

X
 Y
 Z

A1
 2
 2
 2

A2
 1
 3
 2

A3
 1
 3
 5

A4
 2
 3
 2

A5
 5
 2
 4

X
 Y
 Z

B1
 3
 1
 1

B2
 4
 5
 4

B3
 2
 3
 3

B4
 1
 2
 3

B5
 5
 5
 5

X
 Y
 Z

C1
 5
 3
 7

C2
 2
 5
 6

C3
 5
 5
 5

C4
 1
 1
 3

C5
 6
 6
 6

Super-peer

Level

Local Data

SP
C
SP
B

Fig. 2 Super-peer architecture

cently, in [10], P-Ring is proposed as an indexing structure that enables range

query processing.

3 System Overview

In this paper, we assume a P2P system that relies on a super-peer infrastruc-

ture and users who wish to participate, register their machines (peers) to the

P2P system. More formally, we assume a network of Np peers, where each peer

Pi holds ni d-dimensional points, denoted as a set Si (i = 1..Np). Obviously

the size of the complete set of points is n =
∑Np

i=1 ni and the dataset S is the

union of all peers’ datasets Si: S = ∪Si. Given a space D defined by a set

of d dimensions {d1, d2, .., dd} and a dataset S on D, a point p ∈ S can be

represented as p = {p1, p2, ..., pd} where pi, is a value on dimension di. For a

complete reference to the symbols used in this paper see the table depicted in

Figure 1.

Some peers have special roles (Figure 2), due to their enhanced features,

such as availability, storage capability and bandwidth capacity. These peers are

called super-peers SPi (i = 1..Nsp), and they constitute only a small fraction

of the peers in the network, i.e. Nsp << Np. Super-peers accept a maximum

number of DEGp connections from peers that join the network and directly

10

connect to one of the super-peers, and become responsible for building and

maintaining a summary index over their peers’ data. In addition, a super-

peer is connected to a limited set of at most DEGsp neighboring super-peers

(DEGsp < DEGp) and maintains information about data available in the

network through its neighbors for routing queries to remote peers.

Each peer maintains its own data objects, such as images or documents,

which refer to a high-dimensional metric space and a distance function pro-

vides a measure of (dis)similarity. Similarity search in metric spaces focuses

on supporting queries, whose purpose is to retrieve objects which are similar

to a query point, when a metric distance function dist measures the objects

(dis)similarity. More formally, a metric space is a pair M = (D, dist), where D

is a domain of feature values and dist is a distance function with the following

properties: 1) dist(p, q) = dist(q, p) (symmetry), 2) dist(p, q) > 0, q 6= p and

dist(p, p) = 0 (non negativity), 3) dist(p, q) ≤ dist(p, o) + dist(o, q) (triangle

inequality). There are two types of similarity queries:

range query R(q, r): Retrieve all elements that are within distance r to q, i.e.

retrieve the result set A ⊆ S such that u ∈ A and dist(q, u) ≤ r.

k-nearest neighbor query NNk(q): Retrieve the k closest elements to q, i.e.

retrieve a set A ⊆ S such that |A| = k and ∀u ∈ A, v ∈ S −A, dist(q, u) ≤

dist(q, v).

Our approach enables similarity search in metric spaces over data dis-

tributed in a super-peer network, utilizing routing indices based on cluster

information. Our framework is based on a novel three-level clustering scheme

as described in the following.

11

4 Construction Phase

SIMPEER enables efficient query processing by using distributed routing in-

formation and guarantees that all objects that belong to the query result set

are retrieved, without necessarily flooding the network. For this purpose, there

exists a pre-processing phase, in which the routing information is exchanged

and appropriate routing indices are built, that in turn allow subsequent query

processing over the entire network of peers. Our approach relies on and extends

iDistance [31,17], a centralized state-of-the-art approach that takes advantage

of cluster information, in order to effectively maintain high-dimensional data

objects and support similarity search in metric spaces. SIMPEER uses clus-

tering information as a multi-dimensional summary of all data objects stored

at a peer and utilizes a three-level clustering scheme:

– Each peer clusters its own data and the resulting clusters are used to index

local points using iDistance.

– A super-peer receives cluster descriptions from its peers and computes the

hyper-clusters using our extension of iDistance. Hyper-clusters are used by

a super-peer to decide which of its peers should process a query, essentially

forming a peer selection mechanism.

– Hyper-clusters are communicated among super-peers and are further sum-

marized, in order to build a set of routing clusters. These are maintained at

super-peer level and they are used for routing a query across the super-peer

network, thus creating a super-peer selection mechanism.

In this section, we discuss the pre-processing phase in detail.

12

4.1 Peer Construction Phase

Each peer is responsible for its own data, which is organized and stored based

on iDistance [31,17]. First, the peer applies a clustering algorithm on its local

data. Even though the choice of the algorithm influences the overall perfor-

mance of the system, each peer may choose any clustering algorithm. The clus-

tering algorithm leads to a set of kp clusters LCp={Ci : (Ki, ri)|1 ≤ i ≤ kp}.

Each cluster is described by a cluster centroid Ki (also mentioned as reference

object) and a radius ri, which is the distance of the farthest point of the clus-

ter to Ki. Each data object is assigned to the nearest cluster Ci, based on its

distance to Ki.

Assuming a data space partitioning into kp clusters, each data object is

assigned a one-dimensional iDistance value according to the distance to its

cluster’s reference object. Having a constant c to separate individual clusters,

the iDistance value for an object x ∈ Ci is

iDist(x) = i ∗ c + dist(Ki, x)

Expecting that c is large enough, all objects of the i-th cluster are mapped to

the interval [i ∗ c, (i + 1) ∗ c], as shown in Figure 3.

C
1

iDist(x)

C
2

0
 1*c
 2*c

2*c+
r

2

1*c+
r

1

q

r

...

K
1

r
1

K
2

r
2

Fig. 3 iDistance mapping to 1-dimensional values.

13

The actual data objects are stored in a B+-tree using the iDistance values

as keys. Additionally, the list of the clusters LCp, i.e. the cluster centroids Ki

and the cluster radii ri are kept in a main memory list. Thus, the problem

of similarity search is transformed to an interval search problem, as will be

described in Section 5.1.

4.2 Super-peer Construction Phase

Each super-peer SPA collects the cluster descriptions from its associated peers,

i.e. the lists {LCpi
|1 ≤ i ≤ DEGp}. It should be emphasized that only the

cluster descriptions as a summarization of the peer’s data is published to the

super-peer, while the original data is stored by the peer itself. In order to

keep the information in a manageable size, SPA applies a clustering algorithm

on the cluster descriptions of its peers, which results in a new set of cluster

descriptions, also referred to as a list of hyper-clusters, which summarize the

data objects of all peers connected to the super-peer. The peer cluster descrip-

tions are mapped to one-dimensional values, using our extension of iDistance,

in such a way that a range query can be mapped into an one-dimensional

interval search. In the following, we present our extension of iDistance that

facilitates one-dimensional mapping of clusters.

The peer cluster descriptions collected at super-peer SPA are represented

by a list LCsp={(K1, r1), ..., (Knsp
, rnsp

)}, where nsp is the total number of

clusters of SPA’s peers. For the sake of simplicity, we assume that nsp=kp ∗

DEGp, i.e. all peers have the same number of clusters kp. Following the iDis-

tance concept, SPA applies a clustering algorithm on the list LCsp which

results in a list of hyper-clusters LHCsp={HCi : (Oi, r
′

i)|1 ≤ i ≤ ksp}, where

ksp the number of hyper-clusters, Oi the hyper-cluster centroid and r′i the

14

hyper-cluster radius, which is the distance of the farthest point of all clusters

assigned to the hyper-cluster to Oi.

Each cluster Cj is mapped to a one-dimensional value based on the nearest

hyper-cluster centroid Oi using formula:

keyj=i ∗ c + [dist(Oi, Kj) + rj]

which practically maps the farthest point of a cluster Cj based on the near-

est reference point Oi. Similarly to iDistance, the one-dimensional values are

indexed using a B+-tree. The B+-tree entry ej consists of the cluster’s center

Kj, its radius rj and the distance dj to its nearest reference point:

ej : (keyj, Kj, rj , dj , IPj)

Additionally, in the B+-tree entry, the IP address of the peer is stored, in

order to be able to propagate the query to those peers that have clusters that

intersect with the query.

Furthermore, for each hyper-cluster HCi, except from the radius r′i, we also

keep a lower bound (dist mini) of all cluster distances. The distance dist mini

is the distance of the nearest point of all clusters Cj to Oi. These two numbers

practically define the effective data region of reference point Oi, or in other

words, the region in HCi where all points of all clusters Cj belong to.

4.3 Routing Indices Construction

Each super-peer builds a variant of routing indices, in order to efficiently route

queries to the appropriate neighboring super-peers. The routing information

consists of assembled hyper-clusters HCi of other super-peers. Thus, for each

neighboring super-peer a list of hyper-clusters is maintained, corresponding to

hyper-clusters that are reachable through this particular neighboring super-

peer. During query routing, the routing indices are used to prune neighboring

15

super-peers, thus inducing query processing only on those super-peers that

can contribute to the final result set.

In more detail, each super-peer SPA broadcasts its hyper-clusters using

create messages in the super-peer network. Then, each recipient super-peer SPr

reached by create messages, assembles the hyper-clusters of other super-peers

and uses the extension of the iDistance method for storing this information.

Therefore, SPr runs a clustering algorithm on the assembled hyper-clusters,

which results in a set of routing clusters (RC) that constitute a summary

of the hyper-cluster information. Then SPr indexes the hyper-clusters, in a

completely analogous manner as it clustered its peers clusters into hyper-

clusters. The only difference is that for each routing cluster, the identifier

of the neighboring super-peer, from which the owner of the hyper-cluster is

accessible, is additionally stored.

Summarizing, a super-peer SPA uses our extension of iDistance in two

ways. First, it clusters its peers’ clusters {LCpi
|1 ≤ i ≤ DEGp} into hyper-

clusters HCi and indexes this information in a B+-tree. SPA also clusters

the hyper-clusters {LHCi|1 ≤ i ≤ Nsp − 1} collected from other super-peers,

resulting in a list of routing clusters LRCA. These are then used to index

LHCi in a separate B+-tree using the one-dimensional mapping, analogously

to the technique employed for its peers’ clusters.

4.4 Construction Cost

In this section, we compare by means of an analytical model the construction

cost of SIMPEER to the construction cost of a DHT-based approach (e.g.

similar to M-Chord [23]).

The cost of indexing one data point in a DHT is logarithmic with respect

to the network size (Np). Let d be the dimensionality of the data and b the size

16

 0.1

 1

 10

 100

 1000

 1000 2000 3000 4000 5000

C
on

st
ru

ct
io

n
C

os
t (

M
B

)

Number of peers (Np)

DHT(exp)
DHT(cost)

Super-Peer(exp)
Super-Peer(cost)

(a) Increasing number of peers

 1

 10

 100

 1000

 10000

 400 800 1200 1600 2000

C
on

st
ru

ct
io

n
C

os
t (

M
B

)

Points per peer (n/Np)

DHT(exp)
DHT(cost)

Super-Peer(exp)
Super-Peer(cost)

(b) Increasing number of points/peer

Fig. 4 Construction cost of a DHT-based versus a super-peer approach

of each variable (for example double), then the cost for publishing one point

is: d × b × log Np. If n/Np denotes the number of points per peer, the cost

incurred by a peer Pi publishing its data is: Ci = n/Np× d× b× log Np. Thus

the total cost for all peers is: COSTDHT =
∑

i=1..Np
Ci = n× d× b× log Np.

For the super-peer approach, we denote kp the number of clusters per peer,

ksp the number of clusters per super-peer, and Nsp the number of super-peers.

The cost of Np peers publishing their kp clusters (centroid and radius) to their

super-peers is: Cpeer = Np × kp × b × (d + 1). Assuming an acyclic super-

peer network, the cost of broadcasting some information at super-peer level

is O(Nsp) and the cost of super-peer hyper-cluster exchange is: Csuper−peer =

N2
sp × ksp × b× (d + 1). Then the total cost is: COSTsp = b× (d + 1)× [Np ×

kp + N2
sp × ksp].

In Figure 4, we show some charts that depict graphically the results of

this simple cost analysis. In addition, in order to validate our cost model,

we show the results produced by 1) our framework experimentally, denoted

as Super-Peer(exp), and 2) a simulator of Chord we developed, denoted as

DHT(exp). The following default values are used: d=10, b=8, kp=20, ksp=10.

In Figure 4(a), we study the effect of increasing network size. This is for

n = 1M points and using DEGp=50 peers per super-peer. The super-peer

approach is cheaper than the DHT approach for this setup, however the super-

17

peer approach is more sensitive to Np. Moreover, the experimental results are

similar to the results of the cost model. The small discrepancies observed are

expected, as the super-peer topology is not acyclic and the actual cost of

broadcasting depends on the density of the super-peer topology.

In the second chart (Figure 4(b)), we gradually increase the cardinality of

the dataset from 1M to 10M, for Np=5000 and DEGp=50. It is obvious that

the DHT approach is sensitive to n, while the cost of the super-peer approach

does not depend on n at all. These results show that the construction cost

of a super-peer based approach is comparable to a DHT-based approach, and

often it is even cheaper depending on the parameters. Again, the experimental

results closely follow the results of the cost model, verifying its correctness.

5 Distributed Query Processing

In super-peer architectures, queries are typically routed first in the super-

peer backbone and afterwards, if necessary, they are distributed to the peers

that are connected to the super-peers. An important parameter is the super-

peer topology, which influences the performance of routing. In this work we

assume that the pre-defined super-peer topology is generic and not restricted

to a particular form, and we focus on the optimization of interactions among

super-peers and peers.

Given a range query R(q, r), each super-peer SPA that receives the query

uses its routing clusters to detect the hyper-clusters that intersect with the

query and forwards the query to the corresponding neighboring super-peers.

These hyper-clusters may summarize clusters that belong to peers associated

to the neighboring super-peer or hyper-clusters of other super-peers that are

accessible through the neighboring super-peer. Therefore the query is for-

warded to SPA’s neighbors, which in turn propagate it to their neighbors.

18

Thereafter, SPA forwards the range query only to those of its associated peers

that have clusters intersecting with the query, or in other words to peers that

hold data that may appear in the result set and should therefore be examined.

Finally, SPA collects the results of its associated peers and the queried neigh-

boring super-peers and sends the result set back to the super-peer from which

SPA received the query.

In this section, we first focus on how query processing is performed by a

single peer. Then, we present the query processing performed by a single super-

peer, which consist of two algorithms: 1) the algorithm used by the super-peer

to determine those of its associated peers that probably store data that belong

to the result set, and 2) a routing algorithm that allows a super-peer to choose

the subset of its neighbors that can lead to query results.

5.1 Peer Query Processing

When a peer receives a query, this means that probably this peer stores some

data objects relevant to the query. Then, the peer is responsible to evaluate

the query according to its own data. Since the data objects are organized and

stored based on the iDistance concept, the peer exploits the existing index to

efficiently evaluate the query.

For a given range query R(q, r), the peer examines each cluster in the

list LCp and searches separately those clusters that possibly contain objects

matching the query. Algorithm 1 describes how range query processing on

a peer is performed. Practically, for each peer cluster Ci ∈ LCp, the al-

gorithm tests if the query intersects the cluster area (line 4). Thus, if a

cluster Ci satisfies the inequality dist(Ki, q) − r ≤ ri, an interval search

[dist(Ki, q) + i ∗ c − r, dist(Ki, q) + i ∗ c + r] is posed on the B+-tree. This

iDistance interval corresponds to the area of Ci that should be scanned, in or-

19

Algorithm 1 Peer query processing.

1: Input: (q, r)
2: Output: Result set S
3: for Ci ∈ {LCp} do

4: if (d(Ki, q)− r ≤ ri) then

5: cursor ← B+tree range query[dist(Ki, q) + i ∗ c− r, dist(Ki, q) + i ∗
c + r]

6: while (candidate = has next(cursor)) do

7: if (dist(candidate, q) ≤ r) then

8: S ← S ∪ {candidate}
9: end if

10: end while

11: end if

12: end for

13: return S

der to find all relevant objects. After these objects are retrieved, a refinement

step is required, due to the lossy mapping of iDistance, which maps different

equidistant points from Ki to the same one-dimensional value. In order to en-

sure that the retrieved object is indeed within a distance r from the query, in

the refinement step, each object’s distance to q is computed and if it is smaller

than r (line 7), the object is added to the result set S (line 8). For example

in Figure 3 the range query intersects with both clusters C1, C2. According

to the iDistance values, all objects falling in the dark grey shadowed area are

retrieved and examined whether they belong to the result set.

5.2 Super-Peer Query Processing

When a super-peer receives a query, the super-peer first routes the query to

those neighbors that may contribute to the query, and then it exploits the

hyper-cluster information to detect its associated peers’ clusters that intersect

with the query. Then, the super-peer propagates the query to them. In this

section, we first provide an algorithm that retrieves all peer clusters that in-

20

i*c

dist_min
i
 i*c+r’
i

iDist(x)
i*c+
dis
-r

O
i

r’
i

C
1

C
2

C
3

C
4

C
5

dist_min

i

q

r

dis
-r

dis

Fig. 5 Covering region for a hyper-cluster Oi, and search interval for a range query R(q, r).

tersect with a given range query R(q, r). Then, we describe how query routing

is performed.

A super-peer needs to determine the clusters and, consequently, also the

peers, that intersect with the range query, while the actual data is accessed

directly from peers during query processing. Based on the one-dimensional

mapping, in order to retrieve all clusters that belong to a hyper-cluster HCi

an interval search [i ∗ c + dist mini, i ∗ c + r′i] on the iDistance values is

posed, since the region [dist mini, r′i] contains all clusters assigned to the

hyper-cluster HCi. In the following, we denote with dis the distance of Oi

to q. The goal of our search algorithm is to filter out clusters that do not

intersect with the query, based on the iDistance values. Since the clusters are

mapped to one-dimensional values with respect to the farthest points of each

cluster, searching all indexed points until r′i cannot be avoided. This is clearly

depicted in Figure 5 by means of an example. The hyper-cluster radius r′i is

defined by the farthest point of the cluster C1, whereas dist mini is defined

by cluster C5. The query intersects with C1 that is mapped to an iDistance

value based on the r′i distance. In other words, it is not enough to search until

dis + r, since some farthest points of intersecting clusters may be overlooked.

21

Algorithm 2 Super-peer query processing.

1: Input: (q, r)
2: Output: Result set S
3: for HCi ∈ {LHC} do

4: dis ← dist(Oi, q)
5: lower ← max(dis− r, dist mini)
6: if (dis− r ≤ r′i) and (dis + r ≥ dist mini) then

7: cursor ← B+tree range query[i ∗ c + lower, i ∗ c + r′i]
8: while (Cj : (Kj , rj) = has next(cursor)) do

9: if (dist(Kj, q) ≤ r + rj) then

10: S ← S ∪ {Cj}
11: end if

12: end while

13: end if

14: end for

15: return S

The starting point of the interval search is the iDistance value corresponding

to max(dis− r, dist mini). For the query R(q, r), in our example (Figure 5),

the search scans the interval [i ∗ c + dis− r, i ∗ c + r′i].

Algorithm 2 describes the range query search algorithm performed by

super-peer. Range query search takes as input a query point q and a radius

r. The range search algorithm essentially consists of three steps: 1) it checks

whether the hyper-cluster HCi can provide relevant results (line 6), 2) (if so)

it locates a starting point, denoted as lower = max(dis − r, dist mini) (line

5), for starting an interval search on the B+-tree (line 7), and 3) scans the

interval until r′i (line 7). Since the one-dimensional mapping used by the ex-

tension of the iDistance is lossy, we have to remove the clusters that do not

intersect with the query by a refinement step. In line 9, our algorithm tests if

the cluster actually intersects with the given query.

As regards query routing, the routing indices present at any super-peer are

used to prune neighboring super-peers, thus inducing query processing only

on those super-peers that can contribute to the final result set. More formally,

given a query R(q, r) and a set of hyper-clusters HCi:(Oi, r′i), a neighboring

22

super-peer is pruned, if for all of its hyper-clusters HCi it holds:

dist(Oi, q) > r + r′i

Since the hyper-clusters are stored at each super-peer by using the exten-

sion of iDistance, in a similar way as the peers’ clusters, the algorithm used to

take the routing decision at a super-peer is completely analogous with Algo-

rithm 2. Instead of examining the hyper-cluster, the super-peer examines the

routing clusters and retrieves hyper-clusters from the B+-tree, that belong to

other super-peers, instead of clusters of the associated peers.

6 Lower Bound for Recall-based Range Queries

In this section, we show that by exploiting statistical information attached to

the cluster descriptions, our approach can provide a lower bound for achieved

recall of range queries. This is particularly useful for applications that par-

tial results are adequate, as the initiator super-peer may set a threshold that

requires in advance that for a given query only x% of the total results are

enough, in order to reduce the search costs. The lower bound estimation can

be performed at any intermediate super-peer during query routing. If the com-

puted lower bound exceeds the given threshold, the search is interrupted and

results can be returned to the user.

In the following, we present some definitions and then we discuss how

to enrich cluster descriptions with extra information, in order to enable any

super-peer to compute a guaranteed recall value at that point. Furthermore, we

describe recall-based query routing assuming an acyclic super-peer topology

and then we enhance our approach to handle cycles effectively.

23

6.1 Preliminaries

Recall is defined as the ratio of the number of relevant objects (A) retrieved

to the total number of relevant objects (B) to the query. In order to provide

a lower bound for recall, we need an upper bound for the total number of

relevant data objects that may be retrieved (B). At any given point during

routing, the super-peer knows how many objects have been retrieved so far

(A), and can estimate an upper bound for B.

Each peer cluster Ci is augmented with the number of points n(Ci) con-

tained in Ci. Then a super-peer collects its peers’ clusters and generates a set

of hyper-clusters. For each hyper-cluster HCi, the number of points belong-

ing to HCi can be easily computed as the sum of points in enclosed clusters

n(HCi) =
∑

n(Ci), and n(HCi) is attached to the hyper-cluster. This extra

information is maintained with the cluster description and as will be shown

in the following, it is sufficient for any super-peer that processes the query to

compute a guaranteed recall value, based on the results retrieved thus far.

6.2 Determining the Lower Bound for Recall

Let us consider a range query R(q, r) initiated at a super-peer SPq. First, using

Algorithm 2, SPq determines the number of results to R(q, r) that belong

to SPq’s local peers, denoted as nlocal. Then, SPq uses its routing clusters,

in order to identify other super-peers’ hyper-clusters that intersect with the

query. By adding the number of points in these hyper-clusters, SPq determines

an upper bound of points in range query R(q, r) that can be retrieved from

each of its super-peer neighbors. Therefore, each super-peer can provide a

lower bound for recall based on its view of the rest of the network, captured

in the hyper-cluster information of other super-peers.

24

HC
A

q

r

HC
B
 HC
C
n
B

n
A

n
C

HC
D

n
D

Fig. 6 A range query R(q, r) that intersects with hyper-clusters HCA, HCB and HCC .

In more detail, when a query intersects with a hyper-cluster, the num-

ber of points in the hyper-cluster is the maximum number of objects that

may be retrieved. Obviously, fewer objects will be actually retrieved from this

hyper-cluster, as the intersection area may not cover the entire hyper-cluster.

Nevertheless, we are interested in computing an upper bound of retrievable ob-

jects, so in this way we can compute an upper bound ni for each hyper-cluster

HCi that intersects with the query.

Example: Consider the case of a super-peer SPq with four neighboring

super-peers SPA, SPB, SPC and SPD. Let us further assume that SPq initi-

ates a range query R(q, r) and after examining the hyper-clusters that SPq has

collected, SPq determines that the range query overlaps with hyper-clusters

HCA, HCB and HCC that belong to super-peers SPA, SPB and SPC respec-

tively. This is graphically depicted in Figure 6, describing SPq’s viewpoint.

Furthermore, SPq determines an upper bound of the number of points that

can be retrieved through each neighbor, for instance nA results through SPA.

Now, if SPq has retrieved nlocal results to the query from its peers, then SPq

computes a lower bound for recall as: nlocal

nA+nB+nC
. Notice that SPD’s hyper-

cluster does not intersect with the query, hence SPq determines that SPD can

not contribute to the query result.

25

Algorithm 3 Local bound computation at SPq.

1: Input: (q, r)
2: Output: Lower bound for recall
3: Lnei[]← SPq.getNeighbors() // List of SPq’s neighbors
4: int n[] // List of retrievable results per SPq’s neighbor
5: nlocal ← SPq.RangeQuery(q, r) // Using Algorithm 2
6: for RCi ∈ {LRC} do

7: dis← dist(Ri, q)
8: if (dis− r ≤ r′′i) then

9: for HCj ∈ RCi do

10: dis← dist(Oi, q)
11: if (dis− r ≤ r′i) then

12: if (HCj ∈ Lnei[k]) then

13: n[k]← n[k] + nj

14: end if

15: end if

16: end for

17: end if

18: end for

19: return (nlocal,
∑

i∈Lnei
n[i])

Algorithm 3 describes how the lower bound for recall is determined at

querying super-peer SPq. For each routing cluster RCi that intersects with the

query (line 8), the algorithm examines which hyper-cluster HCj that belongs

to RCi intersects with the query (line 11). Then the neighbor from which

HCj was collected at SPq is determined (line 12), which is indexed in the

k-th position in the list Lnei of neighboring super-peers. Then, the number

of results that can be retrieved through this neighbor is increased by the

number of points nj in HCj (line 13). Finally, the lower bound for recall can

be computed as the fraction of local results (nlocal) found at SPq over the total

number of retrievable results (
∑

i∈Lnei
n[i]) through SPq’s neighbors.

6.3 Recall-based Query Routing

After having described how local range query processing is performed at a

super-peer and the exact way to determine a lower bound for recall, we pro-

26

Algorithm 4 Lower bound computation at SPi.

1: Input: (q, r), nother , nfound

2: Output: Lower bound for recall LB
3: (nlocal, nnei)← SPi.LocalBoundComp(q, r) // Using Algorithm 3
4: LB =

nlocal+nfound

(nlocal+nfound)+nother+nnei

5: return LB

ceed to describe how query routing is performed. The basic idea is to employ a

depth-first search algorithm that selects the most promising paths in the net-

work. During query routing, any super-peer that receives the query chooses

the neighbor that has the largest number of potential results. Intuitively, this

strategy aims at contacting first those super-peers that actually maintain a

large fraction of the requested results. In the following, we assume an acyclic

super-peer topology.

In more detail, a super-peer SPr that receives the query R(q, r) from an-

other super-peer SPs, also receives from SPs: a) the number of results (nfound)

retrieved so far at previous super-peers, and b) the number of results that can

potentially be retrieved by routing the query to other paths (nother). Then,

SPr uses Algorithm 4 and computes its local results (nlocal), and the num-

ber of results (nnei) that can be retrieved from its neighbors. Thus, the lower

bound for recall is computed as:

nfound+nlocal

(nfound+nlocal)+nother+nnei

If the achieved recall is not sufficient, then SPr decides to forward the query

to that neighbor that can contribute most to the retrieved results (nnei).

Example: Let us consider again SPq that initiates a range query R(q, r).

Assume that SPq has three neighbors, namely SPA, SPB and SPC , as depicted

in Figure 7(a). SPq processes the range query locally and determines nlocal =

10 results. SPq also uses its routing clusters to retrieve hyper-clusters of other

super-peers that intersect with the query. Thus, SPq computes that nA = 30

results can be potentially retrieved by following the path starting at SPA,

27

SP
q

SP
A

SP
B

SP
C

SP
E

SP
D

n
local
= 10

n
A
= 30

n
B
= 10

n
C
= 20

(a) SPq decides to forward
the query to SPA.

SP
q

SP
A

SP
B

SP
C

SP
E

SP
D

n
found
= 10

n
B
= 10

n
C
= 20

n
D
= 5

n
E
= 10

n
local
= 10

(b) SPA computes the lower
bound for recall.

SP
q

SP
A

SP
B

SP
C

SP
E

SP
D

n
found
= 20

n
B
= 10

n
C
= 20

n
D
= 5

n
local
= 5

(c) The query is forwarded
to SPE .

Fig. 7 Recall-based query routing for a range query R(q, r) initiated at super-peer SPq.

nB = 10 through SPB and nC = 20 through SPC . Therefore, SPq routes the

query to the most promising neighbor, aiming at maximizing the number of

retrievable results. Any intermediate super-peer, say SPA, that receives the

range query R(q, r), also receives from SPq: a) the number of results (nfound)

retrieved so far at previous super-peers (in this case nfound = nlocal = 10),

and b) the number of results that can potentially be retrieved by routing

the query to other paths (nother = nB + nC = 30). SPA first computes the

number of local results (nlocal = 10) to the range query (see Figure 7(b)).

SPA can also compute an upper bound of the number of results to R(q, r)

(Algorithm 3) that can be retrieved through its neighbors SPD (nD = 5)

and SPE (nE = 10). Thus, SPA determines the lower bound for recall as:

nfound+nlocal

(nfound+nlocal)+(nother+nD+nE) . In case this recall value satisfies the user, the

search is terminated at SPA and the results are returned to the querying

super-peer SPq. If the achieved recall is not enough, then SPA forwards the

query to SPE and, if necessary to SPD. SPE receives nfound = 20, nother =

nC +nB +nD = 35 and computes its own results nlocal, in order to determine

the lower bound for recall as:
nfound+nlocal

(nfound+nlocal)+nother
. In case the achieved recall

value is still insufficient, SPq is notified about the result of the search in SPA’s

subtree, and SPq selects another neighbor (in this example SPC) to forward

28

the query. The processing terminates when the desired recall value is achieved

at any super-peer.

6.4 Handling Cycles

A potential problem of the proposed approach comes up when the network

contains cycles. This is due to the fact that if a cycle exists, this may lead to

overestimate the number of results that can be retrieved from a certain direc-

tion, due to double-counting some results. However, due to the construction

phase of SIMPEER, each super-peer maintains for each hyper-cluster both

the identifiers of the owner super-peer and the neighbor super-peer through

which it received the hyper-cluster. Together with the range query R(q, r),

the super-peer forwards to its neighbor a list of super-peer identifiers that

own the hyper-clusters. Thus, the neighbor can use this information to both

avoid forwarding the query to paths that are part of a cycle, as well as avoid

over-counting the number of retrievable results.

Consider again the example of Figure 7(a) and let us further assume that

there exists a connection between super-peers SPA and SPB, thus forming

a cycle. When SPq forwards the range query to SPA, it also sends a list of

super-peers {SPD, SPE}, which are responsible (together with SPA) for the

estimated value of nA = 30, based on the viewpoint of SPq. Thus, SPA takes

into account only the results of SPD and SPE , and ignores SPB, because

indirectly SPA knows that SPB’s results have been taken into account in

nother through a different path that leads from SPq to SPB.

29

7 Routing Indices Maintenance

In this section, we first discuss the maintenance cost of the routing indices. Af-

terwards, we describe how churn (peer joins and failures) affects the proposed

framework.

7.1 Maintenance Cost

Maintenance of routing indices is required when data insertion, updates and

deletions occur. Changes of the data stored at some peer do not influence the

routing indices, as long as the peer’s cluster descriptions do not change. In the

case where a cluster description changes, then the responsible super-peer has

to be informed. The super-peer updates its local index and tests if the cluster

update influences the respective hyper-cluster. The other super-peers must

be informed, only if a hyper-cluster of the super-peer changes. Notice that if

clusters shrink, then even if the super-peers are not informed, SIMPEER is still

able to answer correctly queries, but will probably contact more super-peers.

In practice, a super-peer informs its neighbors about changes of the hyper-

clusters only if a significant change in one of its hyper-clusters is detected and

it decides to broadcast this modification in a similar way to the construction

phase. To summarize, data updates incur maintenance costs only if the radius

of a peer cluster, and eventually its hyper-cluster, are modified.

7.2 Churn

The SIMPEER framework makes the system more resilient to failures com-

pared to other P2P systems. Super-peers have stable roles, but in the extreme

case that a super-peer fails, its peers can connect to another super-peer using

the basic bootstrapping protocol. A peer failure may cause the responsible

30

super-peer to update the radii of its hyper-clusters. Only if churn rate is high,

these changes need to be propagated to other super-peers. Even if updates are

not propagated immediately after a peer fails, the only impact to our system

is that the cost of searching is increased (i.e. super-peers no longer holding

relevant results may be contacted), but the validity of the result is not com-

promised.

As already mentioned, a peer joins the network by contacting a super-peer

using the bootstrapping protocol. The bootstrapping super-peer SPB uses its

routing clusters to find the most relevant super-peer to the joining peer. This is

equivalent to a similarity search over the super-peer network. When the most

relevant super-peer SPr is discovered, the new peer joins SPr. An interesting

property of our approach is that joining peers become members of relevant

super-peers, so it is expected as new peers join the system, that clustered data

sets are gradually formed, with respect to the assigned super-peers.

8 Experimental Study

We evaluate the performance of SIMPEER using a simulator prototype imple-

mented in Java. The simulations run on 3.8GHz Dual Core AMD processors

with 2GB RAM. In order to be able to test the algorithms with realistic net-

work sizes, we ran multiple instances of the peers on the same machine and

simulated the network interconnection. Furthermore, we used the GT-ITM

topology generator2 to create well-connected random graphs of Nsp super-

peers with a user-specified average connectivity (DEGsp). We vary the fol-

lowing values: network size Np = 4000 − 16000 peers, DEGsp = 4 − 7, and

DEGp = 20 − 60. The number of peer clusters is kp = 10, while we set the

2 Available at: http://www.cc.gatech.edu/projects/gtitm/

31

number of super-peer clusters as ksp = 5. We also vary the query selectivity

Qsel of range queries.

In order to evaluate the scalability of SIMPEER we experimented with

synthetic data collections, namely uniform and clustered, that were horizon-

tally partitioned evenly among the peers. The uniform dataset includes random

points in [0, 10000]d. For the clustered dataset, each super-peer picks randomly

a d-dimensional point and all associated peers obtain kp cluster centroids that

follow a Gaussian distribution on each axis with variance 0.05. Thereafter, the

peers’ objects are generated by following a Gaussian distribution on each axis

with variance 0.025, and a mean equal to the corresponding coordinate of the

centroid. Again, the value of each dimension belongs to [0...10000]. We conduct

experiments varying the dimensionality (3-32d) and the cardinality (1M-12M)

of the dataset. In all cases, we generate 100 queries uniformly distributed and

we show the average values. For each query a peer initiator is randomly se-

lected. Although different metric distance functions can be supported, in this

set of experiments we used the Euclidean distance function.

8.1 Construction Cost

At first the construction cost is considered, in order to study the feasibil-

ity of the proposed routing index construction. The total construction cost

is measured in terms of the total volume (in bytes) that is transferred over

the network. We test two network sizes: 200 and 400 super-peers, both times

with Np = 12000, for varying connectivity degree (DEGsp = 4 − 7) and for

cardinality n = 6∗106 objects. The results show that for our largest configura-

tion, namely 400 super-peers and an average of 7 connections per super-peer,

the total construction cost is approximately 600MB, which is quite tolerable.

32

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0.67 1 1.33 1.67 2

V
ol

um
e

(M
B

)

Query selectivity (x 10-5)

Nsp=400,DEGsp=7
Nsp=200,DEGsp=7
Nsp=400,DEGsp=4
Nsp=200,DEGsp=4

(a) Search traffic volume (Uniform)

 0

 5

 10

 15

 20

 25

 3 6 9 12

R
es

po
ns

e
tim

e
(s

ec
)

Cardinality (x106)

Clustered,Qsel=120
Clustered,Qsel=60
Uniform,Qsel=120

Uniform,Qsel=60

(b) Scalability with cardinality n

 0

 0.5

 1

 1.5

 2

 2.5

 4000 8000 12000 16000

V
ol

um
e

(M
B

)

Network size (Np)

Uniform,Qsel=2*10-5
Uniform,Qsel=10-5

Clustered,Qsel=2*10-5
Clustered,Qsel=10-5

(c) Scalability with network size Np

 0

 20

 40

 60

 80

 100

 0.33 0.67 1 1.33 1.67 2

S
uc

ce
ss

 r
at

io

Query selectivity (x10-5)

SP,d=32
SP,d=8

P,d=8
P,d=32

(d) Contacted SP, P with results

Fig. 8 Experiments with range queries on uniform and clustered datasets.

Practically each super-peer induces traffic equal to 1.5MB, and this cost is

paid only once at construction phase.

8.2 Range Queries

The performance of range queries is studied in the following. In Figure 8(a),

we show the average traffic volume induced by range query processing for a

uniform dataset. On the x-axis the query selectivity is presented as a per-

centage of the cardinality n. The volume decreases slightly as queries become

more selective. The larger super-peer networks induce more traffic, but it is

noticeable that also other topology characteristics, such as the connectivity

degree of super-peers, play an important role. As the network gets denser, the

cost of searching increases.

Thereafter, we studied the scalability of our approach with the cardinality

n of the dataset. The results, shown in Figure 8(b), both for uniform and

33

clustered datasets, demonstrate that the response time increases only slightly

with the dataset cardinality. Furthermore, in the case of the clustered dataset,

the response time is significantly higher than for the uniform dataset. This

may seem counter-intuitive, however it is due to the fact that in the uniform

case many peers contribute to the results set, but only with few results. In

the clustered dataset, only few peers contribute to the result set returning

more objects, therefore the response time increases, since some network paths

cause important delays. Figure 8(b) depicts the total response time taking

into account the network delay, which depends on the size of transmitted

data. We assume a modest 4KB/sec as the network transfer bandwidth on

each connection.

Then, we study the effect of larger networks in terms of participating peers

Np on the performance of our approach. In Figure 8(c), the traffic volume

induced is depicted for uniform and clustered datasets and different query

selectivity. Obviously as the network size grows, the volume in the case of

uniform dataset increases too, as data objects are retrieved from any part of

the network, i.e. also from farther peers. This is not the case for the clustered

dataset, where the traffic volume remains practically unaffected regardless of

the network size, as only specific super-peers (and network paths) contribute

to the result set.

In the next experiment, we use a clustered dataset. Figure 8(d) shows the

success ratio, i.e. how many of the contacted peers (P) or super-peers (SP)

returned results for different dimensionality values (d = 8 and d = 32). The

chart shows that specifically the super-peer success ratio is very high, reaching

98%. In the case of peer ratio, the success ratio is admittedly lower, which

means that messages are sent to peers, that eventually do not contribute to

the result set.

34

 0

 5

 10

 15

 20

 25

 30

 100 1000 10000

C
on

ta
ct

ed
 s

up
er

-p
ee

rs

Query selectivity

Rec=100%
Rec=50%
Rec=10%

(a) Number of contacted super-peers

 0

 50

 100

 150

 200

 250

 300

 350

 400

 100 1000 10000

N
um

be
r

of
 M

es
sa

ge
s

Query selectivity

Rec=100%
Rec=50%
Rec=10%

(b) Number of messages

Fig. 9 Effect of query selectivity on range queries with recall guarantees.

 0

 5

 10

 15

 20

 3 4 5 6

C
on

ta
ct

ed
 s

up
er

-p
ee

rs

Dimensionality (d)

Rec=100%
Rec=50%
Rec=10%

(a) Number of contacted super-peers

 0

 50

 100

 150

 200

 3 4 5 6

N
um

be
r

of
 M

es
sa

ge
s

Dimensionality (d)

Rec=100%
Rec=50%
Rec=10%

(b) Number of messages

Fig. 10 Effect of dimensionality on range queries with recall guarantees.

8.3 Recall-based Range Queries

In this experiment, we study the performance of recall-based range queries, in

terms of the number of contacted super-peers and number of messages. In the

rest of the experimental study, unless explicitly mentioned, we use the default

values: Nsp = 200, Np = 2000, DEGsp = 4, d = 3, n/Np = 500 and the

clustered dataset. We test different recall values, ranging from 10% to 100%.

First, we study how the range query selectivity affects the performance in

Figure 9. For this purpose, we use range queries that retrieve 100, 1000 and

10000 results respectively. The chart in Figure 9(a) shows that in all cases the

number of contacted super-peers is small compared to the Nsp = 200 super-

peers in the network. Obviously, more selective queries require less super-peers

to be contacted. Also, when the required recall is smaller than 100%, significant

savings in terms of number of contacted super-peers are achieved. This verifies

35

 0

 5

 10

 15

 20

 25

 30

 35

 40

 200 400 600

C
on

ta
ct

ed
 s

up
er

-p
ee

rs

Number of super-peers (Nsp)

Rec=100%
Rec=50%
Rec=10%

(a) Varying number of super-peers

 0

 100

 200

 300

 400

 500

 600

 700

 10 20 30 40 50

N
um

be
r

of
 M

es
sa

ge
s

Peers per Super-peer (DEGp)

d=3
d=4
d=5

(b) Varying number of peers per
super-peer

Fig. 11 Effect of network size on range queries with recall guarantees.

the validity of our framework. In Figure 9(b), we depict the associated number

of messages. The chart shows that by relaxing the recall requirements, the

communication cost can be drastically reduced, especially for range queries

that return many objects.

Then, in Figure 10, we set the query selectivity to 1000 and we study the

effect of data dimensionality. A decreasing tendency of the number of contacted

super-peers is observed as dimensionality increases in Figure 10(a), due to the

fact that the dataset is clustered and the data space becomes more sparse,

thus less super-peers store the results for a given query. In Figure 10(b), we

present the associated search cost in terms of number of messages.

In the following, we gradually increase the size of the network both in

terms of Nsp and Np, keeping always a constant DEGp = 10. As expected,

the number of contacted super-peers (shown in Figure 11(a)) increases when

the size of the network increases. However, our approach scales gracefully,

because we observe that when Nsp increases by a factor of 3 (from 200 to 600

super-peers), the number of contacted super-peers increases only by a factor

of 2. This is a strong argument in favor of the scalability of our framework.

In Figure 11(b), we fix the number of super-peers to 200 and we increase the

number of peers per super-peer (DEGp) from 10 to 50. Obviously, the number

36

 0

 50

 100

 150

 200

 250

 300

 350

 400

 200 400 600

C
on

ta
ct

ed
 s

up
er

-p
ee

rs

Number of Super-peers (Nsp)

Rec=50%
k-NN

(a) Number of contacted super-peers

 0

 200

 400

 600

 800

 1000

 1200

 1400

 200 400 600

N
um

be
r

of
 M

es
sa

ge
s

Number of Super-peers (Nsp)

Rec=50%
k-NN

(b) Number of messages

Fig. 12 Comparison of search costs for queries with recall guarantees vs. k-NN queries.

of messages required for search increases with DEGp, as the query results are

distributed over more peers.

8.4 Comparison to k-Nearest Neighbor Queries

Furthermore, we provide a discussion about recall-based range queries and

their relation to k-nearest neighbor (k-NN) queries. Notice that recall-based

range queries are not directly competitive to k-NN queries, since they aim at

returning a small percentage of results within a range r from query point q,

and not the nearest results to q. However, the strength of recall-based range

queries is that their cost is significantly smaller than k-NN queries.

In Figure 12, we present a comparative study with respect to search costs.

We increase the size of the network from 200 to 600 super-peers, and we keep

DEGp=10 always. We evaluate range queries with recall specified at 50% and

query selectivity 1000. We also use k-NN queries with selectivity 500, which

essentially return the at least as many results as the queries with recall set

at 50%. Moreover, for the k-NN queries, we use the real distance of the k-th

nearest neighbor, in order to avoid the extra costs related to radius estimation.

The charts show that recall-based range queries are always much cheaper in

terms of network costs than k-NN queries, and the benefit increases as the

network size increases. This is because for k-NN queries all super-peers with

37

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 3 4 5 6

P
er

ce
nt

ag
e

(%
)

of
 C

lu
st

er
 U

pd
at

es

Dimensionality (d)

Peer
Super-Peer

(a) (%) of cluster updates

 0

 200

 400

 600

 800

 1000

 1 2 3 4 5 6 7 8 9 10

N
um

be
r

of
 P

ee
r

C
lu

st
er

 U
pd

at
es

Batch of 100K Updates

d=3
d=4
d=5
d=6

(b) Cluster updates over time

Fig. 13 Effect of cluster updates.

hyper-clusters that intersect with the k-NN query need to be contacted, while

the recall-based approach contacts only a limited set of the most promising

super-peers.

8.5 Data Updates

We study the effect that updates in data have on peer clusters and hyper-

clusters in Figure 13. All 500 data points at each peer are updated, modeled

as insertions and deletions, leading to a total of 1M data point updates. The

updates follow the same data distribution as the generated data. We measure

the percentage of data updates that caused an update at peer clusters and

super-peer hyper-clusters for varying dimensionality (Figure 13(a)), as well as

the number of peer cluster updates as time elapses (Figure 13(b)).

In Figure 13(a), the results show that less than 1.4% of data updates

lead to peer cluster updates, while even less than 0.1% of data updates lead

to hyper-cluster updates. Therefore only 0.1% of the updates on the peers

actually cause an update at the super-peer level. In Figure 13(b), we depict

how many peer clusters are updated per batch of 100K data point updates.

The decreasing tendency shows that the effect of data updates diminishes as

time elapses. This is due to the fact that peer clusters gradually become larger

38

in size, thereby accommodating a higher number of updated data, than in the

beginning.

9 Conclusions

In this paper, we study efficient processing of similarity queries in metric spaces

over a super-peer architecture and focus mainly on range queries. We present

SIMPEER, a novel framework that dynamically clusters peer data, in order

to build distributed routing information at super-peer level. SIMPEER allows

the evaluation of range and nearest neighbor queries in a distributed manner

that reduces communication cost, network latency, bandwidth consumption

and computational overhead at each individual peer. By utilizing distributed

statistics, super-peers can estimate the cardinality of the result set of a range

query and guarantee a lower bound of the recall. When this recall is sufficient

for the user, then the query does not have to be propagated further in the net-

work. Finally, our experimental evaluation shows that our approach performs

efficiently both in terms of computational and communication costs.

References

1. F. Banaei-Kashani and C. Shahabi. SWAM: A family of access methods for similarity-

search in peer-to-peer data networks. In Proceedings of CIKM, pages 304–313, 2004.

2. M. Batko, C. Gennaro, and P. Zezula. A scalable nearest neighbor search in P2P

systems. In Proceedings of DBISP2P, pages 79–92, 2004.

3. M. Batko, D. Novak, F. Falchi, and P. Zezula. On scalability of the similarity search in

the world of peers. In Proceedings of InfoScale, page 20, 2006.

4. M. Bawa, T. Condie, and P. Ganesan. LSH forest: Self-tuning indexes for similarity

search. In Proceedings of WWW, pages 651–660, 2005.

5. A. R. Bharambe, M. Agrawal, and S. Seshan. Mercury: Supporting scalable multi-

attribute range queries. In Proceedings of SIGCOMM, pages 353–366, 2004.

39

6. E. Chavez, G. Navarro, R. Baeza-Yates, and J. L. Marroquin. Searching in metric

spaces. ACM Comput. Surv., 33(3):273–321, 2001.

7. P. Ciaccia, M. Patella, and P. Zezula. M-tree: An efficient access method for similarity

search in metric spaces. In Proceedings of VLDB, pages 426–435, 1997.

8. P. Ciaccia, M. Patella, and P. Zezula. A cost model for similarity queries in metric

spaces. In Proceedings of PODS, pages 59–68, 1998.

9. A. Crainiceanu, P. Linga, J. Gehrke, and J. Shanmugasundaram. P-tree: A P2P index

for resource discovery applications. In Proceedings of WWW, 2004.

10. A. Crainiceanu, P. Linga, A. Machanavajjhala, J. Gehrke, and J. Shanmugasundaram.

P-ring: An efficient and robust p2p range index structure. In Proceedings of SIGMOD,

pages 223–234, 2007.

11. A. Crespo and H. Garcia-Molina. Routing indices for peer-to-peer systems. In Proceed-

ings of ICDCS, pages 23– 32, 2002.

12. A. Datta, M. Hauswirth, R. John, R. Schmidt, and K. Aberer. Range queries in trie-

structured overlays. In Proceedings of P2P, pages 57–66, 2005.

13. C. Doulkeridis, A. Vlachou, Y. Kotidis, and M. Vazirgiannis. Peer-to-peer similarity

search in metric spaces. In Proceedings of VLDB, pages 986–997, 2007.

14. F. Falchi, C. Gennaro, and P. Zezula. A content-addressable network for similarity

search in metric spaces. In Proceedings of DBISP2P, pages 126–137, 2005.

15. P. Ganesan, M. Bawa, and H. Garcia-Molina. Online balancing of range-partitioned

data with applications to peer-to-peer systems. In Proceedings of VLDB, pages 444–

455, 2004.

16. G. R. Hjaltason and H. Samet. Index-driven similarity search in metric spaces. ACM

Trans. Database Syst., 28(4):517–580, 2003.

17. H. V. Jagadish, B. C. Ooi, K.-L. Tan, C. Yu, and R. Zhang. iDistance: An adaptive

B+-tree based indexing method for nearest neighbor search. ACM Transactions on

Database Systems, 30(2):364–397, June 2005.

18. H. V. Jagadish, B. C. Ooi, and Q. H. Vu. BATON: A balanced tree structure for

peer-to-peer networks. In Proceedings of VLDB, pages 661–672, 2005.

19. H. V. Jagadish, B. C. Ooi, Q. H. Vu, R. Zhang, and A. Zhou. VBI-tree: A peer-to-peer

framework for supporting multi-dimensional indexing schemes. In Proceedings of ICDE,

page 34, 2006.

20. P. Kalnis, W. S. Ng, B. C. Ooi, and K.-L. Tan. Answering similarity queries in peer-to-

peer networks. Inf. Syst., 31(1):57–72, 2006.

21. A. K.H.Tung, R. Zhangz, N. Koudas, and B. C. Ooi. Similarity search: A matching

based approach. In Proceedings of VLDB, pages 631–642, 2006.

40

22. B. Liu, W.-C. Lee, and D. L. Lee. Supporting complex multi-dimensional queries in

P2P systems. In Proceedings of ICDCS, pages 155–164, 2005.

23. D. Novak and P. Zezula. M-Chord: A scalable distributed similarity search structure.

In Proceedings of InfoScale, page 19, 2006.

24. N. Ntarmos, T. Pitoura, and P. Triantafillou. Range query optimization leveraging peer

heterogeneity. In Proceedings of DBISP2P, 2005.

25. S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Schenker. A scalable content-

addressable network. In Proceedings of SIGCOMM, pages 161–172, 2001.

26. H. T. Shen, Y. Shu, and B. Yu. Efficient semantic-based content search in P2P network.

IEEE Trans. Knowl. Data Eng., 16(7):813–826, 2004.

27. Y. Shu, B. C. Ooi, K.-L. Tan, and A. Zhou. Supporting multi-dimensional range queries

in peer-to-peer systems. In Proceedings of P2P, pages 173–180, 2005.

28. I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan. Chord: A scalable

peer-to-peer lookup service for internet applications. In Proceedings of SIGCOMM,

pages 149–160, 2001.

29. A. Vlachou, C. Doulkeridis, Y. Kotidis, and M. Vazirgiannis. SKYPEER: Efficient

subspace skyline computation over distributed data. In Proceedings of ICDE, pages

416–425, 2007.

30. B. Yang and H. Garcia-Molina. Designing a super-peer network. In Proceedings of

ICDE, pages 49– 60, 2003.

31. C. Yu, B. C. Ooi, K.-L. Tan, and H. V. Jagadish. Indexing the distance: An efficient

method to KNN processing. In Proceedings of VLDB, 2001.

