
Hierarchical Graph Indexing

James Abello
DIMACS Center, Rutgers University

Piscataway, NJ

abello@dimacs.rutgers.edu,abelloj@optonline.net

Yannis Kotidis
AT&T Labs-Research

Florham Park, NJ

kotidis@research.att.com

ABSTRACT
Traffic analysis, in the context of Telecommunications or
Internet and Web data, is crucial for large network oper-
ations. Data in such networks is often provided as large
graphs with hundreds of millions of vertices and edges. We
propose efficient techniques for managing such graphs at the
storage level in order to facilitate its processing at the in-
terface level(visualization). The methods are based on a
hierarchical decomposition of the graph edge set that is in-
herited from a hierarchical decomposition of the vertex set.
Real time navigation is provided by an efficient two level
indexing schema called the gkd⁄-tree. The first level is a
variation of a kd-tree index that partitions the edge set in
a way that conforms to the hierarchical decomposition and
the data distribution (the gkd-tree). The second level is a
redundant R⁄-tree that indexes the leaf pages of the gkd-
tree. We provide computational results that illustrate the
superiority of the gkd⁄-tree against conventional indexes like
the kd-tree and the R⁄-tree both in creation as well as query
response times.

Categories and Subject Descriptors: H.3.m INFOR-
MATION STORAGE AND RETRIEVAL: Miscellaneous.

General Terms: Algorithms, Management, Design.

Keywords: Graph, Navigation, Visualization, Index.

1. INTRODUCTION
Telecommunications traffic [2], World-Wide Web [13] and

Internet Data [16] are typical sources of graphs with sizes
ranging from 1 million to several billion edges. These graphs
are not only too large to fit on the screen but they are in gen-
eral too large to fit in main memory. Therefore the screen
and RAM sizes are the two main bottlenecks that we need
to face in order to achieve reasonable processing and nav-
igation. Recently, several mechanisms have been proposed
to deal with both bottlenecks in a unified manner. They
are based on the notions of Graph Macro-Views and Graph
Sketches [1]. These approaches exploit the fact that the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CIKM’03, November 3–8, 2003, New Orleans, Louisiana, USA.
Copyright 2003 ACM 1-58113-723-0/03/0011 ...$5.00.

multi-graphs mentioned above are sparse, of low diameter
and obey a power law distribution that is scale invariant [16].
We can view a weighted multi-digraph as a real non-

negative matrix A whose entries are normalized in a suit-
able fashion. Thus each matrix entry A(i; j) represents some
weighted function of the number of edges between vertices
i and j. As an example, think of A as representing the
US phone calls. The hierarchical grouping of these num-
bers in blocks, neighborhoods, towns, counties, states and
US regions, can be represented as a rooted tree T . This
geographical based hierarchy can be used in turn to obtain
”aggregate” views of the phone traffic at different ”levels” of
granularity, i.e. traffic between states, counties, cities, etc.
Navigation from one level of the edge hierarchy to the

next is provided by refinement or partial aggregation of the
current view. For example, in Figure 1 (Figure from [4]),
a height field is being used to represent the aggregate US
states traffic matrix. When a particular entry is selected(like
NJ-NJ) another height field representing the calling traffic
between the NJ towns is brought into the screen. Other
queries of interest involve computing traffic among entities
at different levels of the hierarchy. For example, traffic from
a town to a region of the US.
All the traffic queries described above can be modeled as

virtual weighted directed edges between tree vertices that
are not descendants of each other. A maximal collection
of these vertices corresponds to a partition of all the phone
numbers. Each such partition together with all its virtual
edges represents aMacro-View of the input graph. Each vir-
tual edge represents the subgraph consisting of all the edges
going from one set of the partition into another. Each such
subgraph is what we call a subgraph slice. Subgraph slices
are really the detailed views of the aggregated information
recorded by the higher level virtual edges.
Graph Sketches were first introduced in [1] and are incor-

porated into a system called MGV [2]. The major ques-
tion not addressed in previous research is how to obtain fast
data access in the case that the input is coming as a graph
stream. In such cases the entire neighborhood of vertexes
is not known a priori and sorting the entire data set is not
an available option. We further assume the existence of a
rooted tree T whose set of leaves corresponds to the graph
vertex set. When such tree T is not known a priory, several
approaches for its computation have been proposed in [3].
Computing subgraph slices on demand over a graph stream

requires fast access to the underlying data (in our example
telephone calls) at different levels of granularity. This is pre-
cisely our goal for designing an index, the gkd-tree, that fa-

Figure 1: A typical snapshot from the display when
processing phone call data. It illustrates the action
of extracting the next level of detail about intra NJ
call volume from the interstate call matrix. The
corresponding US hierarchy is 10 levels deep.

cilitates hierarchical access to stream graph data. The trick
is to align the index to a predetermined tree T depending
on the incoming data distribution and then construct a sec-
ondary access index for the leaf pages of the gkd-tree. This
two level index schema is what we call a gkd⁄-tree. The
navigation operations that are supported by our indexing
schema correspond to zooming/unzooming on a local area
of a graph embedding (see Figure 1).

1.1 Definitions
A multi-digraph is a triplet G = (V; E; m) where V is

the vertex set, E a subset of V xV is the set of edges and
m : E ! N is a function that assigns to each edge a non-
negative multiplicity. We denote by V (G) and E(G) the set
of vertices and edges of G respectively.
A multi-digraph stream S(V) is a sequence of multidi-

graphs Gt = (V; Et; mt) for t = 0; 1; :::. The kth stream
snapshot is the multi-digraph S(V)k with vertex set V and
edge set equal to the union of Et for t = 0; 1; :::; k where the
multiplicity of an edge in S(V)k is the sum of the multiplic-
ities of that edge in the Et’s.
For a rooted tree T , let Leaves(T) = set of leaves of

T . For a vertex x 2 T , let Tx denote the subtree rooted
at x. Vertices p and q of a rooted tree T are called in-
comparable in T if neither p nor q is an ancestor of the
other. The multiplicity of a pair of vertices p and q of T
is m(p; q) =

P
(u;v)2E(G)m(u; v) for u 2 Leaves(Tp) and

v 2 Leaves(Tq): An incomparable pair (p; q) is called amulti-
edge when m(p; q) is greater than zero. When both p and q
are at the same distance from the root of T , the multi-edge is
called horizontal. A non-horizontal multi-edge between ver-
tices p and q where p is a leaf and Height(q) > Height(p)
is called a primary crossing multi-edge. Notice that a hor-
izontal multi-edge (p; p; m(p; p)) represents the subgraph of

Tp Tq

Slice

La
ye

r

……... ……...

p qHorizontal Edge

Root(T)

Leaves(T) = V(G)

Non-horizontal Edge

∈ E(G)
Primary Edge

……... ……...

Figure 2: Hierarchical Graph Decomposition.
Leaves of the tree are vertices of the original graph,
and internal nodes represent information associated
with the subgraph induced by its descendant leaves.

G induced by Leaves(p) and m(p; p) is its aggregated mul-
tiplicity (ex: the aggregate phone traffic within NJ). Non-
horizontal multi-edges represent the aggregate traffic among
two regions at different levels of granularity. For example,
the aggregate traffic from the town of Bedminster in NJ to
the Pacific region of the US.
The hierarchical graph decomposition of G, given by T , is

the multi-digraph H(G; T) with vertex set equal to V (T)
and edge set equal to the edges of T union the multi-edges
running between incomparable pairs of T . Because H(G; T)
contains a very large collection of multi-edges that can be
computed from the horizontal and primary crossing multi-
edges as defined above, [2] takes the approach of maintain-
ing just these multi-edges and computing the remaining ones
on demand. This approach works very well when the entire
graph is at our disposition. However, for the case of graph
streams, updating the horizontal and primary crossing edges
becomes expensive both in time and storage costs. In order
to alleviate this we introduce the gkd-tree to gain fast access
to the data associated with specialized Graph Macro Views.
These are multi-graphs obtained from partitions of the ver-
tex set of G determined by T . These special partitions of
V (G) are called covers. The gkd index provides implicitly a
cover that is aligned to the characteristics of the traffic dis-
tribution. Before proceeding any further, we introduce now
the notions of covers, Macro V iews and the fundamental
query that retrieves graph slices.
Given a graph G and a tree T such that Leaves(T) =

V (G), a T -cover C of G is a maximal set of incomparable
vertices in T . Notice that the set Leaves(T) is a T -cover and
that substituting in a T -cover a set of nodes by its common
parent gives another T -cover. From now on we will refer to
a T -cover just as a cover.
A Macro-View of G is a multi-digraph with vertex set a

cover ofG and all the multi-edges ofH(G; T) running among
the vertexes in the cover. For example, the US inter-state
aggregate phone traffic is a Macro-View of the phone calls
that occur every day within the US.
For a multi-edge (x; y), expansion(x; y) is the subgraph

of H(G; T) whose nodes are the union of children(x) and
children(y) and all the multi-edges running between them.
Figure 1 depicts expansion(NJ; NJ). The subgraph slice,
details(x; y), associated with a multi-edge (x; y) is the sub-

graph of G with vertices Leaves(Tx)
S

Leaves(Ty) and all
the edges of G running from Leaves(Tx) to Leaves(Ty). As
an example, details(NJ; CA) consists of all the phone calls
originating in New Jersey and terminating in California.
A good mental picture of what the definitions convey is

that each multi-edge (x; y) has below it a hierarchy of edge-
slices where each level represents an aggregation of previous
levels and where the bottom most level is the subgraph of
G with vertices Leaves(Tx) union Leaves(Ty) and edges of
G running between them.

2. THE GKD-TREE INDEX
We assume that the vertices of T have been labeled in such

a manner that for any node p of T the set Leaves(Tp) lies
in the range span(p) = [min(p); max(p)] (For example, dfs
or postorder). Consider then a jV (T)j x jV (T)j integral grid
with a point (u; v) for each edge (u; v) in E(G) as shown in
Figure 3. With this interpretation, details(x,y) corresponds
precisely to the points within rectangle span(x) £ span(y).
One can then think of applying directly classical range query
results, however this ignores completely the structure im-
posed on the search space by T . This is precisely where our
modified gkd-tree comes in. It exploits the fact that only
O(V (G)) one-dimensional subranges can participate in any
two-dimensional query and uses the distribution of the in-
coming graph stream to split index pages in a manner that
is fully aligned with the tree providing at the same time a
good page occupancy factor.
The fundamental query operation provided by the gkd-

tree is the computation of the subgraph details(x,y) associ-
ated with the multi-edge (x; y) .1 The set of vertices of this
subgraph can be obtained easily from the tree T . The index
is used to retrieve the set of edges of this subgraph. All
other computations described in the previous sections can
be expressed using the above fundamental query. For exam-
ple, the operation expansion(x; y) requires all multi-edges
running from the children of x to the children of y. This is
simply an aggregation of the edges in details(x; y) up to the
levels of the children of x and y. This can be done using
space and time proportional to the size of details(x; y). The
index provides a fast access method for the detailed edges
involved in this computation.
For large graphs of our interest, doing these aggregations

on the fly will often take time not appropriate for an inter-
active visualization system. One may however exploit ideas,
already presented in the data warehousing literature, for
speeding up these computations. We here illustrate these
ideas but the details are beyond the scope of this paper.

† We may materialize redundant “aggregated views” of
the input graph, each stored in a corresponding gkd-
index. For example given the hierarchy T we may
compute a “coarser” decomposition using hierarchy
T 0=T ¡ Leaves(T) and map the input edges to the
leaves of T 0 which are in-fact the nodes in T just above
Leaves(T). The aggregate computation is performed
after the input graph is processed and stored in a gkd-
tree. This could be done efficiently as the gkd-index
clusters edges based on the hierarchy. In practice, do-
ing these aggregations on a few levels above the leaves

1In fact the gkd-tree can be used to answer arbitrary 2-
dimensional range queries in span(root(T))£span(root(T))
but we here adhere to queries imposed by the hierarchy T .

2 7

6

54

3

1

8 9

S1 S2 S3 origination

de
st

in
at

io
n

G

T

2 4 5 7 8 9

2

4

5

7

8

9

Figure 3: Sample tree and data

of T will be sufficient (i.e. at the city-level in our ex-
amples).

† When additional operations are performed over the
subgraph details(x; y), the obtained results can be
cached using techniques like the ones described in [19,
23] for improved performance. Query-result caching
is crucial for providing real-time navigation, especially
for rendering the upper levels of the hierarchy.

2.1 Index Overview
Figure 3 shows a simple hierarchy tree T with three levels.

The leaves of the tree correspond to the nodes of G and are
numbered (as the rest of the tree) using the dfs order. The
figure also shows the 2-dimensional projection of the edges
of the graph where each edge (u; v) is mapped into a point
using the origination/destination node-ids as coordinates.
Our premise is that an effective indexing of the edges of G

should respect the hierarchy T . One can think of the inter-
mediate nodes of the tree T as a grid that is superimposed
over the data space of Figure 3. A partitioning of the space
that is not fully aligned with this grid will be sub-optimal
since additional data pages/points will have to be fetched
from disk for many of the queries.
The gkd-tree recursively indexes the edges of G based on

the grid specified by the tree T . It proceeds by partitioning
subspaces that are full using horizontal and vertical splitters
similar to a kd-tree. The main difference is that the selection
of the splitters is done based on both the data distribution
(for balancing utilization of data pages) and the tree T .
Looking back at Figure 3, we assume that the index ini-

tially consists of only one root-page that has become full.
Using the kd-tree paradigm the page will be split using a
vertical line (splitter) denoted as S2, which equally divides
the data points into two sets of six points (edges) each. In
comparison the gkd-tree selects splitters guided by the tree.
Initially the root data-page of the index is assigned to the

Direction_flag:x

Split_value: 7

xlist: {2,3}

ylist: {1}

Data: {(2,4), (2,7), (4,2),
(4,4), (4,5), (4,7), (5,7)}

xlist: {6}

ylist: {1}

Data: {(7,4), (8,5), (8,7),
(8,9), (9,9)}

x>=7x<7

Figure 4: Index after first split

Query S1 S2 (kd-tree) S3 (gkd-tree)

details(1,*) 12 12 12
details(2,*) 2 6 7
details(3,*) 10 12 7
details(4,*) 10 6 7
details(5,*) 10 6 7
details(6,*) 10 6 5
details(7,*) 10 6 5
details(8,*) 10 6 5
details(9,*) 10 6 5
Total 84 66 60

Table 1: Points accessed for different splitters

root of the tree. When this page is to be split the choice of
the splitters is between the children of the root. In this ex-
ample the root has three children, i.e. two choices: putting
a splitter after node 2 or alternatively after node 3. These
choices are illustrated in the Figure as S1 and S3. Final
selection is done using the splitter that better balances the
underlying data points, that is selection S3 in this example.
Table 1 shows the number of data-points accessed for

a query details(x; ⁄)2 for each choice of a splitter. The
gkd-tree choice, S3, is superior for all queries overall, even
though there are cases that one of the other two schemes is
better for an individual query. The reason is that the kd-
tree splits the subspace covered by node 3, while the gkd-tree
keeps the detailed edges under that node together. If further
insertions in the subtree rooted at 3 cause additional page
splits then this subspace will be split based on the children
of node 3 as explained in the next subsection.
One can show that when partially splitting a node (3 in

this example with splitter S2), the cumulative benefits to
queries on his descendants are smaller than the imposed
overhead for answering queries on the node itself. In fact
in table 1 we can see that the kd-tree split is better for the
children of node 3 : 4; 5; 6 but far-worse for the node itself,
i.e. query details(3; ⁄). This effect is more evident in nodes
from the intermediate levels of the tree.

2.2 Index Details

The gkd-tree partitions the data space using the nodes of
tree T . When a data-page becomes full a splitter (as in the
kd-tree) is chosen to divide the data points in two roughly
equal sets. Unlike the kd-tree, the selection of the splitter in
done using both the data points and the tree. In particular
each data (leaf) page of the index contains:

2The cost of a query in this example depends only on the
origination node x as we only have split the data on the first
axis.

† Two lists xlist and ylist of nodes selected from T .
Nodes in each of the lists are consecutive siblings in T ,
assuming an ordering of the children of each node in T
from left to right. (In practice each list is represented
by the dfs value of its first and last elements.)

† A set of records (e; eid), where e = (u; v) is an edge in
E(G) and eid a unique edge identifier. In the case of
telecom traffic, eid is a pointer to the call detail record
that corresponds to this edge.

The maximum number of records in a data page isMAX N
and depends on the selection of the page size. We refer to a
record as a “point” or an “edge” depending on the context.
For each edge (u; v) in a page there is exactly one node in
xlist, ylist for which u, v is a proper descendant, respec-
tively. Intuitively the set of nodes in xlist and ylist define
a continuous rectangular area in 2-dimensional space.
The data-pages of the index are the leaves of a binary tree

that encodes the selection of the splitters, in a root to leaf
path, as in a regular kd-tree. A non-leaf node of the gkd-tree
has an entry fdirection flag; split value; left child; right childg
where direction flag is set to 1 for vertical splitters and 0 for
horizontal ones. The distinction is necessary because, unlike
the case of a kd-tree, we pick the dimension to split inde-
pendently of previous choices. The entry split value defines
the splitter’s position while left child and right child are
pointers to non-leaf or leaf (data) pages of the index. Each
data point on the left sub-tree has the coordinate defined
by direction flag with a value that is less than the value
of split value while all points in the right sub-tree have val-
ues greater or equal to split value for the same coordinate.
Figure 4 shows the gkd-tree for the data points of Figure 3.
For simplicity we omit the edge-ids in this representation.
Lookups are implemented as in a regular kd-tree, using

the direction flag entry at each non-leaf node to select the
coordinate to check. For example when searching for the
point (edge) (2; 7) in the index of Figure 4, we compare the
‘x’ coordinate of the search point to the value of the splitter
(7) and since it is less we follow the left sub-tree.
Insertions are handled in a similar manner. First a lookup

operation is performed to locate the leaf page where the
data point is to be stored. In case the page is full then
a split() function is called to select a new splitter that
will divide the data points. This function uses the nodes
mentioned in xlist and ylist to select a good splitter. For
each node x in the tree we assume that we have a notion
of size(x) associated with the subtree Tx rooted at x. This
can be, for example, the number of nodes in Tx, or the size
of Leaves(Tx), or some function depending on the observed
degree distribution of the underlined graph. As a default
in our implementation we use the size of the subtree, i.e.
size(x) = jTxj. If Px2xlist size(x) >

P
y2ylist size(y) then

we split on the x-axis using a vertical splitter. If the first
sum is less than the second we split on y; otherwise we pick
a direction at random. Intuitively, this process balances the
size of the subtrees rooted at the nodes of xlist and ylist so
that the graph is fairly indexed on the source/destination
nodes with respect to the tree T . For example, subsequent
split of the right leaf page in the index of Figure 4 will be
on the y direction as ylist = f1g with jT1j = jT j = 9 and
xlist = f6g with jT6j = 4.
After the split direction is decided, we look at the nodes

mentioned in xlist or ylist respectively and pick a splitter

that lies between two of them. If the lists contain just a
single node, the node is replaced by its children in the tree
T . For example the gkd-tree is initialized as a single data
page with xlist = ylist = froot(T)g. For the split depicted
in Figure 4 the xlist is first expanded to f2; 3; 6g, i.e. the
children of the root of T . This expansion step allows the
data to be indexed progressively in finer granularity with
respect to the hierarchy.
Having selected the direction to split, we then pick the

location of the splitter using the nodes in the appropriate
list. For example, to split, vertically, the points in Figure 3
we can choose splitters S1 or S3. The first one moves to
the right page all points with coordinate x ‚ min(3) = 4
and the second moves all points with x ‚ min(6) = 7.
To pick the splitter that better balances the data, we as-
sociate a counter with each node in xlist except for the last
one, i.e nodes 2; 3 and enumerate all points in the page that
have x-values within span(2) and span(3). For this exam-
ple, count[2] and count[3] get the values 2 and 5 respectively.
We then simply scan the counters from left to right and stop
when we see more than half of the points, choosing a splitter
that corresponds to x ‚ 7=min(6) in this example.
In summary, we can view the split algorithm of the gkd

tree as follows: first, a split direction is decided(assume to
be x). Then a set of vertical bands, one per element in
the xlist, is superimposed over the grid and the number of
points on each band is registered. We then split at a band-
boundary so that points are equally balanced. Compared to
a kd-tree split, this is faster to compute. In fact, some recent
algorithms construct the kd-tree in a similar fashion [5] using
a coarse grid to expedite sorting.

2.3 Answering details() Queries
Since the gkd-tree partitions the data space using the

nodes of the tree T , by letting X = l:x list and Y = l:y list,
it is easy to see that the gkd-tree places in a leaf(data) page l
the set of edges Cl(X; Y) =

S
x2X;y2Y details(x; y). More-

over, the set of all leaves in the index defines a partition
of the edges of G, namely, E(G) =

S
Cl(X; Y). Assuming

that x0 and y0 are incomparable in T , a query details(x0; y0)
can be either more fine-grained or less fine-grained than the
partition imposed by the gkd index.
In the more fine-grained case, there exists a leaf l in the

gkd-tree such that x0 2 Tx, y0 2 Ty with x 2 X and y 2 Y .
This means that the query can be answered by accessing a
single leaf. This corresponds in practice to a single data page
access. In comparison, an R-tree is more likely to require
more leaf accesses (even for a point query where x0 and y0

are in Leaves(T)). This is due to overlapping and indexing
of dead-space [22].
In the less fine-grained case, multiple data pages will have

to be scanned. In particular, all those index leaves l for
which Cl(X; Y) : x 2 X and y 2 Y where (x0 2 Tx or
y0 2 Ty), need to be retrieved.

2.4 An Extension: the gkd⁄-tree
The gkd-tree is an unbalanced index, much like the kd-

tree itself. During index construction this is advantageous
since there is no need to maintain the tree balanced un-
like an R-tree or a B-tree. However, when doing lookups,
we may have to retrieve a lot of intermediate nodes. Al-
though an average tree may behave nicely we want to have
the overall performance guarantees provided by balanced in-

dexes. In order to achieve this we rely on the fact that our
graph streams are semi-dynamic. During data loading, the
gkd-tree is constructed as described in the previous section
but we also build a redundant R⁄-tree [8] that indexes the
leaf pages of the gkd-tree. In this way, we obtain fast con-
struction and balanced lookups. This is the case, if we can
build the redundant R⁄-tree without scanning the gkd leaves
themselves. This is achieved as follows.
During updates, when a new multi-digraph Gt is inserted,

each intermediate node of the gkd-tree that has at least one
child that is a leaf, maintains a Minimum Bounding Rectan-
gle (MBR) of such a child. Notice that this information is
available when we split a node, so that no additional book-
keeping is necessary. Also this is only required for nodes that
are directly above a leaf-page and not for nodes higher in
the structure. After all updates are performed, we scan the
intermediate nodes above the leaves and extract the MBRs.
Each MBR is then inserted in an R⁄-tree with a pointer to
the data-leaf node in the gkd-tree that it describes.
When answering queries, we use the R⁄-tree to locate the

data pages of the gkd-tree to fetch. When additional in-
sertions are needed we can either dynamically maintain the
mapping in the secondary R⁄-tree or simply recreate a new-
one after all insertions are performed. In fact, since the sec-
ondary R⁄-tree is a purely redundant structure, we find it
more efficient to completely drop it when new data is added
and then recreate it in the background after the data load
is finished. Queries during the loading phase or while the
secondary tree is constructed use the intermediate structure
of the gkd-tree. We refer to the combination of the gkd-tree
with the redundant R⁄-tree index as the gkd⁄-tree.

3. RELATED WORK
The idea of splitting index nodes by taking into account

some hierarchical organization has been proposed earlier in
the context of indexing object-oriented data. In [14] the
authors propose the ´-tree for answering single-class queries
(ex: find all object instances belonging to a specific class c)
and class-hierarchy queries (ex: find all objects that belong
to any class in the class-hierarchy rooted at some class c).
However, these techniques don’t seem directly applicable for
our problem of graph indexing.
In databases there is a vast literature on hierarchical in-

dexes. Among the many optimizations that have been exer-
cised, efficient creation and maintenance through bulk opera-
tions are essential for managing massive datasets. The most
common bulk operation is to bulkload a new index from a
static, given dataset. Most of the proposed algorithms [22,
17, 18] are for R-trees [15] and utilize the following tech-
nique: the input data is first sorted to cluster nearby points
and then chunk-ed into blocks of the size of the index data
page. Each block is then inserted as a unit obtaining in this
way significant speed-up over repeated one-at-a-time inser-
tions. Due to the preprocessing step, bulkloading R-trees
this way is at least as hard as sorting in external memory.
The algorithms proposed in [12, 11, 6] capitalize on the

idea of deferred insertions. They all utilize some form of
lazy buffering to amortize the cost of repetitive insertions.
The Log-Structured Merge-Tree [20] uses a secondary index
to improve the efficiency of data insertions. Our gkd⁄ index
builds on a similar concept of two data structures by using
the gkd-tree for maintenance, while queries are deferred to a
redundant R⁄-tree index (for locating the index data pages).

Our index construction can further benefit by employing
a bulk-loading infrastructure. In particular the algorithms
described in [5] for bulk-loading kd-tree indexes [7, 21], are
directly applicable to our case. They are based on the so-
called logarithmic method [10] that partitions N input data
items into log2N subsets of sizes 2i and builds a tree for each
subset. Queries are handled by accessing each of the trees
and combining the answers. These techniques are directly
applicable in our case if additional speedup of the index
construction is required.
For the experiments presented in the next section we com-

pare the gkd-tree against kd-trees and R⁄-trees. For this
comparisons we used a vanilla top-down insertion algorithm
on all three indexes without employing any bulkloading tech-
nique. This allows us to compare the raw performance of the
indexes under insertions. We plan to investigate the bulk-
loading performance of the gkd-tree in an extended version
of this paper.

4. EXPERIMENTS
All experiments reported in this section were run on a

Pentium III 667MHz PC running Linux, equipped with an
8GB, 5,400rpm disk and 128MB of main memory.

4.1 Comparison of thegkd-tree with the kd-tree
For our first set of experiments we synthesized a graph

with 262,144 nodes and 10M edges. The tree T was a full
balanced tree with fan-out 4 and height 9. We used two in-
stances of a graph Guni and Gself . For Guni we constructed
the set of edges E by randomly picking two vertices from
the graph. For Gself , the probability of picking a vertex in
an edge was following the 80-20 self-similar distribution.
The input data was given in ASCII and was internally

mapped to triplets of the form (u; v; eid), where eid is a
4byte edge-id and u, v vertices stored as 4byte integers. We
did not use any buffering mechanism in addition to what
is already provided by the operating system. Page size was
8,192 bytes.
The gkd-tree index for Guni took 44 minutes to construct

and used 160MB of disk space. The kd-tree index was con-
structed in 42 minutes and used 150MB. The small difference
in size is because of the smaller number of choices available
in the gkd-tree when splitting at the upper levels of T . For
example at the first level, just below the root, the gkd-tree
had 3 choices for putting a splitter among the 4 children of
the root, while the kd-tree could choose any splitter between
the 262,144 leaves of T . This resulted in a few unbalanced
splits in the upper levels of the index that required more
splits and thus more space/time to compensate.
For testing query performance, we synthesized sets of 100

random queries of the form details(x; y) where both nodes
x and y are from the same level in T . Results are in Table 2.
As expected, queries from nodes in the upper levels of the
tree are more expensive, simply because a larger number of
detailed edges from the graph has to be retrieved. Queries
on the top level of T are faster in the kd-tree because such
queries access most of the data and the kd-tree index is
smaller. For the rest of the queries, the gkd-tree requires
from 7% up to 47% fewer disk I/O’s.
The bigger benefits are for queries at levels 2 and 3 in T

that we believe are the more interesting ones for this graph.
Queries on level 1 are too coarse i.e. most of the data is ac-
cessed. In contrast, queries below level 3 are too fine-grained

Savings over kd-tree

-20%

0%

20%

40%

60%

80%

100%

1 2 3 4 5 6 7 8 9

Queries

S
av

in
gs

 (%
)

Figure 5: Savings over a kd-tree for self-similar data

as the data becomes so sparse that all candidate edges fit
in a single page. Thus, the non-trivial queries are for the
intermediate nodes and this is where the big gains of using
the gkd-tree are shown. The table shows that the real bene-
fit of using the gkd-tree stems from the better organization
of the non-leaf part of the index. For all queries a gkd-tree
scan requires fewer non-leaf page accesses because splits are
made to respect the hierarchical organization. Interestingly,
for queries below level 3 we only follow a single path to a
data page (since just one is accessed). In comparison, an R-
tree, due to overlapping, usually requires following multiple
paths to get to the proper data page.
Figure 5 summarizes the same queries for the Gself graph.

The size of the gkd-tree for this data was 129MB while the
kd-tree used 163MB. Construction of the index took 41 and
45 minutes respectively. Contrary to the uniform case, for
this skewed data, the gkd-tree was smaller and faster to
construct. With the exception of the very coarse queries of
level 1, the gkd-tree index is much faster providing savings
of almost 80% for queries in the mid-levels of the tree and
more that 40% for the rest.
Overall, gkd-tree outperforms the kd-tree for all queries

but the ones at the top level of the hierarchy. This be-
comes more apparent in the non-uniform case. There, ini-
tial, unbalanced page splits result in worst query perfor-
mance for very coarse queries. To test this hypothesis, we
implemented yet another variation of the gkd-tree index de-
noted as the fi-gkd-tree. The parameter fi is between 0.5
and 1 and restricts how unbalanced a split can be. In par-
ticular, when a splitter is decided, we enforce the property
that #points in left partition • fi⁄MAX N . In the origi-
nal gkd-tree the number of points assigned to the left part of
the splitter is at least MAX N=2 but in practice it can be
arbitrarily close to MAX N resulting in very unbalanced
splits. In the fi-gkd-tree index if the number of points in
the left partition is greater than fi ⁄ MAX N then the node
just before the splitter is replaced by its children and the
counting process is repeated (for the children only).
For the experiment of Figure 6 we used a graph with

185,505 vertices and 10M edges between vertices chosen us-
ing the 80-20 self-similar distribution. The hierarchy was a
9-level unbalanced tree were the fan-out of a node was ran-
domly chosen between 0 (leaves) and 8. This new graph is
denoted as GrandomT ree

self . In the Figure we plot the savings
in I/O over a kd-tree for queries on different levels of the hi-
erarchy for fi = 0:75; 0:90 and for the plain gkd-tree (fi = 1).

gkd-tree kd-tree
Query Level leaves non-leaves total leaves non-leaves total Savings v.s kd-tree

1 1,278.81 181.47 1,460.28 1,258.51 189.76 1,448.27 -1%
2 79.58 13.30 92.88 92.66 25.58 118.24 21%
3 4.99 5.30 10.29 9.98 8.95 18.93 46%
4 1 5.35 6.35 2.38 6.59 8.97 29%
5 1 5.07 6.07 1.23 5.66 6.89 12%
6 1 4.97 5.97 1.14 5.76 6.90 13%
7 1 4.89 5.89 1.02 5.53 6.55 10%
8 1 4.89 5.89 1 5.64 6.64 11%
9 1 4.89 5.89 1 5.64 6.64 11%

Table 2: Page accesses per query for Guni

Savings over kd-tree

-20%

0%

20%

40%

60%

80%

100%

1 2 3 4 5 6 7 8 9

Queries

S
av

in
gs

 (%
)

0.75-gkd-tree
0.90-gkd-tree
gkd-tree

Figure 6: Savings over a kd-tree for random tree and
self-similar data

A smaller value of fi results in a gkd-tree index that performs
closer to a plain kd-tree. For level 1 queries this drops the
negative margin from 15% more I/O’s to 6:5% for fi = 0:75,
while the index is now faster for level-2 queries. The rest of
the queries however are slower than in the gkd-tree, while
still much faster than the kd-tree.
For the datasets we have experimented with, an fi value

between 0:8 and 1 provides enough protection against very
unbalanced splits without sacrificing performance of queries
on the middle of the hierarchy, which are the most impor-
tant.

4.2 Comparison with the R⁄-tree
We now compare the gkd-tree against an R⁄-tree im-

plementation. For this experiments we used as input a
scaled down version of the three graphs: Guni, Gself and
GrandomT ree

self that we introduced in the previous section, con-
sisting of 1 million edges each. Our R⁄-tree implementation
stores 2-dimensional points as rectangles in the data (leaf)
pages resulting in smaller index fan-out for the same page
size. For a fair comparison, we changed the gkd-tree imple-
mentation to store 2 additional coordinates per point (edge)
so that each edge requires the same storage as in the R⁄-tree.
Page size was 8,192 bytes for all indexes.
Table 3 shows the wall clock time for loading the graph

data into the indexes and the resulting index sizes. We
also created the gkd⁄-tree that redundantly indexes the leaf
pages of the gkd-tree. Clearly the gkd-tree, even with the
extra overhead of the secondary index is much faster than

Creation Times (sec)

INDEX Guni Gself GrandomT ree
self

R⁄-tree 1,046 1,012 1,101
gkd-tree 54 63 126

gkd⁄-tree (extra) 26 23 42

Index Sizes (KBytes)

INDEX Gunimv Gself GrandomT ree
self

R⁄-tree 27,498 27,338 27,818
gkd-tree 32,856 32,895 32,104

gkd⁄-tree (additional) 138 74 66

Table 3: Index creation times and sizes

Query Level gkd-tree R⁄-tree gkd⁄-tree
1 304.80 242.90 259.60
2 22.30 24.03 18.46
3 6.03 5.76 3.03
4 5.90 3.67 3.04
5 5.61 3.28 3.04
6 5.62 3.13 3.05
7 5.64 3.07 3.05
8 5.51 3.10 3.04
9 5.51 3.10 3.05

Table 4: Page I/O per query (Guni)

the R⁄-tree implementation.3 This is because less work is
involved in updating the intermediate structure of the in-
dex. During insertions, only the leaf pages of the gkd-tree
are being modified. When a page splits, it is a localized
phenomenon that doesn’t propagate upwards and does not
affect sibling nodes. The R⁄-tree on the other hand requires
much more work in order to keep the index balanced. Using
the gkd⁄-tree, we obtain the benefits of having a balanced
index directory without the hassles of maintaining it. Space-
wise the R⁄-tree is slightly more efficient, due to the better
utilization of the leaf pages (we did not use the fi parame-
ter).
Table 4 compares query performance of the indexes. Using

the redundant gkd⁄-tree for querying the data results in a
query performance that matches, and often surpasses, the
performance of the R⁄-tree. This is quite impressive taking
into account that loading the graph is up to 13 times faster
with the gkd⁄ index. Querying the stand alone gkd-tree is
not as good. This is because the intermediate structure of
the gkd-tree is unbalanced resulting in a substantial amount

3As explained the secondary tree of the gkd⁄ index can be
computed in the background.

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

1 2 3 4

Ti
m

e
(s

ec
)

Graph size (Million edges)

rtree
gkd*-tree

Figure 7: Processing a graph stream

of I/O for getting to a leaf page, in dense areas.
In Figure 7 we plot the cumulative time for uploading a

sequence of four graphs in the R⁄-tree and the gkd⁄-tree.
We used four instances of Guni of 1M edges each. The final
size of the graph was 4M edges. For the gkd⁄-tree after
each update, we reconstructed the secondary R⁄-index from
scratch and this time is included in the graph.
We see that the R⁄-tree takes much longer time to load,

especially when the size of the index becomes comparable to
the size of the physical memory. For the final graph of 4M
edges the R⁄-tree index occupies 106MB while the gkd⁄-
tree 121MB. Even-though slightly larger, the gkd⁄-tree is
substantially faster in creation/maintenance than the R⁄-
tree, about 14 times faster for the overall run.

5. CONCLUSIONS
An effective way to process a graph that does not fit in

RAM is to build a hierarchical partition of its vertex set.
This hierarchy induces a partition of the graph edge set
that provides a conceptual framework for processing and
navigation. The framework consists of a hierarchy of graph
macro-views where each level represents an aggregate view
at certain level of granularity. The data associated with each
virtual edge of a graph macro-view constitutes the atomic
navigational unit and its retrieval time determines the fluid
navigation of a disc resident digraph.
We have provided the gkd⁄-tree, a two level index scheme

that is particularly efficient for the retrieval of data asso-
ciated with the aggregate traffic between any two sets of a
predefined partition of the vertexes of the underlying graph.
This retrieved data inherits from the global edge hierarchy
its own local hierarchy which allows its processing by more
conventional methods when it fits in RAM. In other words,
the proposed approach allow us to extract in an output sen-
sitive manner certain subgraph macro-views that are of in-
terest to a graph mining engine.

6. REFERENCES
[1] J. Abello, I. Finocchi and J. Korn. Graph Sketches. In
IEEE Information Visualization Proceedings, pages
67-71, San Diego, CA, October 2001.

[2] J. Abello and J. Korn. MGV: A System for
Visualizing Massive Multidigraphs. In Transactions on
Visualization and Computer Graphics, Vol 8, No 1,
pages 21-39, IEEE, 2002.

[3] J. Abello, J. Korn and M. Kreuseler. Navigating
Gigagraphs. In ACM Proceedings of the 6th
Conference on Advanced Visual Interfaces, pages
290-299, Trento, Italy, May 2002.

[4] J. Abello and S. Krishnan. Navigating Graph Surafces.
In Approximation and Compelxity in Numerical
Optimization: Continuous and Discrete Problems,
Kluwer Academic Publishers, pages 1-12, 1999.

[5] P. K. Agarwal, L. Arge, O. Procopiuc, and
J. S. Vitter. A Framework for Index Bulk Loading and
Dynamization. In Proc. of ICALP, p. 115–127, 2001.

[6] L. Arge, K. Hinrichs, J. Vahrenhold and J. S. Vitter.
Efficient Bulk Operations on Dynamic R-trees. In
ALENEX, pages 328–348, Baltimore, MD, 1999.

[7] R. Bayer and E. McCreight. Organization and
Maintenance of Large Ordered Indexes. Acta
Informatica 1, pages 173–189, 1972.

[8] N. Beckmann, Hans-Peter Kriegel, R. Schneider and
B. Seeger. The R*-Tree: An Efficient and Robust
Access Method for Points and Rectangles. In Proc. of
ACM SIGMOD, pages 322–331, 1990.

[9] J. L. Bentley. Multidimensional Binary Search Trees
Used for Associative Searching. CACM 18(9), 1975.

[10] J. L. Bentley. Decomposable Searching Problems.
Information Processing Letters, 8(5):244–251, 1979.

[11] J. Van den Bercken and B. Seeger An Evaluation of
Generic Bulk Loading Techniques. In Proceedings of
VLDB, pages 461–470, Rome, Italy, 2001.

[12] J. Van den Bercken, B. Seeger and P. Widmayer. A
Generic Approach to Bulk Loading Multidimensional
Index Structures. In Proc. of VLDB, p. 406–415, 1997.

[13] A. Broder. Graph Structure in the Web. In Networks,
Vol. 33, pages 309-320, 2000.

[14] C. Y. Chan, C. H. Goh and B. C. Ooi. Indexing
OODB Instances based on Access Proximity. In
Proceedings of ICDE, pages 14–21, 1997.

[15] A. Guttman. R-Trees: A Dynamic Index Structure for
Spatial Searching. In Proc. of SIGMOD, 1984.

[16] M. Faloutsos, P. Faloutsos and C. Faloutsos. On
power-law relationships of the internet topology. In
Comp. Comm. Rev., Vol. 29, pages 251-262, 1999.

[17] I. Kamel and C. Faloutsos. On Packing R-trees. In
Proc. CIKM, pages 490–499, Washington DC, 1993.

[18] Y. Kotidis and N. Roussopoulos. An Alternative
Storage Organization for ROLAP Aggregate Views
Based on Cubetrees. In Proceedings of SIGMOD, 1998.

[19] Y. Kotidis and N. Roussopoulos. A Case for Dynamic
View Management. ACM Transactions on Database
Systems, Volume 26(4), pages 388-423, 2001.

[20] P. E. O’Neil, E. Cheng, D. Gawlick and E. J. O’Neil.
The Log-Structured Merge-Tree (LSM-Tree). Acta
Informatica 33(4), pages 351–385, 1996.

[21] J. T. Robinson. The K-D-B-Tree: A Search Structure
For Large Multidimensional Dynamic Indexes. In
Proceedings of ACM SIGMOD, pages 10–18, 1981.

[22] N. Roussopoulos and D. Leifker. Direct Spatial Search
on Pictorial Databases Using Packed R-trees. In Procs.
of 1985 ACM SIGMOD, pages 17–31, Austin, 1985.

[23] T. K. Sellis. Intelligent Caching and Indexing
Techniques for Relational Database Systems.
Information Systems, 13(2):175–185, 1988.

