
Building Space-Efficient Inverted Indexes
on Low-Cardinality Dimensions?

Vasilis Spyropoulos and Yannis Kotidis

Athens University of Economics and Business,
76 Patission Street, Athens, Greece.

{vasspyrop,kotidis}@aueb.gr

Abstract. Many modern applications naturally lead to the implemen-
tation of inverted indexes for effectively managing large collections of
data items. Creating an inverted index on a low cardinality data domain
results in replication of data descriptors, leading to increased storage
overhead. For example, the use of RFID or similar sensing devices in
supply-chains results in massive tracking datasets that need effective
spatial or spatio-temporal indexes on them. As the volume of data grows
proportionally larger than the number of spatial locations or time epochs,
it is unavoidable that many of the resulting lists share large subsets of
common items. In this paper we present techniques that exploit this
characteristic of modern big-data applications in order to losslessly com-
press the resulting inverted indexes by discovering large common item
sets and adapting the index so as to store just one copy of them. We
apply our method in the supply chain domain using modern big-data
tools and show that our techniques in many cases achieve compression
ratios that exceed 50%.

1 Introduction

Many applications implement auxiliary indexes of the form id ← list(itemId),
often referred to as inverted indexes. For example, such indexes are used in per-
forming keyword search in a collection of documents (word← list(documentId)).
In supply-chain applications equipped with RFID tracking technology tagged
objects are recorded while passing through a check point (reader’s location)
in the supply-chain [1, 2]. Inverted indexes can be used to implement spatial
(locationId← list(tagId)), temporal (epochId← list(tagId)) or spatio-temporal
((locationId, epochId)← list(tagId)) indexes. When inverted indexes are build
on a low cardinality data domain (e.g. locationId, epochId), the resulting lists
tend to share a possibly large number of common item references (e.g. tagIds). A
straightforward implementation of these lists will result in excessive replication
of item references, increasing the space overhead of the inverted index. While

? This research has been co-financed by the European Union (European Social Fund
ESF) and Greek national funds through the Operational Program ”Education and
Lifelong Learning” of the National Strategic Reference Framework (NSRF) - Re-
search Funding Program: RECOST

there is a wealth of techniques that compress inverted indexes at binary level,
there is an opportunity to achieve significant compression ratios by looking at
the actual content of the lists. The existing methods usually represent the index
lists as a sorted sequence of integers and transform it into more compressible
form by using the distances between the integers (d-gaps) and applying integer
coding techniques such as Variable Byte, Golomb or Rice codes. Our technique
takes place at the information level and, thus, can be safely applied before any
low level compression of the index. In brief, our method is aiming at finding
intersections of the lists and materialize them as new lists, which we call derived
lists. When a large portion of the original lists are replaced by references to
derived lists, we are able to reduce the space of the index since a single copy of
item ids is referred by many lists. We identify the following challenges:

Performing Intersections of Large Lists: While checking combinations of lists
in order to generate the candidate derived lists we need to have a way so as to
efficiently compute the size of their intersection. Since the actual computation
of a large number of intersections of lists, each containing millions of records,
is a costly operation we utilize approximation techniques. In a first phase we
reduce the number of intersections to compute by testing only combinations of
similar lists stored in the same bucket among buckets populated by the use of the
minhashing/LSH technique. Then, instead of computing the actual intersections,
we estimate their size reusing the already computed minhash signatures of the
lists and a novel adaptation of the inclusion-exclusion principle for the Jaccard
similarity measure, as we discuss in Section 2.

Frequent Itemset Mining for Candidate Generation: A derived list is actually
a set of frequent items in the index. Unfortunately, a straightforward implemen-
tation of the well known Frequent Itemset Mining A-priori algorithm [3] will
not work in our setting. In applications like the ones we described the goal is
to find frequent itemsets (derived lists) of very large cardinality which can be
in the order of thousands or millions, a number that corresponds to the number
of iterations the A-priori algorithm would have to perform. Clearly, this process
will not terminate in our setting. Instead we propose a novel adaptation that
seeks to find “frequent” itemsets (derived lists) that are contained in the inter-
sections of lists. In this new setting, the algorithm iterates over the number of
intersecting lists and not their sizes. Thus, while A-priori in the kth iteration
finds frequent itemsets of size k, our adaptation finds frequent itemsets produced
by intersecting k lists. Furthermore, unlike the original A-priori we are not given
any monotonicity guarantees, that is if the intersection of k lists qualifies for use
in the compression of the index then we cannot say that any subset of them
also qualifies. The reason behind this is that in contrary to the support of an
itemset which is just a count of many times the itemset exists in the dataset,
the support (or gain in our terminology) of a derived list is a function of two
variables (number of lists, number of items in the intersection of these lists), one
increasing and one decreasing, while the algorithm augments the existing candi-
dates. We discuss the adaptation of the A-priori algorithm in order to address
these shortcomings in Section 3.

Conflicting Derived Lists: In Section 2 we explain that the candidate derived
lists from a dataset cannot all be used for compression at the same time due to
conflicts among them. Briefly, a conflict is present among a pair of derived lists
when they have been constructed by using at least one common list and they
also include at least one common item. Then using both of these lists for the
compression of the index would result in duplicate items. The challenge is to
select a subset of the candidate derived lists that presents no conflict and at the
same time maximizes the compression ratio. In order to address this challenge
we propose a heuristic based on an Integer Linear Programming modelling of
the problem, which is presented in Section 4.

2 The Derived List

Given a set of lists L = {l1, l2, . . . , lm}, a derived list dl is constructed by taking
the items in the intersection of a subset L′ of L. We refer to the set L′ as the base
of dl and denote it as dl.base. We call dl.items the set of items in the intersection
of the lists in dl.base, and we refer to the number of items as dl.size. Last, we
define a metric dl.gain, which is the gain (reduction in number of items to store)
that the use of this derived list adds to the compression of the index. Assume a
derived list dl and it’s n base lists l1, l2, . . . , ln, where n ≥ 2 (n = |dl.base|). If
we select to materialize dl (e.g. write it to disk), then we can use it in each of
it’s base lists in the place of the original items, substituting them by a reference
to dl. That essentially means that we are using only one copy of these items
instead of n copies. Thus, when used in all of it’s base lists, the gain of the dl
(reduction of index size) is:

dl.gain = (|dl.base| − 1)× dl.size (1)

In order to compute the gain of a derived list we need to know the number
of its base lists and the number of items in their intersection. Due to the way
that we construct the derived lists, we know beforehand the number of base
lists. That means that we just need to estimate the size of their intersection
so as to estimate the derived list’s gain. As we show next this can be done
by calculating the Jaccard similarity of the lists using their already computed
minhash signatures and a result based on the inclusion-exclusion principle.

Jaccard Similarity: Jaccard similarity is a measure of sets similarity, defined as
the ratio of the size of their intersection over the size of their union. Given the
sets A1, A2, . . . , An, we compute their Jaccard similarity JS(A1, A2, . . . , An) as:

JS(A1, A2, . . . , An) =
|A1 ∩A2 ∩ . . . ∩An|
|A1 ∪A2 ∪ . . . ∪An|

(2)

Minhashing: Given a large collection of sets with values from a domain, min-
hashing [4] is the process of constructing a small signature for each one of them

by applying a series of hash functions to each of the set elements. The min-
hash signatures present a very interesting property: given two sets A and B and
their respective minhash signatures mh(A) and mh(B), the probability that
mh(A) = mh(B) equals to the Jaccard similarity between A and B.

Inclusion-Exclusion Principle: From the inclusion-exclusion principle [5] we know
that we can calculate the union of a number of finite sets A1, . . . , An as∣∣∣∣ n⋃

i=1

Ai

∣∣∣∣ =

n∑
k=1

(−1)k+1

 ∑
1≤i1<...<ik≤n

|Ai1 ∩ . . . ∩Aik|

 (3)

Size Estimation of Set Expressions: Assume n finite sets A1, . . . , An. We want to
estimate the size of their intersection |A1 ∩A2 ∩ . . .∩An|, given their respective
minhashes mh(A1), . . . ,mh(An) and sizes |A1|, . . . , |An|. Let S(A1, . . . , An) be
the Jaccard similarity of sets A1, . . . , An:

S(A1, . . . , An) =
|A1 ∩A2 ∩ . . . ∩An|
|A1 ∪A2 ∪ . . . ∪An|

(4)

The Jaccard similarity can also be estimated using the set’s minhashes with
strong guarantees as:

S(A1, . . . , An) =
mh(A1) ∩mh(A2) ∩ . . . ∩mh(An)

mh(A1) ∪mh(A2) ∪ . . . ∪mh(An)
(5)

We continue by using the inclusion-exclusion principle (Equation 3) so as to
recursively compute the intersection of the given sets. For n = 2 ∗m, the union
of the n sets can be written as U− − a, where U− is the size of the union of the
n sets minus the last term of the sum:

U− =

n−1∑
k=1

(−1)k+1

 ∑
1≤i1<...<ik≤n−1

|Ai1 ∩ . . . ∩Aik|

 (6)

This last term, which is not present in U−, is represented by a and is actually
the size of the intersection of the n sets (a = |A1 ∩ A2 ∩ . . . ∩ An|). Then, the
Jaccard similarity of the n sets can be expressed as:

S(A1, . . . , An) =
a

U− − a
(7)

and, thus, the intersection a is derived from the following formula:

a =
S(A1, . . . , An)

1 + S(A1, . . . , An)
× U− (8)

In the case that n = 2 ∗m + 1, the respective formula is:

a =
S(A1, . . . , An)

1− S(A1, . . . , An)
× U− (9)

We can easily compute the Jaccard Similarity S for any combination of sets from
their minhashes using Equation 5. We compute U− recursively using Equation 6
and estimate the intersection size of the sets using Equation 8 (or 9).

DCBA

A∩B A∩C A∩D B∩C B∩D C∩D

A∩B∩C A∩B∩D A∩C∩D B∩C∩D

A∩B∩C∩D

Fig. 1. The Derived Lists Lattice for lists A, B, C, D

Conflicting Derived Lists: In Figure 1 we depict the derived lists lattice that
can be constructed from four example base lists A, B, C and D. The derived
lists are connected with directed edges that form paths from the lower level
(trivial derived lists with one base list) to the higher level (a single derived list
constructed by intersecting all base lists). When there is a path connecting two
derived lists these derived lists conflict, meaning that the use of one of them
for compression suggests that we cannot use the other. This is explained from
the fact that since they are on the same path they share at least one base list
and also that the lower level one contains all of the items in the higher level
one since the latter is constructed by further intersecting the former. However,
this is not the only case where two derived lists conflict. Any pair of derived
lists that share at least a base list and at least one item also conflicts. The
important distinction between the two cases is that in the first case we can infer
that two derived lists conflict without computing their intersection, while in the
second case we have to compute their intersection in order to decide whether
they conflict. We collectively refer to all the conflicting derived lists of a derived
list dl by dl.relatives.

3 Candidates Generation

Candidates generation aims at discovering a set of candidate derived lists. Given
a set of lists L, at the end of the candidate generation phase we have populated a
set of candidate derived lists DL described not by the actual items they include
but by their base lists and their estimated gain.

Preprocess - Minhashing - LSH: The input data is the set of lists L in the
inverted index. For each l ∈ L we compute it’s minhash signature, and count
it’s size (number of items in l). At the same time we apply the LSH technique
for minhashes [6] so as to populate buckets of similar lists. The buckets are
populated with triplets of the form (l.id, l.minhash, l.size). All these tasks are
parallelizable and can be efficiently computed for large datasets using modern
distributed processing frameworks such as Spark or MapReduce.

Generating the Candidate Derived Lists: For a derived list to qualify we de-
mand that it’s computed gain is greater than or equal to a user-defined mingain

value. The default mingain value is 1, meaning that we add to the candidates
set any derived list that offers even the minimum gain possible. We model our
candidate generation problem as an intuitive variant of a frequent itemset mining
problem, where we seek to find “itemsets” (derived lists) by intersecting base
lists as we move upwards in the lattice. In this setting we would like to find
itemsets (derived lists) with support (gain) that exceeds the value of mingain.
While this adaptation is intuitive, there is a specific complication in our setting.
The gain function is not a monotonous function because, while “moving” from
the lower levels of the lattice to higher ones, it is computed as the product of
an increasing function (|dl.base| − 1) by a decreasing one (dl.size), as intersect-
ing more lists results in a new derived list of smaller or equal size. What this
actually means is that the A-priori principle does not hold in our case. In order
to overcome this problem, we are using a user-defined upper bound in the num-
ber of base lists that a derived list can have which we call kmax. That way we
set a bound to the first term of Equation 1 (number of base lists). Parameters
kmax and mingain can be tuned so that the system will favor either speed of
execution, or compression ratio. Then, we solve Equation 1 for the second term,
which is the size of the derived list. It follows that for a qualifying derived list
dl of kth order (having k base lists) it must hold that:

dl.size ≥ mingain

k − 1
(10)

Then, for k = kmax it must hold that:

dl.size ≥ mingain

kmax − 1
= minsize (11)

where minsize is the minimum size a derived list can be of so as to benefit us
with gain larger than mingain. This conclusion is justified by the fact that the
size of a derived list dl1 that is the intersection of n ≥ 2 lists is less or equal to the
size of a derived list dl2 that is the intersection of any combination of m of those
lists (1 ≤ m < n). With this modification, our candidate generation problem
reduces to the problem of frequent itemset mining and can be solved using e.g.
the A-priori algorithm within each LSH bucket. An important difference that
we must point out is that minsize is the minimum size for a derived list of
order kmax to qualify, but since kmax is the highest order we use it as an overall
minimum gain. The reason we use minsize for all orders in a first pass is that a
derived list always reduces in size (or stays the same) when adding a new base
list. In a second pass over the set of produced candidates within the bucket,
we calculate the actual minimum size for each order and keep only the truly
qualifying lists (e.g. those with dl.gain ≥ mingain). As has been discussed, an
important property of our technique is that all calculations are performed on the
compact statistics that we maintain for each derived list, without looking at the
original dataset. An optimization that we apply during candidate generation is
the early pruning of candidates within a bucket by removing any of them that
can be inferred to be a relative of another one with higher gain.

4 Derived Lists Selection

The input to this stage is the set of candidate derived lists generated in the previ-
ous phase. Each candidate derived list dl is described as a tuple (dl.base,dl.gain)
where dl.gain is an estimation of the gain as computed previously. Our goal is
to select a non-conflicting subset of the candidate derived lists which maximizes
the gain and then use it to compress the index. A natural choice for this kind of
problems (selection-maximization) is ILP (Integer Linear Programming) [7].

ILP Formulation of the Problem: Let A be a matrix having as many rows as
many conflicts exist among the candidates and one column for each candidate.
For each conflict we add to A a row with the value 1 at the columns of the two
conflicting candidates and 0 everywhere else. Also, let w be a vector of length
equal to the number of candidates where w[i] is the gain of the ith derived list
candidate. Finally, assume a solution vector x of length equal to the number of
candidates with each position i taking a value of 1 or 0, respectively meaning
that the ith candidate is part or no of the solution represented by x. We want
to find the vector x that maximizes the gain x : max(

∑
w · x) restricted by

the rule A · x ≤ 1 so that there are no conflicts in the solution. If we had the
processing power required to solve the problem for all the candidates at once, it
would suffice to feed A and w to an ILP solver and get the optimal solution in
one step. In most practical cases, this would not be feasible when the number of
candidates is in the order of thousands or millions. In such cases, we propose a
greedy heuristic that uses the ILP approach, as described next.

Greedy Solver Algorithm: We load the candidate derived lists in decreasing
order of their gains in a priority queue PQ, and we initialize an empty set
globalSolution to store the qualifying candidates. Then, depending on the ILP
solver capabilities, we select a value N which is the number of candidates we
shall use at each iteration. We get the top-N candidates out from the PQ,
construct the corresponding matrix A and vector w, and pass them to the solver.
The solution returned by the solver is a non-conflicting set of candidates that
locally maximizes the gain for the candidates that it examined. We add this local
solution to globalSolution and remove from PQ any candidate that conflicts with
any of the derived lists in the solution. Then, we start over using the next top-N
candidates until PQ is empty or a desired compression ratio has been achieved.

5 Experimental Evaluation

We implemented our method using Apache Spark, Hadoop and HBase run-
ning on a small test cluster consisting of nine Linux virtual machines. The
data used in our experiments were synthetically generated based on 20 pub-
licly available real supply chain networks selected from [8]. Each supply chain
is a directed acyclic graph and its nodes can be distinguished in source, inner
and sink nodes. We created RFID data for each supply chain using a custom
data generator, which loads the topology graph and the available average de-
mand values for the terminal nodes, and then, using this information, performs

Table 1. Supply Chains Statistics

id #nodes #source nodes #inner nodes #sink nodes #edges #paths max path length #rfid records

1 40 12 26 2 48 22 8 7636760
2 152 21 33 98 211 1157 5 3037082
3 154 49 77 28 224 172 8 5122505
4 156 44 97 15 263 528 9 3956007
5 156 74 80 2 169 282 10 5132532
6 186 76 76 34 359 772 7 4224544
7 271 198 48 25 524 486 3 2533934
8 334 209 83 42 1245 4055 6 4119465
9 409 94 142 173 853 1158 3 2999721
10 468 401 65 2 605 579 6 2132407
11 482 418 52 12 941 889 5 3222313
12 577 398 89 90 2262 15181 8 3430016
13 617 128 124 365 753 3789 5 3490857
14 626 1 405 220 632 227 5 3553438
15 844 309 313 222 1685 2814 5 3283238
16 976 119 525 332 1009 1688 8 5799807
17 1206 1148 5 53 4063 4320 3 2001061
18 1386 619 731 36 1857 1140 6 5041132
19 1479 274 646 559 2069 6062 4 3998868
20 2025 820 646 559 16225 97085 4 3998940

Table 2. Comparison of FIM algorithms and our Approx-A-priori

Number of Records Time (ms)

graph walks # rfid records A-priori FP-growth Eclat LSH+Candidate Generation

10 13 4 5 2 628
100 429 24 404,784 405,150 1,242

1,000 5,050 NA NA NA 1,253
10,000 51,270 NA NA NA 1,538

100,000 512,100 NA NA NA 3,867
1,000,000 5,122,505 NA NA NA 33,254

a number of random graph walks simulating tagged objects moving through
the network. The generated walks are used to produce RFID records of format
(tagId, locationId, timestamp). Then, using these data, we create location-based
indexes as inverted lists of the form locationId← list(tagId). Table 1 describes
the supply chains and the dataset produced by performing one million graph
walks on each of them. Because of the variable number of nodes and paths in
each of the supply chains, the number of RFID records is not the same for all of
them, as is depicted in the table.

Comparison with Frequent Itemset Mining (FIM) Algorithms: Our technique
is aiming at the efficient discovery of common itemsets in a collection of lists.
The most well known algorithms for such tasks are A-priori [3], FP-growth [9]
and Eclat [10]. While these algorithms focus on the discovery of frequent item-
sets in a large number of relatively small transactions, we are instead mostly
interested in discovering large itemsets which are not necessarily very frequent.
These algorithms are not optimized for computing very large itemsets that often
arise by the intersections of very long lists. We used the implementations of A-
priori, FP-growth and Eclat from [11] to demonstrate their inefficiency in such
a setting, and the results are depicted in Table 2 (NA means that the respec-
tive algorithm either exited due to insufficient memory or space, or that it did
not finish after running for twenty four hours). For fairness, all algorithms were
executed in a single machine. Our method, by utilizing approximation and our
novel adaptation of the A-priori algorithm within each LSH bucket, manages to
scale to datasets orders of magnitute larger than the other algorithms do.

Compression Ratio Achieved: The compression ratio indicates the reduction
in the size of the index due to the use of our techniques. Let DL be the set of the

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

1 2 3 4 5 6 7 8 9 1011121314151617181920

C
o
m

p
re

s
s
s
io

n
 R

a
ti
o
 (

%
)

Supply Chain id

(a) Compression Ratio

 12

 14

 16

 18

 20

 22

 24

 26

 28

 30

1 2 3 4 5 6 7 8 9 1011121314151617181920L
S

H
 a

n
d
 C

a
n
d
id

a
te

 G
e
n
e
ra

ti
o
n
 T

im
e
 (

s
e
c
)

Supply Chain id

(b) LSH/Cand.Gen. Time

 0

 200

 400

 600

 800

 1000

 1200

 1400

1 2 3 4 5 6 7 8 9 1011121314151617181920

C
o
m

p
re

s
s
io

n
 T

im
e
 (

s
e
c
)

Supply Chain id

(c) Compression Time

Fig. 2. Compression Ratio and Execution Time for 20 supply chain networks

selected derived lists and L the lists in the original index. We define compression
ratio as

∑
dl∈DL

dl.gain/
∑

list∈L
|list.items|. For these experiments we set kmax=5

and mingain=1. The value of the compression ratio achieved in each supply
chain is presented in Figure 2(a). We observe an average compression ratio of
49% and we can see compression ratios well above 50% (maximum is 74%).

Execution Time: We measured the execution time for the three discrete stages
of the method (LSH, candidate generation, compression). In Figure 2(b) we
present the execution times for the LSH and the candidate generations stages.
The time required for LSH is related to the number of RFID records generated
for each supply chain, while the time required for the candidate generation phase
is proportional to the number of total nodes contained in each supply chain. The
execution times for running Greedy Solver to compress the indexes are depicted
in Figure 2(c). LSH and candidate generation are parallelizable tasks and this
results in fast execution times. Selection of derived lists and compression of
the index is partly parallelizable and also performs heavy read operations while
retrieving the original lists, so these operations are slower. We observe that the
time needed to perform the compression of the index is proportional to the
number of paths that exist in the network. A higher number of paths results in
the creation of a larger number of candidates with more complicated relations.

Effect of parameters kmax and mingain: In order to examine how different
values of kmax affect performance and outcome we ran a new set of experiments.
We selected four out of the twenty supply chains and varied kmax from 2 to 7
(mingain=1). We observed that lower values of kmax are not desired since in
some cases result in lower compression ratio with no gain in execution time.
For higher values of kmax the required time decreases or remains on the same
levels while someone would instead expect an increase. This behavior is explained
by the early pruning optimization discussed at the end of Section 3. Next we
varied mingain value from 1 to 2000, keeping kmax = 5. As mingain increased,
the fewer the generated candidates were. For most of the datasets, as mingain
increased, the overall execution time decreased, but compression ratio remained
at levels near the ones achieved by a value of 1. This is a consequence of the fact
that the derived lists selected by Greedy Solver are the ones with the more gain
and, thus, the ones with small gains are not likely to be selected anyway.

6 Conclusions

In this paper we presented a framework for compressing large inverted indexes
built on low cardinality domains. Such indexes are common in many applica-
tions of interest and tend to produce lists that share large sets of common item
references. Our techniques are able to discover the most promising of these com-
mon sets in a single pass over the original lists by utilizing novel dimensionality
reduction and approximation techniques. We complemented our method with a
greedy heuristic that uses an intuitive ILP formulation in order to select a subset
of these common sets so as to construct a solution that maximizes the compres-
sion ratio. Finally, we implemented our framework using modern big data tools
and used it for compressing data generated on real supply chain networks. As
future work, we plan to explore ways to adopt our method so as to support
incremental updates of the compressed indexes on streaming data.

References

1. Bleco, D., Kotidis, Y.: Rfid data aggregation. In: Proceedings of the 3rd Interna-
tional Conference on GeoSensor Networks. GSN ’09, Berlin, Heidelberg, Springer-
Verlag (2009) 87–101

2. Bleco, D., Kotidis, Y.: Business intelligence on complex graph data. In: Proceedings
of the 2012 Joint EDBT/ICDT Workshops. EDBT-ICDT ’12, New York, NY, USA,
ACM (2012) 13–20

3. Agrawal, R., Srikant, R.: Fast algorithms for mining association rules in large
databases. In: Proceedings of the 20th International Conference on Very Large
Data Bases. VLDB ’94, San Francisco, CA, USA, Morgan Kaufmann Publishers
Inc. (1994) 487–499

4. Broder, A.Z., Charikar, M., Frieze, A.M., Mitzenmacher, M.: Min-wise independent
permutations. J. Comput. Syst. Sci. 60(3) (June 2000) 630–659

5. Knuth, D.E.: The Art of Computer Programming, Volume 1 (3rd Ed.): Funda-
mental Algorithms. Addison Wesley Longman Publishing Co., Inc., Redwood City,
CA, USA (1997)

6. Rajaraman, A., Ullman, J.D.: Mining of massive datasets. Cambridge University
Press, Cambridge (2012)

7. Papadimitriou, C.H., Steiglitz, K.: Combinatorial Optimization: Algorithms and
Complexity. Prentice-Hall, Inc., Upper Saddle River, NJ, USA (1982)

8. Willems, S.P.: Data Set—Real-World Multiechelon Supply Chains Used for In-
ventory Optimization. Manufacturing & Service Operations Management 10(1)
(January 2008) 19–23

9. Han, J., Pei, J., Yin, Y.: Mining frequent patterns without candidate generation.
In: Proceedings of the 2000 ACM SIGMOD International Conference on Manage-
ment of Data. SIGMOD ’00, New York, NY, USA, ACM (2000) 1–12

10. Zaki, M.J.: Scalable algorithms for association mining. IEEE Trans. on Knowl.
and Data Eng. 12(3) (May 2000) 372–390

11. Viger, P.F., Gomariz, A., Gueniche, T., Soltani, A., Wu, C.W., Tseng, V.S.: SPMF:
A Java Open-Source Pattern Mining Library. Journal of Machine Learning Re-
search 15 (2014) 3389–3393

