
Enabling Semantic Access to
Static and Streaming Distributed Data with Optique∗

E. Kharlamov1 S. Brandt2 M. Giese3 E. Jiménez-Ruiz1 Y. Kotidis4 S. Lamparter2 T. Mailis5

C. Neuenstadt6 Ö. Özçep6 C. Pinkel7 A. Soylu8 C. Svingos4 D. Zheleznyakov1

I. Horrocks1 Y. Ioannidis4 R. Möller6 A. Waaler3
1 University of Oxford 2 Siemens CT 3 University of Oslo 4 Athens University of Economics and Business

5 University of Athens 6 University of Lübeck 7 fluid Operations AG 8 Norwegian Uni. of Science and Technology

ABSTRACT
Real-time processing of data coming from multiple heterogeneous
data streams and static databases is a typical task in many industrial
scenarios such as diagnostics of large machines. A complex diag-
nostic task may require a collection of up to hundreds of queries
over such data. Although many of these queries retrieve data of the
same kind, such as temperature measurements, they access struc-
turally different data sources. In this work, we show how Seman-
tic Technologies implemented in our system OPTIQUE can sim-
plify such complex diagnostics by providing an abstraction layer—
ontology—that integrates heterogeneous data. In a nutshell, OP-
TIQUE allows complex diagnostic tasks to be expressed with just
a few high-level semantic queries, which can be easily formulated
with our visual query formulation system. OPTIQUE can then auto-
matically enrich these queries, translate them into a large collection
of low-level data queries, and finally optimise and efficiently exe-
cute the collection in a heavily distributed environment.

CCS Concepts
•Information systems→Mediators and data integration;

Keywords
Data Access, Information Integration, Ontologies, Streaming Data

1. INTRODUCTION
Motivation. Siemens runs service centres dedicated to diagnos-
tics of thousands of power-generation appliances across the globe.
One typical task for these centres is to detect in real-time potential
failure events caused by, e.g., an abnormal temperature and pres-
sure increase. Such tasks require simultaneous processing of (i) se-
quences of digitally encoded coherent signals produced and trans-
mitted from thousands of gas and steam turbines, generators, and
compressors installed in power plants, and (ii) static data that in-
clude the structure of relevant equipment, history of its exploitation
and repairs, and even weather conditions. These data are scattered

∗This paper extends our earlier accepted demo [4] with a more de-
tailed demo scenario and the STREAMVQS system.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
DEBS ’16 June 20-24, 2016, Irvine, CA, USA
c© 2016 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-4021-2/16/06.
DOI: http://dx.doi.org/10.1145/2933267.2933290

across a large number of heterogeneous data streams in addition to
static DBs with hundreds of TBs of data.

Even for a single diagnostic task, such as checking if a given
turbine might develop a fault, Siemens engineers have to analyse
streams with temperature and other measurements from up to 2, 000
sensors installed in different parts of the turbine, analyse historical
temperature data, compute temperature patterns, compare them to
patterns in other turbines, compare weather conditions, etc. This
requires to pose a collection of hundreds of queries, the majority of
which are semantically the same (they ask about temperature), but
syntactically different (they are over different schemata). Formulat-
ing and executing so many queries, and then assembling the com-
puted answers, takes up to 80% of the overall diagnostic time [8].

Our Proposal. In order to streamline the diagnostic process at
Siemens, we propose a data integration approach based on Se-
mantic Technologies. In this paper we will refer to our approach
as Ontology-Based Stream-Static Data Integration (OBSSDI). It
follows the classical data integration paradigm that requires the
creation of a common ‘global’ schema that consolidates ‘local’
schemata of the integrated data sources, and mappings that define
how the local and global schemata are related [3]. In OBSSDI the
global schema is an ontology: a formal conceptualisation of the do-
main of interest that consists of a vocabulary, i.e., names of classes,
attributes and binary relations, and axioms over the terms from the
vocabulary that, e.g., assign attributes of classes, define relation-
ships between classes, compose classes, class hierarchies, etc. OB-
SSDI mappings relate each ontological term to a set of queries over
the underlying data. For example, the generic ontology attribute
temperature-of-sensor is mapped to all specific data and procedures
that return temperature readings from sensors in dozens of differ-
ent turbines and DBs storing historical data, thus, all particularities
and varieties of how the temperature of a sensor can be measured,
represented and stored are captured in these mappings. In OBSSDI
the integrated data can be accessed by posing queries over the on-
tology, i.e., ontological queries. These queries are hybrid: they
refer to both streaming and static data. Evaluation of an ontologi-
cal query in OBSSDI has three stages: (i) in the enrichment stage
ontology axioms are used to expand the ontological query in order
to access as much of relevant data as possible; (ii) in the unfolding
stage the mappings are used to translate the enriched ontological
query into (possibly many) queries over the data; and (iii) in the ex-
ecution stage the unfolded data queries are executed over the data.

Our Contributions. We developed a system OPTIQUE that im-
plements OBSSDI and has the following novel components:
(C1) Semi-automatic support to construct high quality ontologies

and mappings over relational and streaming data.
(C2) Query language over ontologies that combines streaming and

static data, and allows for efficient enrichment and unfolding
that preserves the semantics of ontological queries.

(C3) End-user oriented query formulation support to construct con-
tinuos ontological queries.

(C4) Backend for optimising large numbers of queries automati-
cally generated via enrichment and unfolding, and efficiently
execute them over distributed streaming and static data.

The component C1 is practically important since such support can
dramatically speed up deployment and maintenance (e.g., adjust-
ment to new query requirements) of OBSSDI systems. The com-
ponent C2 is crucial since, to the best of our knowledge, no dedi-
cated query language for hybrid semantic queries has the required
properties. The component C3 is essential since it allows for fast
and easy data access for non-experts to state-of-the-art technolo-
gies. The component C4 is vital since even in the context where
the data is only static and not distributed, query execution with-
out dedicated optimisation techniques performs poorly since the
queries that are automatically computed after enrichment and un-
folding can be very inefficient, e.g., they may contain many redun-
dant joins and unions [2]. See Section 2 for more details on the
OPTIQUE components.

Demo Overview. Attendees will see how OPTIQUE simplifies
diagnostics for Siemens: how to set and monitor continuous diag-
nostic tasks, how the system can handle more than a thousand com-
plex diagnostic tasks, and how to deploy OPTIQUE over Siemens
data. See Section 3 for more details on demo scenarios.

2. OPTIQUE SYSTEM
OPTIQUE is an integrated system that consist of multiple com-

ponents to support OBSSDI end-to-end [7, 9, 10]. For IT special-
ists OPTIQUE offers support for the whole lifecycle of ontologies
and mappings: semi-automatic bootstrapping from relational data
sources, importing of existing ontologies, semi-automatic quality
verification and optimisation, cataloging, manual definition and edit-
ing of mappings. For end-users OPTIQUE offers tools for query
formulation support, query cataloging, answer monitoring, as well
as integration with GIS systems. Query evaluation is done via OP-
TIQUE’s query enrichment, unfolding, and execution backends that
allow to execute up to thousands complex ontological queries in
highly distributed environments. We now give some details of the
C1-C4 OPTIQUE components.

Deployment Support. In order to support OPTIQUE’s deploy-
ment we developed a BOOTOX [6, 13] system for “bootstrapping”
(i.e., extracting) W3C standardised OWL 2 ontologies and R2RML
mappings from static and streaming relational schema and data.
Consider, e.g., a class Turbine; a mapping for it is an expression
of the form: Turbine(f(~x)) ← ∃~y SQL(~x, ~y), that can be seen as
a view definition, where SQL(~x, ~y) is an SQL query, ~x are its out-
put variables, ~y are its variables that are projected out and f is a
function that converts tuples returned by SQL into identifiers of ob-
jects populating the class Turbine. Intuitively, mapping bootstrap-
ping of BOOTOX boils down to discovery of ‘meaningful’ queries
∃~y SQL(~x, ~y) over the input data sources that would correspond to
either a given element of the ontological vocabulary, e.g., the class
Turbine or attribute temperature-of-sensor, or to a new ontological
term. BOOTOX employs several novel schema- and data-driven
query discovery techniques. The ontological terms bootstrapped
by with BOOTOX provide the vocabulary for the formulation of
STARQL ontological queries. We now discuss STARQL queries
and how we process them.

Diagnostic Queries. In order to formulate diagnostic tasks as
semantic queries that blend streaming with static data, we devel-
oped a query language STARQL [12]. The syntax of STARQL ex-
tends so-called basic graph patterns of W3C standardised SPARQL
query language for RDF databases. STARQL queries can ex-

press basic graph patterns, and typical mathematical, statistical,
and event pattern features needed in real-time diagnostic scenar-
ios. Moreover, STARQL queries can be nested, in the sense that
the result of one query may be used in the construction of another
query. STARQL has a formal semantics that combines open and
closed-world reasoning and extends snapshot semantics for win-
dow operators [1] with sequencing semantics that can handle in-
tegrity constraints such as functionality assertions.

STARQL has favourable computational properties [12]: despite
its expressivity, answering STARQL queries is efficient since they
can be efficiently enriched and then unfolded into efficient rela-
tional stream queries. STARQL query enrichment is polynomial-
time in the size of the input ontology if the ontology is expressed
in the OWL 2 QL ontology language and the queries are essentially
conjunctive with value comparison and aggregates. STARQL as-
sumes global-as-view mappings [3] of ontological terms to under-
lying data and thus unfolding of STARQL queries is linear-time
in the size of both mappings and query and enriched STARQL
queries can be unfolded into relational stream queries. We de-
veloped a dedicated STARQL2SQL(+) translator that unfolds
STARQL queries to SQL(+) queries, i.e. SQL queries enhanced
with the essential operators for stream handling.

Streaming and Static Relational Data Processing. Re-
lational queries produced by the STARQL2SQL(+) translation,
are handled by EXASTREAM, OPTIQUE’s high-throughput distri-
buted Data Stream Management System (DSMS). The EXASTREAM
DSMS is embedded in EXAREME, a system for elastic large-scale
dataflow processing in the cloud [11, 16]. In the following, we
present some key aspects of EXASTREAM.

EXASTREAM is built as a streaming extension of the SQLite
DBMS, taking advantage of existing Database Management tech-
nologies and optimisations such as query planners. It provides a
declarative language, namely SQL(+), for querying data streams
and relations that conform to the CQL semantics [1]. EXASTREAM
natively supports User Defined Functions (UDFs) with arbitrary
user code. The engine blends the execution of UDFs together with
relational operators using JIT tracing compilation techniques speed-
ing up the execution time. UDFs allow to express very complex
dataflows using simple primitives. For OPTIQUE we used UDFs
to implement communication with external sources, window parti-
tioning on data streams, data mining algorithms such as the Locality-
Sensitive Hashing technique [5] for computing the correlation be-
tween values of multiple streams. More importantly, the main oper-
ators that incorporate the algorithmic logic for transforming SQLite
into a DSMS are implemented as UDFs.

In order to enable efficient processing of data streams of very
high velocity we have implemented a number of optimisations in
the stream processing engine, such as adaptive indexing. With this
technique EXASTREAM collects statistics during query execution
and, adaptively, decides to build main-memory indexes on batches
of cached stream tuples in order to expedite query processing.

Visual Query System. Most diagnostic engineers cannot be ex-
pected to learn a formal query language like STARQL. OPTIQUE
therefore contains a visual query system, STREAMVQS (a variant
of OPTIQUEVQS [14, 15]), that makes it easy for users without IT
background to formulate the most commonly needed queries. Due
to usability considerations STREAMVQS supports only the essen-
tial, i.e., the most frequently used fragment of STARQL that cor-
responds to tree-shaped conjunctive queries with aggregates and
stream related constructors such as window width and slide param-
eters. STREAMVQS allows domain experts to construct and regis-
ter continuous queries by combining query-by-navigation and facet
refinement over multiple representation paradigms including range
and gradient checks and spikes.

3. DEMONSTRATION SCENARIOS
Demo Overview. For the demonstration purpose we selected
20 diagnostic tasks typical for Siemens service centres and ex-
pressed these tasks in STARQL and STREAMVQS. Then, we pre-
pared a demo data set of streaming and static data from 950 gas
and steam turbines in the time from 2002 to 2011. This data is
anonymised in a way that preserves the patterns needed for demo
diagnostic tasks. During the demo we will ‘play’ the streaming
data and thus emulate real time streams. Then, we distributed the
demo-data in several installations with different number of nodes
(VMs) ranging from 1 to 128, where each node has 2 processors
and 4GB of main memory. To demonstrate diagnostics results we
prepared a dedicated monitoring dashboard for each diagnostic task
in the catalog. Dashboards show diagnostics results in real time, as
well as statistics on streaming answers, relevant turbines, and other
information that is typically required by the service engineers at
Siemens . Finally, we deployed OPTIQUE over the Siemens data
by bootstrapping ontologies and mappings and then manually post-
processing and extending them so that they reach the required qual-
ity and contain necessary terms and mappings to cover 20 Siemens
diagnostic tasks.

During the demo OPTIQUE will be available in three scenarios:
[S1] Diagnostics with user’s deployment: the attendees will be

able to deploy OPTIQUE over the Siemens data by bootstrap-
ping ontologies and mappings, saving them, and observing
and possibly improving them in dedicated editors. Then,
they will query their deployed instance with diagnostic tasks
either from the Siemens catalog or their own, i.e., they will be
able to formulate such tasks in STREAMVQS as parametrised
continuous queries and register concrete instances of these
tasks over specific data streams.

[S2] Diagnostics with our deployment: The attendees will be able
to query our preconfigured (high quality) Siemens deploy-
ment using diagnostic tasks either from the Siemens catalog
and their own.

[S3] Performance showcase of our deployment: the attendees will
be able to run various tests over our deployment using one
of 128 preconfigured Siemens distributed environments and
one of 10 test sets of queries. While running the tests they
will monitor the throughput and progress of parallel query
execution processes.

Use Case. We now illustrate the three scenarios above on a use
case inspired by Siemens. Assume that the relational data about
turbines that we want to access via an ontology is stored in two
alternative relational schemata:

Schema 1 contains the following tables and their attributes:
(i) Turbine_Components: This table is used to store static

information about turbines’ components and some relevant
metadata. The attribute Id is the component’s unique identi-
fier, the attribute Turbine_Id identifies the turbine to which
this component belongs to, and the attribute Type_Id iden-
tifies the components type, for example a component of type
3 is a burner tip.

(ii) Sensors: This table is used to store static information about
sensors. The attribute Id is the sensor’s unique identifier, the
attribute Component_Id is used to determine the compo-

Figure 1: Monitoring dashboards

nent that uses this sensor, and the attribute Type_Id is used
to identify sensor’s type, i.e. a sensor of type 1 measures tem-
perature.

(iii) Measurements: This table is used to store archived stream-
ing sensor readings. The attribute Sensor_Id identifies the
sensor that took the measurement, the attribute Time contains
the temporal index of each measurement, and the attribute
Value the actual value that was assessed.

Schema 2 is designed to store the same information as Schema 1
with the difference that Turbine_Components and Sensors
of Schema 1 are merged into one table Turbine_Components.
Also the temperature in Measurements is measured in Fahren-
heit and not Celsius degrees. Note that the tables Measurements
of Schemata 1 and 2 correspond to the archived parts of streams,
while their live parts can be accessed as the EXASTREAM’s virtual
table Live_Measurements. As a rule of thumb, we will assume
that the prefix ‘Live_’ is used to differentiate between the live and
the archived part of each stream and that the live and archived part
are described by identical attributes.

Consider a Siemens inspired diagnostics task:

‘Detect a real-time fault in a burner tip turbine compo-
nent caused by a temperature increase within 10 sec’.

Finally, consider fragments of Siemens ontology [8]: two classes

sie:BurnerTip and sie:TemperatureSensor,

as well as an object and a data property:

sie:monitoredBy and sie:hasValue,

where the prefix sie stands for the URI of the Siemens ontology.
We will now illustrate the three scenarios above using the schemata,

diagnostic task and the ontology above.
Scenario S1: For this scenario, by using BOOTOX the attendees
will automatically create their ontologies and mappings from the
schemata above. Then, they will modify them appropriately in
order to provide homogeneous access on the two different data
sources. Thus, differences between the two schemata will be hid-
den by the ontological terms and OBSSDI mappings. In particular,
the result of bootstrapping will contain the following mapping:

sie : TemperatureSensor(Id)←
SELECT Id FROM Sensors WHERE TypeId = 3 UNION

SELECT Id FROM Turbine_Components WHERE Sensor_Type = 3

Scenario S2: For this scenario, we will explain how the example
diagnostics task above can be expressed over the Siemens ontol-
ogy whose fragments we presented earlier. In Figure 2 (left) the
task is expressed as STARQL, in Figure 2 (right) it is visualised
in STREAMVQS, and in Figure 1 there are results of task’s evalua-
tion visualised in OPTIQUE dashboards. An output stream S_out

CREATE STREAM Str_out AS
CONSTRUCT GRAPH NOW { ?c2 rdf:type :MonInc }
FROM STREAM Str_Msmt [NOW-"PT10S"^^xsd:duration, NOW]->
 "PT1S"^^xsd:duration,
 STATIC DATA <http://www.optique-project.eu/siemens/
Static>,
 ONTOLOGY <http://www.optique-project.eu/siemens/
Ontology>
USING PULSE WITH START = "00:10:00CET", FREQUENCY = "1S"
WHERE {?c1 a sie:BurnerTip. ?c2 a sie:TemperatureSensor.
 ?c1 sie:monitoredBy ?c2.}
SEQUENCE BY StandardSequencing AS seq
HAVING MONOTONIC.HAVING(seq, ?c2, sie:hasValue)

CREATE AGGREGATE MONOTONIC.HAVING ($seq, $var, $attr) AS
 HAVING EXISTS ?k IN $seq: GRAPH ?k {$var sie:showsFault "true"}
 AND FORALL ?i, ?j IN $seq:
 IF (?i < ?j < ?k AND GRAPH ?i {$var $attr ?x}
 AND GRAPH ?j {$var $attr ?y}) THEN ?x < ?y

Figure 2: Example monitoring task in STARQL (on the left) and STREAMVQS (on the right)

is defined by the following language constructs: The CONSTRUCT
specifies the format of the output stream, here instantiated by RDF
triples asserting that there was a monotonic increase. The FROM
clause specifies the resources on which the query is evaluated: the
ONTOLOGY, STATIC DATA, and input STREAM(s), for which a
window operator is specified with window range (here 10 seconds)
and with slide (here 1 second). The PULSE declaration specifies
the output frequency. In the WHERE clause bindings for sensors
(attached to the turbine) are chosen. For every binding, the relevant
condition of the diagnostic task is tested on the window contents.
Here this condition is abbreviated by MONOTONIC.HAVING(?c,
sie:hasValue) using a macro that is defined at the bottom
of Figure 2 in an AGGREGATE declaration. In words, the condi-
tions asks whether there is some state ?k in the window s.t. the
sensor shows a failure message at ?k and s.t. for all states be-
fore ?k the attribute value ?attr (in the example instantiated by
sie:hasValue) is monotonically increasing.

Scenario S3: For this scenario, the corresponding STARQL queries
are transformed to the appropriate SQL(+) format and executed in
a distributed EXAREME environment. EXASTREAM supports par-
allelism by distributing processing across different nodes in a dis-
tributed environment. Consider the architecture of EXASTREAM:

... ...

Queries are registered through the Asynchronous Gateway Server.
Each registered query passes through the EXAREME parser and
then is fed to the Scheduler module. The Scheduler places stream
and relational operators on worker nodes based on the node’s load.
These operators are executed by a Stream Engine instance running
on each node. In order to display the importance of parallelism the
attendees will be able to run the aforementioned queries using one
to 128 nodes. The users will see that OPTIQUE is able to process
up to 1, 024 complex Siemens diagnostic tasks in real time with a
throughput of up to 3, 6× 106 tuples/sec by executing the tasks in
parallel in a highly distributed environment with up to 128 nodes.

Acknowledgements. This research has been partially supported
by the EU project Optique (FP7-IP-318338), the Royal Society, the
EPSRC grants Score!, DBonto, and MaSI3.

4. REFERENCES

[1] A. Arasu, S. Babu, and J. Widom. The CQL Continuous
Query Language: Semantic Foundations and Query Execu-
tion. In: VLDBJ (2006).

[2] D. Calvanese, B. Cogrel, S. Komla-Ebri, R. Kontchakov, D.
Lanti, M. Rezk, M. Rodriguez-Muro, and G. Xiao. Ontop:
Answering SPARQL Queries over Relational Databases. In:
Sem. Web. Journal (2015).

[3] A. Doan, A. Y. Halevy, and Z. G. Ives. Principles of Data
Integration. Morgan Kaufmann, 2012.

[4] E. Kharlamov, S. Brandt, E. Jimenez-Ruiz, Y. Kotidis, S.
Lamparter, T. Mailis, C. Neuenstadt, Ö. Özçep, C. Pinkel, C.
Svingos, D. Zheleznyakov, I. Horrocks, Y. Ioannidis and R.
Möller. Ontology-Based Integration of Streaming and Static
Relational Data with Optique. In: SIGMOD demo (2016).

[5] N. Giatrakos, Y. Kotidis, A. Deligiannakis, V. Vassalos, and
Y. Theodoridis. In-network approximate computation of out-
liers with quality guarantees. In: Information Systems 38.8
(2013).

[6] E. Jiménez-Ruiz, E. Kharlamov, D. Zheleznyakov, I. Hor-
rocks, C. Pinkel, M. G. S. veland, E. Thorstensen, and J.
Mora. BootOX: Practical Mapping of RDBs to OWL 2. In:
ISWC. 2015.

[7] E. Kharlamov et al. Enabling Ontology Based Access at an
Oil and Gas Company Statoil. In: ISWC. 2015.

[8] E. Kharlamov et al. How Semantic Technologies Can En-
hance Data Access at Siemens Energy. In: ISWC. 2014.

[9] E. Kharlamov et al. Optique: Ontology-Based Data Access
Platform. In: ISWC Posters & Demos. 2015.

[10] E. Kharlamov et al. Optique: Towards OBDA Systems for
Industry. In: ESWC (Selected Papers). 2013.

[11] H. Kllapi, P. Sakkos, A. Delis, D. Gunopulos, and Y. Ioan-
nidis. Elastic Processing of Analytical Query Workloads on
IaaS Clouds. In: arXiv preprint arXiv:1501.01070 (2015).

[12] Özgür Özçep, R. Möller, and C. Neuenstadt. A Stream-Tem-
poral Query Language for Ontology Based Data Access. In:
KI. 2014.

[13] C. Pinkel, C. Binnig, E. Jiménez-Ruiz, W. May, D. Ritze,
M. G. Skjæveland, A. Solimando, and E. Kharlamov. RODI:
A Benchmark for Automatic Mapping Generation in Relational-
to-Ontology Data Integration. In: ESWC. 2015.

[14] A. Soylu, M. Giese, E. Jiménez-Ruiz, E. Kharlamov, D. Zhe-
leznyakov, and I. Horrocks. OptiqueVQS: towards an onto-
logy-based visual query system for big data. In: MEDES.
2013.

[15] A. Soylu, E. Kharlamov, D. Zheleznyakov, E. Jimenez-Ruiz,
M. Giese, and I. Horrocks. Ontology-based Visual Query
Formulation: An Industry Experience. In: ISVC. 2015.

[16] M. M. Tsangaris et al. Dataflow Processing and Optimiza-
tion on Grid and Cloud Infrastructures. In: IEEE Data Eng.
Bull. 32.1 (2009).

