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Abstract. In this work we introduce hierarchical outliers that extend the notion
of distance-based outliers for handling hierarchical data domains. We present a
novel framework that permits us to detect hierarchical outliers in a consistent
manner, providing a desired monotonicity property, which implies that a data
observation that finds enough support so as to be disregarded as an outlier at a
level of the hierarchy, will not be labelled as an outlier when examined at a more
coarse-grained level above. This way, we enable users to grade how suspicious
a data observation is, depending on the number of hierarchical levels for which
the observation is found to be an outlier. Our technique utilizes an innovative
locality sensitive hashing indexing scheme, where data points sharing the same
hash value are being clustered. The computed centroids are maintained by our
framework’s scheme index while detailed data descriptors are discarded. This
results in reduced storage space needs, execution time and number of distance
evaluations compared to utilizing a straightforward LSH index.

1 Introduction

An outlier is an observation that differs so much from others so as to arouse suspicion
that it was generated by a different process than the rest of the data. In order to put
this intuition into a context where outliers can be formally defined and computed many
alternative definitions have been proposed. One of the most commonly used approach
is the distance-based outlier definition, which suggests that given a dataset P , a positive
integer N and a positive real number r, a data object p of P is a O(N, r)-outlier, if less
than N objects in P lie within distance r from p, for some appropriate distance metric.

Outliers detection is critical for many modern applications such as decision support
(OLAP), customer behavior analysis and network management. However, none of the
well known outlier detection techniques takes into consideration the hierarchical nature
of the data domains that is inherent in such applications. The natural aggregation of
atomic values along a domain hierarchy is a critical summarization technique that can
be used to detect different grades of abnormal behavior by looking at all levels of the
hierarchy.

As an example, we consider the case of an electronic store. There are several ways
to categorize products (ProductId, Group, Class categories) that a customer purchases.
Table 1 presents an example of customers and the products they purchased. Distance-
based computations of outliers in this example can be performed by mapping each
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customer into a point in a high-dimensional domain (e.g. dimensions being the produc-
tIds). The values of the coordinates on each dimension (i.e. productId) can be boolean
values (indicating whether the user has purchased the product), or may be derived from
different statistics (e.g. number of times the customer purchased a product, her rating,
etc).

Independently of the details of this mapping, if we compare customers based on
the productIds of the products they purchased, then John and Mary show no apparent
similarity. However, if we look at the Group category of the products, it is obvious that
they both purchased Smart Phones. Similarly, John and Jim look dissimilar until they are
observed at the upper level of the product’s hierarchy (Class category). Consequently,
distance-based outliers derived by looking at the data domain that corresponds to the
leaves of the product’s domain hierarchy (Product→Class→Group→ProductID) may
find support when these observations are aggregated further up the hierarchy.

User ProductId Group Class
John Samsung Galaxy S4 Smart Phones Computers
John Apple iPhone 6 Smart Phones Computers
Tim Nikon Camera D750 Cameras Tvs-Cameras
Jim Apple iPad Air 2 Tablets Computers
Mary LG Nexus 5 Smart Phones Computers

Table 1. Product Purchases

Given that domain hierarchies are commonly used in many applications, in this
work we first look at the problem of deriving an intuitive definition that extends the
notion of distance-based outliers over hierarchical domains. A straightforward inde-
pendent computation of distance-based outliers over all hierarchical levels may yield
inconsistent results that complicate data analysis. As an example, depending on the se-
lected threshold values N and r, an observation that is not an outlier at the leaves of
the hierarchy may be deemed as such at an intermediate level. This goes against intu-
ition, which suggests that as atomic values are being aggregated via the hierarchy, data
observations tend to look similar.

In this work, we introduce the notion of hierarchical outliers for handling hierarchi-
cally organized data domains. Our proposed definition computes outliers in a consistent
manner, which implies that a data observation that finds enough support so as to be dis-
regarded as an outlier at a level of the hierarchy, can not be labelled as an outlier when
examined at a more coarse-grained level above. This intended monotonicity property
not only leads to conclusions that are not surprising to the user analyst but also enable
us to grade how suspicious a data observation is, depending on the number of hierarchy
levels for which the observation is found to be an outlier.

In addition to providing a proper definition of hierarchical outliers, in this work
we also look at efficient techniques that enable us to compute such outliers in large
datasets. Locality sensitive hashing (LSH) is a popular technique that partitions a high-
dimensional dataset into buckets so as to avoid performing all-pair computation of
item distances. Direct application of LSH for hierarchical outliers identification is pro-
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hibitively expensive as independent indexes need to be constructed for each level of the
hierarchy, leading to increased computational and storage overhead.

Thus, we propose an innovative LSH index scheme, termed as hierarchically clus-
tered LSH (cLSH), which instead of storing the data items at an independent index for
every level of the hierarchy, it only maintains the centroids of clusters, which are con-
structed performing a clustering technique among the data items that share a common
hash value at every index. As a result, both the computational and storage overhead for
the cLSH is reduced compared to the original LSH structure.

The contributions of our work are:

– We introduce the notion of hierarchical outliers and provide an intuitive framework
for detecting hierarchical outliers over hierarchically organized data domains. Our
framework assigns a simple and intuitive statistic called grade for every data item
identified as hierarchical outlier, which is a positive integer referring to the number
of levels for which the specific item is outlier. The higher the grade, the more
erroneous the item is.

– We propose an innovative indexing scheme based on locality sensitive hashing. This
scheme maintains centroids of data clusters at LSH indexes of hierarchical levels,
making it less space demanding compared to the case of independently created
original LSH indexes at every level.

– We introduce a bottom up computation via the hierarchy of data domain in order
to detect hierarchical outliers. At each level, our method utilizes results from pre-
viously performed computations resulting in faster computation of outliers.

– We present an experimental evaluation for our framework measuring the accuracy
and the efficiency (in terms of space and time) of our proposed techniques.

2 Related Work

Many previous works in different areas of data management have studied the prob-
lem of outlier detection. Different approaches for the definition of an outlier have been
presented in case of multidimensional data. In [2, 9, 15] distance based outliers are dis-
cussed, while [3, 13] consider density-based outliers as well. In the first case, data items
are considered as outliers based on the distances from their neighbors. In the second
case data items are studied by computing the density of data around their local neigh-
bors. The relative density of a data item compared to its neighbors is computed as an
outlier score. Different approaches have discussed different variants for computing this
score [8, 16]. A different outlier definition presented in [10] suggests that angles be-
tween data vectors are more stable than distances in high dimensional spaces. In this
case items are compared using angle-based similarity metrics, like the cosine similarity
metric. A data item is not considered as outlier if most of the objects are located in
similar directions with it.

Many of the aforementioned solutions exploit well known indexing techniques (like
the R-tree and its variants) in order to perform range or NN queries that are necessary
for outlier detection. Conventional multidimensional indexes are inapplicable in large
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data domains. For instance, the cardinality of the product dimension in a data ware-
house can be in the order of tens of thousands. Instead, our technique utilizes a proba-
bilistic indexing method termed LSH [4] that approximates the results of NN and range
queries in high dimensional spaces and extends it in order to handle efficiently the hier-
archical structure that data follows. The LSH scheme that we present in this work can
be extended to support different distance metrics, including the cosine similarity for
angle-based computation of outliers [6].

3 Motivational Example

Suppose that we would like to detect hierarchical outliers in the data warehouse of an
electronic store. A set of data items could be derived by projecting every customer’s
purchases at the hierarchically organized Product domain space. Figure 1 shows a data
item representing a customer’s purchases. The hierarchy of the Product domain consists
of four levels. The lowest level l4 contains all ProductIds, which are used for the unique
identification of the products. At level l3, the Group category of the products is repre-
sented (i.e. Home Theatre, TVs, Cameras, Smart Phones, Tablets, Laptops). Level l2
depicts the Class category of products (i.e. Audio, Tvs & Cameras, Computers), while
l1 contains the Top level representing all products. In this example, without loss of gen-
erality, at the lowest level of the hierarchy the values represent cumulative purchases of
different productIds for this customer. Aggregated values at upper levels are obtained
by the utilization of sum function (e.g. as in a typical roll-up aggregation).

Given this setting of data, we may focus on detecting outliers at every level of this
hierarchy. We could try to identify outliers based on the productIds that the customer
bought, or according to her aggregated purchases over product Groups. Someone else
may take into consideration customers purchases at more abstracted summarization lev-
els provided by the Class or Top category. We suggest a holistic approach that considers
all abstraction levels of product purchases, based on the specified hierarchy. We intro-
duce the notion of hierarchical outlier that takes into consideration the whole hierar-
chical tree that represents her complete purchasing history, supporting a more intuitive
decision whether a customer is an outlier, or not.
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Moreover, our framework provides an succinct measure termed hierarchical outlier
grade that denotes the number of levels a customer is identified as an outlier. For in-
stance, if a customer is regarded as hierarchical outlier with grade=2, this would suggest
that her purchases based on the productIds and their Groups are significantly different
from other people on the dataset. On the other hand, this result implies that her pur-
chases when aggregated at the Class level are similar to many other customers.

4 Hierarchical Outliers

The hierarchical nature of the data domain motivates us to examine data at every level
of the hierarchy they follow, in order to be identified as outliers. In our motivational
example, if we check all customers at level l4 and identify a specific customer as an
outlier, we have no evidence to regard her as an outlier at upper levels too. It is likely
that only few customers purchase the same exactly products as she does (in terms of
productIds), while there are many who purchase similar quantities of products at the
Group level of products categorization.

This observation leads us to propose a framework for the outlier detection problem
that takes into consideration the hierarchical structure of the data domain. An obvious
solution would be to compute distance-based outliers at all different abstracted levels in
a completely separate way. Given the fact that data items are high dimensional, some-
one could construct an index for every hierarchical level, in order to retrieve the nearest
neighbors of the queried item at every level and then according to the distance-based
outlier definition she could decide whether it is outlier or not. However, it is quite pos-
sible a specific item in question to be identified as an outlier at some levels and not to
be considered as an outlier at some others lower or higher to previous ones, depending
on the selected distance thresholds.

This lack of coherence stems from the main drawback of an independent evaluation
of distance-based outliers: it handles the different abstraction levels of a data item as
independent observations, rather than different abstractions of the same data item, ob-
tained through the hierarchy. By manipulating data in this manner, there could be no
consistent results in order to characterize a customer’s behavior in total.

In order to alleviate this inconsistency of results for hierarchically organized data
we introduce the notion of hierarchical outlier HO(N, r).

Definition 1 (hierarchical outlier HO(N, r)). Given a dataset P over a hierarchi-
cally organized data domain with h hierarchical levels, a positive integer N (threshold)
and a positive real number r, a data item p ∈ P is a HO(N, r)-Hierarchical Outlier
with grade L, if there are L levels of data hierarchy, at which less than N objects in
P lie within distance ri from p, where 1 ≤ i < h. ri =

√
(2 ∗max(F i)− 1) ∗ ri+1,

rh = r and max(F i) denotes the maximum fanout of those hierarchical tree’s nodes
belong to hierarchical level li.

Intuitively, the definition utilizes a certain method for computing the distance thresh-
olds at the different levels. As will be explained in what follows this ensures that out-
liers’ grade can be computed in a consistent manner following the desired monotonicity
property.
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We first present some preliminaries that we utilize to better describe our hierarchical
outlier definition.

Lemma 1. Given a data item X = {x1, x2, x3, . . . , xdi+1
} and a query point q =

{q1, q2, q3, . . . , qdi+1
} in a domain organized by a hierarchy H , it holds that Di(q,X) ≤√

(2 ∗max(F i)− 1) ∗ Di+1(q,X) where Di+1(q,X), Di(q,X) are the Euclidean
distance between q and X at hierarchical levels li+1 and li, respectively, where 1 ≤
i < h and max(F i) is the maximum fanout of those hierarchical tree’s nodes belong-
ing to hierarchical level li.

Lemma 1 ensures the consistency of the results that the proposed hierarchical outlier
detection process provides. Based on this property, if a data item q has N items that lie
within distance ri+1 from it at level li+1, then it will also have at least the same N
items in distance ri =

√
(2 ∗max(F i)− 1) ∗ ri+1 at higher level li. By utilizing the

popular distance-based outlier definition, we disregard q as an outlier at a level li+1 and
furthermore we also do not consider it as outlier at any upper level li with the condition
of defining distance thresholds ri based on Lemma 1. In Figure 2, we graphically depict
how the distance threshold r4 at the lowest level l4 is “expanded” at the upper levels
of hierarchy H . When thresholds are increased in a manner consistent to Lemma 1, the
computation of distance-based outliers provides the desired consistency.

Proof. Here, we prove that Di(q,X) ≤
√
(2 ∗max(F i)− 1)∗Di+1(q,X). For every

level li, where 1 ≤ i < h we know that

D2
i (q,X) =

di∑
j=1

(
(qkj+1 − xkj+1) + · · ·+

+ (qkj+fj − xkj+fj )
)2

=

di∑
j=1

V alue(j).

where fj is the fanout of j-th node at level li of hierarchical tree. di is dimensionality

of level li and kj =
j−1∑
w=0

fw.

V alue(j) = (qkj+1 − xkj+1)
2 + · · ·+ (qkj+fj − xkj+fj )

2+

+2 ∗
kj+fj−1∑
w=kj+1

kj+fj∑
y=w+1

(qw − xw)(qy − xy)

and thus,

D2
i (q,X) = D2

i+1(q,X) +

di∑
j=1

extra(j) (1)

where extra(j) = 2
kj+fj−1∑
w=kj+1

kj+fj∑
y=w+1

(qw − xw)(qy − xy).
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Bounding the
di∑
j=1

extra(j) of Equation 1, we are able to express distance Di(q,X) as

a factor of Di+1(q,X). It is

di∑
j=1

extra(j) ≤ 2 ∗
di∑
j=1

kj+fj−1∑
w=kj+1

kj+fj∑
y=w+1

|qw − xw| |qy − xy|

≤ 2 ∗ (max(F i)− 1)

di∑
j=1

kj+fj∑
w=kj+1

(qw − xw)
2

≤ 2 ∗ (max(F i)− 1)

di+1∑
j=1

(qj − xj)
2

≤ 2 ∗ (max(F i)− 1) ∗D2
i+1(q,X)

and thus we prove that: D2
i (q,X) ≤ (2max(F i)− 1) ∗D2

i+1(q,X)

Although our techniques are tailored for the popular Euclidean metric, they can be
adapted appropriately for different distance metrics and aggregation functions applied
to the data domain’s hierarchy.

In the following sections, we present in detail our adopted LSH indexing structure
that is tailored to identify hierarchical outliers, as well as our algorithm for their efficient
detection based on the proposed index.

5 Hierarchically Clustered LSH Indexing

Given that we need to compare high-dimensional data when looking for hierarchical
outliers, we adapt a powerful dimensionality reduction technique called LSH [1]. LSH
generates an indexing structure by evaluating multiple hashing functions over each data
item. Using the LSH index, we can identify the nearest neighbors of each customer and
compute outliers based on the distances from her neighbors.

We utilize hash functions that are based on 2-stable distributions and create several
different hash tables in order to increase the effectiveness of the LSH indexing schema.
There have been many proposals on how to tune and increase performance of LSH (e.g.
[11, 6]), however such techniques are orthogonal to the work we present here.

A direct approach for indexing a data set over a hierarchical domain would be
the construction of independent LSH hash schemes (one per hierarchical level). Each
hash scheme would contain T hash tables, named HT 1

1 . . . HTT
1 , HT 1

2 . . . HTT
2 , . . . ,

HT 1
h . . . HTT

h , which would maintain the data items of levels l1, l2, . . . , lh, respec-
tively. As we have already denoted, storing the whole dataset at independent LSH in-
dexes for every hierarchical level is not an efficient way of indexing. Instead, we in-
troduce a more space-saving index by creating Ti hash tables at every level li, named
HCT 1

1 . . . HCTT1
1 , HCT 1

2 . . . HCTT2
2 , HCT 1

h . . . HCTTh

h . Each HCTi is a hierar-
chically clustered hash table and contains a small number of centroids, which are com-
puted by clustering the data items that falls in the bucket with the same id for the
HCTi+1 hash table of the immediate lower level li+1.
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At most k centroids (to be stored in HCTi) are computed by clustering the data
items belonging to the same bucket of HCTi+1. k is a user-defined parameter, which
affects the space cost of our proposed LSH scheme. Its value could vary from one to
the exact number of items stored every time at a bucket. The more centroids per bucket
we maintain, the higher the space requirements of the index would be. A more flexible
option that we apply in our framework, is the derivation of different values for k at
every bucket so as a target space reduction ratio rr is achieved for the whole index.

Thus, we compute kBj (where kBj = |Bj |
rr ) centroids for every Bj bucket of

HCTi+1. We compute the hash values for the computed centroids and store them in
the appropriate bucket of HCTi. We have to notice that, both the number Ti of HCT
tables that are created at every level li and the hash functions utilized to hash the cen-
troids, are selected following the same parametrization process [14] as in the case of
building independent hash schemes for every level. Similarly, for hash table HCTi−1,
we compute the centroids after the clustering of the centroids maintained to each bucket
of HCTi. As a result, HCTi−1 maintains centroids of the clusters constructed over the
centroids stored at each bucket of HCTi. Following the same procedure, we create the
HCT tables for all the remaining levels up to l1, in a bottom-up process. The higher
the hierarchical level, the fewer centroids need to be indexed to its corresponding hash
table HCT. The aforementioned procedure can also be performed at the lowest level lh.
In this case a primary LSH scheme for level lh is constructed. The clusters and their
centroids for every bucket are computed and stored to newly created HCT hash tables,
while the primary LSH scheme is not required any more and is, thus, discarded.

In more detail, our LSH indexing structure construction requires the following steps:

– We initially construct a temporary LSH scheme for indexing the real data items of
level lh. These hash tables are auxiliary (i.e. used for the construction of the HCT
hash tables at level lh) and they are discarded immediately after the next step of the
process is completed.

– We compute kBj = |Bj |
rr centroids for every bucket Bj of the hash table HT 1

h . In
our framework, we utilize k-means for clustering, however this choice is orthogonal
to our scheme. This set of centroids are hashed to a set of Th hash tables using hash
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functions g1h . . . g
Th

h , where gih for 1 ≤ i ≤ Th is a family of a 2−stable distribution
functions [5].

– We repeat the previous step for every level li, with 1 ≤ i ≤ h − 1. Each time, we
perform a k−means clustering at the centroids stored to the buckets of the HCT 1

i+1

hash table. These centroids are abstracted to the upper hierarchical level li, forming
a much smaller dataset (in terms of cardinality) than the real dataset, for the level
li. Based on the centroids’ hash values, they are stored at the corresponding buckets
of HCT 1

i . . . HCTTi
i hash tables.

In Figure 3, we show an instance of our indexing structure for the case of our running
example’s hierarchy. For ease of presentation, we create only one table, instead of Ti,
at every hierarchical level li. The hierarchy consists of 4 levels and, thus, we create
four tables HCT4, HCT3, HCT2, HCT1, one per level. Every arrow links a centroid,
that is maintained at HCTi−1, with the cluster of a HCTi hash table at level li which
members it represents. There can be one or multiple clusters in the same bucket, for
example the two clusters at the first bucket of HCT4. At hash table HCT3, we can
see thirteen centroids derived from HCT4’s data. As we mentioned previously, these
centroids are assigned to buckets of HCT3, based on their hash value during index’s
construction. Only these thirteen centroids are maintained in the hierarchically clustered
hash table HCT3 of level l3. Similarly, at HCT2 seven centroids are constructed based
on the hash values of the centroids of the seven clusters created at HCT3. Finally at the
top HCT1 hash table, we notice only four entries.

It is clear that the number of data items/centroids stored at each level are quite fewer
than the data maintained in the case of storing the whole dataset at every hash table of
every hierarchical level. Consequently, our index requires significantly smaller space
compared to the original LSH scheme. It maintains hash tables, consisted only of a
small number of centroids performing a per-bucket clustering of the data items. These
centroids, as we will explain in Section 6, are utilized in order to compute the support
score to a query point during the hierarchical outlier detection process. This evaluation
leads to reduced number of distance computations when querying the index resulting to
even faster outlier identification compared to the baseline approach. In our experimental
analysis, we depict several figures proving our aforementioned claims. Encapsulated
information in centroids, such as the number of data items that the cluster contains and
the cluster range (i.e. distance of the centroid to its furthest cluster member), is a key
factor for the reduction of the computation cost of hierarchical outlier identification, as
we show in the next section.

6 Efficient Identification of Hierarchical Outliers

Given the proposed cLSH indexing scheme, we are able to identify hierarchical outliers
HO(N,r) based on Definition 1 and compute their grade according to the procedure
described below.

Formally, given a query point q, we would like to compute its grade. Notice that q
may be part of the data set, or an arbitrary point (e.g. a new customer). The identifi-
cation process begins at the lowest level lh of the hierarchy. Firstly, a nearest neighbor
(NN) query is executed for the query point q utilizing the HCTh hash tables created
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Algorithm 1 HO Query(q, L, support, grade)

Input: q is the query point
li is i-th level of hierarchy H
support is the support score of q at level lL+1

cur support is the support score of q at level lL
grade is Hierarchical Outlier Grade for q

1: SupCandL(q) = ∅ cur support = 0
2: for j = 1 . . . TL do
3: SupCandL(q) = SupCandL(q) ∪ lsh(q,HCT j

L)
4: end for
5: for ∀c ∈ SupCandL(q) do
6: sup(c)Lq = ComputeSupport(q, c)
7: cur support = cur support+ sup(c)Lq
8: if pred(c) /∈ bucket(q,HCT 1

L+1) then
9: support = support+ sup(c)Lq

10: end if
11: end for
12: if support < N OR cur support < N then
13: grade++
14: if L ≥ 2 then
15: HO Query(q, L− 1, support, grade)
16: end if
17: end if

for indexing data at level lh. Following the original LSH scheme’s way of NN evalua-
tion [7], we compute the hash value of q by applying the gih hash function for every one
of the Th hash tables at level lh, where 1 ≤ i ≤ Th. We retrieve from every HCTh hash
table the content from those buckets which id value is the same with the computed hash
value of q. A set of items is returned from each bucket. These sets are merged, removing
any duplicates, forming a resulted set, named SupCandh(q). SupCandh(q) set con-
tains all the centroids of the data clusters containing data items that are candidates to lie
within distance r from q.

A query item q gains support (i.e. increases its support score), if a centroid lies
within distance ri from it at level li. In order to compute the support that a centroid
gives to a query item we proceed to an approximation technique, based on which a
centroid c, with radius rc and rep(c) (where rep(c) are the number of data items a
cluster contains), gives support sup(c)q to a query point q according to the following
formula:

sup(c)iq = rep(c)× V (Sphere(c, rc)
⋂

Sphere(q, ri))

V (c, rc)
(2)

where Sphere(q, ri) is the the hyper-sphere having as center the point q and radius ri.
Figure 4 provides a visualization of this process.

Algorithm 1 shows the algorithm for computing whether q is a hierarchical outlier
and return its grade. Firstly, we compute the set SupCandL(q) of candidate centroids
(Lines 2-4), that may give support to q at level L. Function lsh returns those centroids
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Fig. 4. Computing support that a cen-
troid c ”gives” to a query point q
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Fig. 5. Buckets Visited during Query Execution.

from all the hierarchical hash tables at level lL, which have the same hash value with q.
We then update (Lines 5-10) the support score of q at level lL based on every centroid c
that belongs to SupCandL(q). Function ComputeSupport(q,c) (Line 6) approximates
(as it implied by Equation 2) the support that c provides to q. In Line 7 the support
sup(c)Lq increases the cur support of q at level lL. In case the centroid c represents
a cluster of centroids (this information is derived by function pred(c)) that belong to a
bucket HCT 1

L+1 of level lL+1 that it has not been processed during the query evaluation
at level lL+1(i.e. members of c’s cluster do not fall in the same bucket of HCT 1

L+1 with
the one that q’s hash value implies - bucket(q,HCT 1

L+1)), its providing support to q is
also added to the support that q has already gained by the previous levels (Lines 8-10).
If the support or cur support do not exceed threshold N the q’s grade is increased
by one and we recursively call the algorithm for level lL−1. Our process terminates
whenever the obtained support at a level li exceeds threshold N or level l1 is reached.

In our running example, given a query point q, we first compute its hash values for
hierarchical levels l4, l3, l2, l1 and then we assign it to the corresponding buckets that
our index maintains. As it is depicted in Figure 5, q falls in buckets B410, B38, B27 and
B13 of HCT4, HCT3, HCT2 and HCT1 respectively. For ease of presentation, we
only depict one table per level, instead of T i copies for every level li that our method
suggests. However, query execution utilizing T i tables per level is straightforward to
what we discuss here. We only need to merge the sets of items retrieved from the buckets
of T i tables of a specific level and then proceed as we describe below.

For a given threshold value N=10, our method starts at level l4 evaluating the Eu-
clidean distance between q and centroids stored in bucket B410 of HCT4. Based on
these evaluations we approximate q’s support score at hierarchical level l4. In case sup-
port value is greater than N , we terminate query’s evaluation and answer that q is not
a hierarchical outlier, otherwise we set its grade value to 1 and we continue checking q
at level l3. Assuming in this example that support score at hierarchical level l4 is two,
we continue at level l3 retrieving the two centroids (c310, c311) stored at bucket B38 of
HCT3 based on q’s hash value. For each one of these two centroids we approximate
the support that they provide to q by utilizing Equation 2. Suppose that sup(c310)3q = 3
and sup(c311)

3
q = 2 we conclude that q is also an outlier at level l3 and increase its

grade by one. Continuing at level l2 we obtain centroids c25, c26 from B27 bucket,
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which represent clusters that its members are stored in bucket B34 and B37 respec-
tively, that has not been processed during the lower levels query evaluation and thus
could be added to the already computed support score of q. The support that c25 pro-
vides (e.g. sup(c25)2q = 6) is added both to the cur support for level l2 and support
that q have already gained from levels l3 and l4. support exceeds threshold N and
query execution terminates (without accessing bucket B13 of level l1). As a result, our
algorithm replies that q is identified as a hierarchical outlier with grade=2.

Concluding, we should notice that a hierarchical outlier detection query involves
processing of several buckets of the HCT tables for levels lh up to l1. However, the
higher the hierarchical level our method examines, the lower is the number of centroids
obtained by these buckets, as the number of centroids at higher levels is reduced as an
effect of the recursive clustering over the hierarchy during index construction. More-
over, our algorithm retains the value of support from previous (lower) levels, in order to
expedite processing. Consider level l1, where we have already processed three buckets
(B410, B38, B27), that give the necessary support to q at l2 and so the B13 bucket is not
need to be accessed. Finally, the monotonicity property of hierarchical outliers, permits
us to terminate the query, when enough support is gained at a specific level.

7 Experimental Evaluation

In this section, we present an experimental evaluation of the proposed hierarchical out-
lier detection framework. All algorithms are implemented in Java and the experiments
run on a desktop PC with an i7 CPU (4 cores, 3.4 GHz), 8GB RAM, and a 128GB SSD.

7.1 Experimental Setup

Data sets. In the experimental study, we employ two data sets. In the first dataset, we
created a hierarchy of products consisting of six levels with dimensions (cardinality)
2654, 380, 51, 13, 3, 1 from the leaves to the root of hierarchical tree, respectively.
We generated data for 50000 customers with their purchases over the 2654 different
products at the lowest level of the hierarchy. In order to generate the purchases of a
customer, we first set the number of cumulative purchases for every customer by se-
lecting uniformly from the range 30000 - 80000. We then selected randomly 20% of
the 2654 products belonging at the lowest level of product’s domain hierarchical tree.
These 20% of products are considered as high interest products for customers and 80%
of her total purchases are uniformly distributed to these products. The remaining 20%
of a customer’s purchases are distributed randomly to the rest of products (that span
80% of the produce domain) that are considered as low interest. We created several
clusters of customers where customers of the same cluster have the same sets of high
and low interest products.

We also used the OLAP Council APB-1 benchmark generator [12] to create a sec-
ond dataset which contains 5300 customers. For every customer, the generator produced
a vector representing her cumulative purchases over a period of 17 months on a domain
of 6050 products. The products’ domain hierarchy consists of six hierarchical levels.
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Fig. 6. Storage Requirements
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Fig. 7. Index Points Retrieved per Query
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Fig. 8. Average Distance Evaluations per Query
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Fig. 9. Average Execution Time per Query

Algorithms. We evaluate our hierarchical outlier detection algorithm that utilizes
the hierarchically clustered LSH (cLSH) index and we compared it to an alternative
implementation of the same algorithm that utilizes independent LSH indices for every
level of the hierarchy. All indices are parametrized as described in [14].

Metrics. Our main metrics include: a) the average number of distance evaluations
for a hierarchical outlier detection query, b) the average query execution time, c) the
average number of candidates points that the indices return per query execution, d)
the storage needs for both implementations, and e) the precision of the results of both
techniques computed as

precisionlevel(i) =
|customers retrievedlevel(i) ∩ real outlierslevel(i)|

|customers retrievedlevel(i)|

Queries. We present average values over 100 queries, where all query points are outliers
at lowest level of products hierarchy on both datasets. For the remaining levels the
number of outliers range from 4 to 74. The higher the hierarchical level, the smaller
the number of queries that are outliers. For instance at fifth level there are 74 queries
identified as outliers for APB dataset and 13 for the synthetic one while at the highest
hierarchical level there are only 6 and 4 outliers respectively.
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Fig. 10. Synthetic dataset
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Fig. 11. APB dataset

Parameters. We conduct experiments varying the reduction ratio rr (1.5-4) that
defines ki =

|Bi|
rr for the k−means clustering evaluation on every bucket Bi.

7.2 Experimental Results

Space Cost. In Figures 6, we depict the storage needs of our technique for various
values of rr. The higher the requested value of rr the lower the space cost because
larger clusters are constructed and, thus, fewer centroids are stored at the cLSH index.
Given that only centroids are maintained by cLSH it is expected that we gain in terms
of space compared to the original LSH scheme.

Distance Evaluations and Index Points Retrieved. In Figure 7, we show the aver-
age number of the points (LSH)/centroids (cLSH) returned as candidates by each index
to provide support to a query point. This number is significantly smaller for cLSH, as
a result of the recursive clustering over the hierarchy and the way these centroids are
used to increase the support of a query point.

Figure 8 depicts the average number (over 100 queries) of distance evaluations re-
quired in order to compute the hierarchical outliers and their grade. Our method using
cLSH performs up to 80% fewer distance evaluations in order to detect a hierarchical
outlier, compared to the straightforward LSH scheme. This significant reduction is at-
tributed to the use of centroids in order to calculate the support from a whole cluster of
points to the query point in a single step, instead of a per-data-item calculation.

Execution Time. Figure 9 shows that our method is up to 75% faster compared to
the original LSH scheme and 15 times faster than a brute-force method that does not use
any index. The main factor that increases the execution time is the number of distance
evaluations. This is evident by the fact that the evaluations and execution time graphs
follow the same trend.

Precision. Figures 10, 11 depict the precision of both indices (LSH/cLSH) in hi-
erarchical outlier identification. Both techniques are very accurate and provide high
precision results. We do not provide a similar graph for the recall because it was 100%
for all levels of the hierarchy, in these experiments (i.e. our approximation technique-
summarized in Formula 2- overestimates the support score). Even though cLSH is sig-
nificantly more condense than the LSH index, it provides equally accurate results.
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8 Conclusions

In this work we introduced a framework for detecting outliers in hierarchically orga-
nized domains. Key to our method is a monotonicity property that enables us to grade
in an intuitive manner how erroneous a data item seems with respect to the rest of the
data. We also discussed a novel indexing scheme that computes hierarchical clusters of
data items and embeds them in a LSH index. Using this index we can quickly identify
hierarchical outliers with reduced storage and computation cost compared to using a
straightforward LSH index. The benefits of our techniques stem from the hierarchical
organization of the LSH buckets that permits us to reuse distance computations while
exploring a data item.
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