
Online Partitioning of Multi-Labeled Graphs∗

Ioanna Filippidou
Athens University of Economics and Business

76 Patission Street
Athens, Greece

filippidoui@aueb.gr

Yannis Kotidis
Athens University of Economics and Business

76 Patission Street
Athens, Greece

kotidis@aueb.gr

ABSTRACT
Graph partitioning is an old problem that is finding renewed in-
terest in the era of big, complex datasets and parallel computing
frameworks that can benefit from a proper partitiong of big graph
data across multiple nodes in a cluster. In this paper we look into
a specific instance of the problem termed online graph partitioning
that addresses the need to partition large graphs that do not fit in
main memory. A neglected aspect of modern graph datasets is that
real graphs have labels! Node labels may, for instance, correspond
to categorical attributes (such as country, profession, participating
groups, etc.) of the entities depicted by the vertices of the graph.
Edge labels may represent different relationship types (e.g. “friend-
of”, “likes”, etc.). In this work we first revisit the formulation of
the graph partitioning problem for graphs with labels on both nodes
and edges. We introduce “relation-cut”, as a new metric that ex-
tends the traditional “edge-cut” metric used in graph partitioning
in order to take into account the existence of different edge-types.
Then, we combine this metric with a novel “label-cut” metric that
takes into consideration the displacement of related nodes with sim-
ilar labels across partitions. In our experiments we adapt two recent
online partitioning algorithms for the new proposed metric and pro-
vide a thorough evaluation on a variety of real and synthetic graphs.
Our experiments demonstrate that the proposed technique balances
the generated cuts on both relations and labels on the resulting par-
titions.

1. INTRODUCTION
Many modern applications generate data that is naturally de-

scribed via a graph model consisting of a large number of entities
(depicted as graph nodes) with complex and various relation types
(depicted as labeled edges) between them. Furthermore, nodes in
such graphs often belong to one or more groups (denoted via node
labels) that specify their behavior in a global manner. Graphs of
this type can be found in several domains, including social, citation,
∗This research has been co-financed by the European Union (European
Social Fund ESF) and Greek national funds through the Operational Pro-
gram "Education and Lifelong Learning" of the National Strategic Refer-
ence Framework (NSRF) - Research Funding Program: RECOST.
Permission to make digital or hard copies of all or part of this work for per-
sonal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than the author(s) must be honored. Abstract-
ing with credit is permitted. To copy otherwise, or republish, to post on
servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.
GRADES’15, May 31 - June 04 2015, Melbourne, VIC, Australia
Copyright is held by the owner/author(s). Publication rights licensed to
ACM. ACM 978-1-4503-3611-6/15/05...$15.00
DOI: http://dx.doi.org/10.1145/2764947.2764950.

collaboration and biological networks. With the big data explosion
these graphs cannot be easily maintained in a single machine. A
prevalent approach is to utilize a cluster of machines so that main-
tenance of and computations on these graphs can be performed in
parallel. A standard solution is to split the graph equally across a
number of partitions, each assigned to a different node in the clus-
ter [11, 16, 17, 23].

The solution to this problem can be traced to the classical bal-
anced graph partitioning problem where the goal is to minimize
the number of cross partition edges (often referred to as the “edge-
cut”), while keeping the number of nodes in every partition approx-
imately even. The intuition of minimizing the cross partition edges
is based on the observation that edges represent relationships be-
tween nodes from which most queries on the graph will are derived
(e.g. “find the friends-of-friends of user X” in Facebook). By min-
imizing the cross partitions edges most queries will be performed
locally, reducing inter-node communication.

The graph partitioning problem is NP-hard [2] and many algo-
rithms utilize heuristics [6, 7, 10, 13, 14, 20] that often work well
in practice. Most graph partitioning algorithms are static, mean-
ing that they assume that the whole graph is available and fits in
main memory. A recent breed of online graph partitioning algo-
rithms [18, 24, 25] have emerged in order to allow partitioning of
graphs that do not fit in a single machine and, thus, a static parti-
tioner is not applicable.

Unfortunately, online partitioning algorithms concentrate on min-
imizing the edge-cut and ignore the various labels that exist on
the graph nodes and edges. By ignoring that edges have differ-
ent labels (corresponding to different relationship types), these al-
gorithms often produce partitions that have significantly different
edge-cuts, when these are broken down based on the different edge
types (e.g. cross-partition edges for “friend of” and “likes” rela-
tionships). Moreover, node labels are completely ignored in this
process. Node labels represent global attributes (e.g. location, age,
gender, group, etc.) that are often used in queries such as “find the
friends-of-friends of user X that belong to group Y”. Queries on
real graph networks often pose relationship and node constraints
on the associated labels and it is, thus, essential that the distribu-
tion of both node and edge labels across the partitions is taken into
account by the partitioning algorithm.

In this paper, we explore a partitioning scheme that is suitable
for labeled graphs. We first introduce the relation-cut as an ex-
tension of the edge-cut. The new metric takes into consideration
the labels (relationship types) that are associated with each edge.
Then, we further introduce the notion of the “label-cut” as a met-
ric to penalize partitioning schemes that split connected nodes with
similar labels across partitions. Finally, we fuse both metrics into
a formulation that takes into consideration both components. The

r,g g,b

a a,b

Relation-cut=(2,1,1)

Label-cut=(0,1,0)

Partition
Matrix=

r g b default
a
b
c

RL-Cut = 7

r,g g,b

a a,b

Relation-cut=(2,1,0)

Label-cut=(0,0,0)

Partition
Matrix=

RL-Cut = 3

r g b default
a
b
c

0 0 0 2

0 0 0 1

0 0 0 0

0 1 0 2

0 1 0 1

0 1 0 1

Figure 1: Example of partitioning matrix and relation-cut, label-cut calculations

proposed calculations can be easily tuned to favor the label or rela-
tion cut distribution based on the application needs.

In our experimental evaluation we adapt two well known online
partitioning algorithms so that their calculations take into account
our proposed metrics. Our results on various graphs indicate that
our proposed technique produces partitions that reduce the induced
cut, when both the relation-cut and the label-cut are taken into ac-
count.

The rest of the paper is organized as follows. In Section 2 we
revisit the graph partitioning problem and introduce our proposed
metrics for labeled graphs. In Section 3 we first briefly describe two
online graph partitioning algorithms and then discuss the required
modifications on them in order to incorporate our proposed metrics.
Finally, in Section 4 we present our experiments and in Section 6
we provide concluding remarks.

2. PROBLEM DEFINITION
A graph with labels on nodes and types on edges is denoted as

G = {V,E, L, T}, where V is the set of nodes, E is the set of
edges, L = {L1, . . . , Ld} is the set of d labels associated with the
nodes in V and T = {T 1, . . . , Tn} is the set of n types associated
with the edges in E. Each node vi, is associated with a binary
label vector nu = (x1i , . . . , x

d
i), xi ∈ {1, 0}, where xi = 1 if

the corresponding label exists in this node. Also, each edge (u, v)
is associated with a type vector euv = (t1i , . . . , t

n
i), ti ∈ {1, 0}

where ti = 1 if the respective relationship type exists in this edge.1

We seek to partition the graph G into k disjoint groups (parti-
tions), where V =

⋃k
i=1 Vi and Vi ∩ Vj = ∅, ∀i 6= j with the

following objectives:
Balance Criterion: Demands that all k partitions have about

equal size. It requires that, ∀i ∈ {1, . . . k} |Vi| ≤ (1 + ε)d|V |/ke
for some imbalance parameter ε ≥ 0. In the case of ε = 0, the term
perfectly balanced is used.

Relation-cut: A node v is a neighbor of node u if there exists
an edge (u, v) ∈ E. If a node v ∈ Vi has a neighbor w ∈ Vj ,
i 6= j then it is called boundary node. An edge that runs between
partitions is also called cut edge. The edge-cut between two subsets
Va and Vb is defined as the number of cut edges between these two

1Our model replaces multiple edges of different types between the
same two nodes with a single edge with a compound labeling vec-
tor, thus transforming a multigraph into a graph. It is obvious that
no information is lost via this (virtual) mapping.

sets:

Edge-cut(Va, Vb) = |
∑
u∈Va

∑
v∈Vb

(u, v)|

In our model, where each edge is associated with a type vec-
tor euv = (t1i , . . . , t

n
i) we extend the notion of the edge-cut and

compute the relation-cut between two subsets Va and Vb using the
norm of the sum of the vectors euv of the corresponding cut edges
as follows:

Rel-cut(Va, Vb) = ‖
∑
u∈Va

∑
v∈Vb

euv‖p (1)

The sum of the euv vectors produces a new vector, where each
coordinate depicts the edge-cut for the respective relationship type.
The Lp norm ‖.‖p of a n-dimensional vector x is defined as

‖x‖p = (

n∑
i=1

|xi|p)
1
p

Common values of p are 1, 2 and∞. L1-norm can be used to or-
der to minimize the mean absolute deviation, while L2-norm min-
imizes the sum of square differences. L∞-norm can be used to
minimize the maximum cut value.

Given a partitioning scheme Pk that splits G into k parts, we
wish to minimize the norm of the vector resulting from adding all
euv across all k partitions:

Rel-cut(Pk) = ‖
∑
i<j

∑
u∈Vi

∑
v∈Vj

euv‖p (2)

Label-cut: In addition to relation-cut minimization, we wish to
minimize the number of common labels between boundary nodes.
The common labels between two boundary nodes u ∈ Vi with
label vector nu = (x1i , . . . , x

d
i) and w ∈ Vj with label vector

nw = (x1i , . . . , x
d
i) are described by the vector resulting by taking

the product of nu and nw. This vector has 1 in each dimension that
is common in both nodes.

(nu ∗ nv)[i] = nu[i]× nv[i], i = 1, . . . d

The sum of these product vectors is also a vector with each di-
mension counting the number of a instances where the partitioning
scheme creates a pair of boundary nodes with the respective label.
Thus, the label-cut function between two subsets can be defined as:

Label-cut(Va, Vb) = ‖
∑
u∈Va

∑
w∈Vb,euw∈E

nu ∗ nw‖p (3)

In the general case of a partitioning Pk of the graph into k parts,
we wish to minimize the norm of the sum of products between all
parts using the objective function:

Label-cut(Pk) = ‖
∑
i<j

∑
u∈Vi

∑
w∈Vj ,euw∈E

nu ∗ nw‖p (4)

Combined relation and label cut metric: In order to combine
both relationship type and node label cut functions, we construct
the total partitioning matrix P (n× (d+1)), where each row repre-
sents a relationship type and each column a specific label. We keep
an extra column for storing the edge-cut for each relationship type
so as to account for cuts between nodes with no common label. We
can think of this column as representing a default label present in
all nodes. A cell xi,j of the matrix stores the total number of cut
edges between ith relationship type and jth node label that have
occurred from a Pk partitioning. The objective function we wish to
minimize in order to consider both edge types and node labels is:2

RL-cut(Pk) = ‖vectorize(P)‖p (5)

In Figure 1, we present an example of the use of our metrics
for a small graph. Each node in the depicted graph has a label
vector selected from three labels (red, green, blue) and each edge
has between one and three relationship types, namely (a, b, c). We
calculate two different cut matrices, one for each cut presented with
red lines. The figure depicts the vectors for the relation-cut and the
label-cut, in each case. At the right, we calculate the corresponding
RL-cut matrices and the L1-norms, which are 7 and 3, respectively.
As a result, our technique will favor the second cut that minimizes
the norm.

Distribution balance criterion: There are many cases of graphs
where the distribution of labels and relationship types are imbal-
anced, or from a symmetric point of view, the query frequencies
for each relationship type and node label are uneven. We wish dur-
ing the partitioning phase to consider these imbalances in order to
produce a solution more effective to the user perspective or to the
graph distribution. Our model can be easily extended to capture
both cases.

Let Wrel(n × n) be a diagonal matrix where xij = 0 if i 6= j.
This matrix in its main diagonal contains a positive weight in-
dicating the importance of each relationship type. Similarly, let
Wlab((d + 1) × (d + 1)) be a diagonal matrix, which in its main
diagonal contains the importance of each different label. The d+1
entry in the main diagonal of this matrix corresponds to the weight
of the edge-cut between boundary nodes. In cases where the user
wants to specify the importance of each relationship and label to
the partitioning scheme, these two weight matrices can be included
to the objective function as follows:

WeightedRL-cut(Pk) = ‖vectorize(Wrel ∗ P ∗Wlab)‖p (6)

3. ADAPTING ONLINE ALGORITHMS FOR
LABELED GRAPHS

The partitioning scoring function described in this work, can
be used and adapted by any partitioning algorithm (offline or on-
line) that wishes to produce partitions that will be used on queering
property graphs. For the purposes of our work, we adapt the scor-
ing functions of two state-of-the-art online partitioning algorithms
LDG and FENNEL, respectively, that will be used throughout our
experimental section.

2Function vectorize(A) converts aAn,m matrix into a vector with
n×m dimensions.

Online algorithms use a streaming scenario, where nodes are in-
coming, one at a time, each with its adjacency list and the deci-
sion of placing them in a partition is based sorely on the adjacent
nodes that have already been placed in partitions (no global graph
information is required) from previous streams. The decision for
each algorithm is based on a scoring function that it uses, which
we briefly describe here for completeness.

Linear Deterministic Greedy (LDG): The algorithm places a
newly arrived node u to the partition Vi that maximizes:

|N(u) ∩ Vi| × (1− |Vi|
n/k

)

where N(u) denotes the number of neighbors of node u (incoming
with each node in the stream).

FENNEL: It places a newly arrived node u to the partition Vi
that maximizes:

|N(u) ∩ Vi| − α
γ

2
|Vi|γ−1

The first part of the scoring function for both algorithms eval-
uates the locality of each node to every formed partition and the
second part enforce the balance restriction. Unlike LDG, where
multiplicative weights enforce exact balance, FENNEL only en-
sures approximate balance.

In order to adjust the evaluation function for both algorithms
to work with our multi-objective function, we have replaced the
first part of their equation with our combined relation and label
cut function. The balance restriction parts for both functions re-
main the same. The transformed relation and label aware partition-
ing functions for both algorithms are described next. We refer to
the adapted, label/relation-aware versions of LDG and FENNEL as
RL-LDG and RL-FENNEL, respectively.

RL-LDG: The algorithm places a newly arrived node u to the
partition Vi that maximizes:

‖vectorize(PVi)‖p × (1− |Vi|
n/k

)

where ‖PVi‖ denotes the norm of the combined relation and label
matrix of each partition Vi.

RL-FENNEL: It places a newly arrived node u to the partition
Vi that maximizes:

‖vectorize(PVi)‖p − α
γ

2
|Vi|γ−1

Thus, for an incoming node in the stream, we calculate for every
candidate partition a matrix that combines relation and label cuts.
Then, we place the node to the partition that maximizes the norm
of the matrix.

4. EXPERIMENTS
In this section we present experimental results on labeled graphs

using our suggested metrics. We first describe our experimental
setup in Section 4.1.Then, we present results using both synthetic
and real datasets in Section 4.2.

4.1 Experimental Setup
Table 1 summarizes the basic statistics for each graph used in

our experiments. The first eight graphs were chosen to balance
both size and variety and are frequently used in evaluating graph
partitioning algorithms [3, 15, 22]. We mention that this work
doesn’t aim to measure the effectiveness of the online algorithms
against alternative offline techniques, but to demonstrate the gains
of the transformed evaluation functions. For this reason, although
most graphs used fit in memory and an offline algorithm could be

0%

5%

10%

15%

20%

25%

30%

wing_nodal bcsstk33 brack2 fe_ocean fe_rotor 4elt auto 598a twitter

Sc
or

e
Sa

vi
ng

s
%

RL-LDG RL-Fennel

Figure 2: RL-cut savings

-25%

-20%

-15%

-10%

-5%

0%

5%

10%

15%

wing_nodal bcsstk33 brack2 fe_ocean fe_rotor 4elt auto 598a twitter

Ed
ge

 C
ut

 S
av

in
gs

RL-LDG RL-Fennel

Figure 3: Edge-cut savings

used, the presented evaluation concentrates on the effects of using
the new proposed metrics in the online scenario. Also since these
graphs do not contain labels nor relationship types, we added both
using a custom generator as described in the following sections.

Name V E Avg. Degree
bcsstk33 8, 738 291, 583 33.4
wing_nodal 10, 937 75, 488 6.9
4elt 15, 606 45, 878 2.9
brack2 62, 631 366, 559 5.8
fe_rotor 99, 617 662, 431 6.6
598a 110, 971 741, 934 6.7
fe_ocean 143, 437 409, 593 2, 8
auto 448, 695 3, 314, 611 7.4

twitter 34, 062, 759 910, 526, 369 26.7

Table 1: Statistics of Evaluation Graphs

The data for the Twitter graph was collected by using the API
provided by the social network. The nodes of this graph are users
of Twitter. Each node includes (when available) the user nation-
ality, gender and language. We have used 8 labels for the most
common nationalities and languages included in the dataset and 2
labels for the gender. The edges of the graph depict the "follow"
relationship and are directed. For our experiments we treated the
edges of Twitter graph as undirected.

All experiments presented in this paper were performed in a sin-
gle machine, with Intel Core CPU i7-4700MQ, and 8GB of main
memory. We evaluate all algorithms by measuring the edge-cut, the
relation-cut, the label-cut and, finally, the relation-label-cut, as de-
fined in the previous sections. Due to lack of space we only present
results for the L1-norm. Unless otherwise specified, the number
of partitions used was k=8. The objective function parameters for
FENNEL for each graph, were selected in order to allow the bal-
ance restrictions to relax to an upper bound of 5%. All presented
figures are averages computed from ten repetitions of each respec-
tive experiment.

4.2 Online Algorithms with Label and Rela-
tions Awareness

In this section of the experimental evaluation we measure the
effectiveness of the proposed metrics in the case of the two on-
line partitioning algorithms mentioned above. We notice that we
do not provide partitioning times for both algorithms, since the
transformed evaluation function doesn’t affect the algorithms per-
formance. With the exception of the labeled Twitter graph, in all

other datasets we first generate a random number from 1-10 la-
bels for each node and then distribute those labels uniformly across
each node label vector. This way the resulting distribution of label
counts is about the same for each label. We also used ten different
relationship types and assigned them to edges of each graph using
zipf distribution.

In Figure 2, we evaluate the relative reduction in the RL-cut pro-
duced by RL-LDG and RL-FENNEL compared to the standard
LDG and FENNEL algorithms. We notice that in all graphs, the
adapted algorithms generate partitions with significantly lower RL-
cut values. By tracing the works of each algorithm we noticed that
RL-LDG sometimes places an arriving node to a non-optimal par-
tition, in order to keep them balanced. RL-FENNEL, which has
a small tolerance for imbalance during partitioning, manages to
achieve lower scores of up to 27%. The relative improvement in
the Twitter graph is lower but this is explained by the fact that a
large number of users (about 35% of them) did not provide appro-
priate labels in their profiles.

In Figure 3, we evaluate the relative reduction in the standard
edge-cut metric typically used in graph partitioning algorithms. As
expected, in some cases the edge-cut is increased by our adapted
algorithms, since the node label distribution is also taken into ac-
count when making placement decisions. It is worth noting though
that RL-FENNEL, in most cases manages to reduce the edge-cut
(as is indicated by positive saving values in the figure), eventhough
this is not its primary objective. Moreover, the relationship-cut is
reduced in most graphs as is depicted in Figure 4. Last, in Figure 5,
we measure the reduction in the label-cut obtained by the adapted
algorithms. Compared to the original algorithms that are oblivious
to the labels on the graph vertices, the adapted algorithms provide
significant savings of up to 32%.

In Figure 6 we repeat the experiment for one of the graphs but
this time we vary the number of requested partitions between 2 and
64. The savings on the RL-cut provided by RL-FENNEL seem
to remain relatively stable, in the range of 20%-35%. RL-LDG
provides savings but these seem to fluctuate with the number of
partitions.

In Figure 7 we vary the number of maximum labels in the nodes
from 1 up to 1000 and use a single relationship type. The graph
indicates that both algorithms increase their savings in the RL-cut
compared to their label-oblivious counterparts, as the number of
node labels increases.

Finally, in Figure 8 we demonstrate the ability of our techniques
to incorporate different weights on the labels and relationship-types.
As an example, we used a weighting diagonal matrix Wlab with a
different weight of importance for each of the label types. For this

-10%

-5%

0%

5%

10%

15%

20%

wing_nodal bcsstk33 brack2 fe_ocean fe_rotor 4elt auto 598a twitter

Re
la

ti
on

 C
ut

 S
av

in
gs

RL-LDG RL-Fennel

Figure 4: Relation-cut savings

0%

5%

10%

15%

20%

25%

30%

35%

wing_nodal bcsstk33 brack2 fe_ocean fe_rotor 4elt auto 598a twitter

La
be

l C
ut

 S
av

in
gs

RL-LDG RL-Fennel

Figure 5: Label-cut savings

0%

5%

10%

15%

20%

25%

30%

35%

40%

2 4 8 16 32 64

Sc
or

e
Sa

vi
ng

s
%

Number Of Parts

RL-LDG RL-Fennel

Figure 6: RL-cut savings for various values of k-parts for 4elt
graph

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

1Label-1Rel 10Label-1Rel 100Label-1Rel 1000Label-1Rel

Sc
or

e
Sa

vi
ng

s
%

RL-LDG RL-Fennel

Figure 7: RL-cut savings, varying the number of of labels for
brack2 graph

experiment we used 10 labels and 1 relation. The importance of
each label was proportional to its position in the vector, thus label
Li had weight i, for i in [1 . . . 10]. In the figure, we depict the label-
cut ratio for each label on the unweighted and weighted version
of RL-FENNEL. We notice that when no weights are used, RL-
FENNEL cuts the same percentage of edges to all labels. When the
weighting matrix is used, RL-FENNEL respects the given weights,
resulting to lower cuts in labels of greater importance.

5. RELATED WORK
Graph partitioning is a well studied NP-hard problem [8]. The

static balanced graph partitioning problem (offline) remains NP
even in the case of k=2 (bisection) and also if one relaxes the bal-
anced constraint [2]. There are many approximation algorithms
for this problem. Andreev and Racke give an LP-based solution
that obtains a O(logn) approximation [2]. There are many of-
fline heuristics of different nature such as spectral [7, 20], geomet-
ric [21], combinatorial [6, 14] and multilevel [10, 13] that also solve
this problem but with no performance guarantees. In practice, all
the above heuristics are quite effective, and many tools are avail-
able, like Chaco [10], METIS [13] and SCOTCH [19]. However,
because of their static nature they are not best suited for big and
evolving graphs.

On the other hand, one-pass (online) streaming algorithms re-
cently introduced [18, 24, 25], consider the graph partitioning prob-
lem where graph nodes are loaded continuously in a stream, each
with its adjacency list. Online algorithms mainly address the prob-
lem of partitioning graphs that can not physically fit in memory
and, therefore, offline methods cannot be used. Node placement to

partitions is performed on the fly, based on a heuristic that evaluates
only the current node locality. The quality of the produced parti-
tions mostly depends on the stream order of the incoming nodes but
also on the objective function that each algorithm uses.

In both cases (online and offline), partitioning algorithms aim to
minimize the edge-cut between partitions with respect to the bal-
ance restrictions. The task of minimizing the edge-cut can be con-
sidered as the objective and the requirement that the partitions will
be of the same size can be considered as the constraint. To the best
of our knowledge this work first address the problem of a com-
bined edge and label cut function for cases of multi-labeled graphs.
Other works also consider the problem of multi-constraint [4, 12]
and multi-objective [9] partitioning and compute partitions that si-
multaneously balance multiple weights associated with the vertices
while minimizing multiple objectives associated with the edges.
These works can address the problem of different type of edges us-
ing vectors but consider the nodes of the graph by a single weight
indicating, depending on the application, the importance of each
node to the balance of the partition. Also other works on attributed
graphs exist [1, 5, 26] for graph clustering, that mostly use similar-
ity functions in order to place nodes to partitions.

Our work is the first to consider the case of multi-labeled node
and edges in a graph. The proposed partitioning metric of this work
can be easily used as a replacement of the scoring function of any
partitioning algorithm (offline and online), in order to balance the
cut edges between partitions considering various types of relations
and at the same time respect the multiple characteristics of each
node, described by their labels.

0.05

0.06

0.07

0.08

0.09

1 2 3 4 5 6 7 8 9 10

La
be

l C
ut

Labels

RL-Fennel RL-Fennel-Label Weights

Figure 8: Label-cut, when different weights are associated with
each label (fe_ocean graph)

6. CONCLUSIONS
In this paper we discussed new metrics that can be used for parti-

tioning large graphs with multiple labels on their nodes and edges.
Our techniques extend the commonly used edge-cut metric for mul-
tiple edge types and then combine it with a new label-cut metric
that takes into account existing labels on the nodes. We have de-
scribed the adaptation of two online algorithms for the new metrics
and have presented experiments using real and synthetic graphs of
realistic sizes. Our results demonstrate that the proposed metrics
provide significant savings in the constituent relation and labeled
cuts and can be adapted to accommodate different weights on them,
depending on the application needs.

7. REFERENCES
[1] C. C. Aggarwal and H. Wang. A survey of clustering

algorithms for graph data. In Managing and Mining Graph
Data, volume 40 of Advances in Database Systems, pages
275–301. Springer, 2010.

[2] K. Andreev and H. Räcke. Balanced Graph Partitioning. In
Proc. of SPAA, pages 120–124, New York, NY, USA, 2004.

[3] D. A. Bader, H. Meyerhenke, P. Sanders, and D. Wagner,
editors. Graph Partitioning and Graph Clustering - 10th
DIMACS Implementation Challenge Workshop, Georgia
Institute of Technology, Atlanta, GA, USA, 2013.

[4] U. Catalyurek and C. Aykanat. A hypergraph-partitioning
approach for coarse-grain decomposition. In Proceedings of
the 2001 ACM/IEEE Conference on Supercomputing, SC
’01, pages 28–28, New York, NY, USA, 2001.

[5] H. Cheng, Y. Zhou, and J. X. Yu. Clustering large attributed
graphs: A balance between structural and attribute
similarities. ACM Trans. Knowl. Discov. Data,
5(2):12:1–12:33, Feb. 2011.

[6] C. M. Fiduccia and R. M. Mattheyses. A linear-time heuristic
for improving network partitions. In Proceedings of DAC,
pages 175–181, Piscataway, NJ, USA, 1982.

[7] M. Fiedler. A property of eigenvectors of nonnegative
symmetric matrices and its application to graph theory.
Czechoslovak Mathematical Journal, 25(4):619–633, 1975.

[8] M. R. Garey, D. S. Johnson, and L. Stockmeyer. Some
simplified np-complete problems. In Proceedings of STOC,
pages 47–63, New York, NY, USA, 1974.

[9] K. S. George, G. Karypis, and V. Kumar. A new algorithm

for multi-objective graph partitioning. In In Proceedings of
Europar, pages 322–331. Springer Verlag, 1999.

[10] B. Hendrickson and R. Leland. A multilevel algorithm for
partitioning graphs. In Proceedings of Supercomputing, New
York, NY, USA, 1995.

[11] U. Kang, C. E. Tsourakakis, and C. Faloutsos. Pegasus: A
Peta-Scale Graph Mining System Implementation and
Observations. In Proceedings of ICDM, pages 229–238,
Washington, DC, USA, 2009.

[12] G. Karypis and V. Kumar. Multilevel algorithms for
multi-constraint graph partitioning. In Proceedings of the
1998 ACM/IEEE Conference on Supercomputing, SC ’98,
pages 1–13, Washington, DC, USA, 1998.

[13] G. Karypis and V. Kumar. Multilevel k-way partitioning
scheme for irregular graphs. J. Parallel Distrib. Comput.,
48(1):96–129, Jan. 1998.

[14] B. Kernighan and S. Lin. An Efficient Heuristic Procedure
for Partitioning Graphs. The Bell Systems Technical Journal,
49(2), 1970.

[15] J. Leskovec and A. Krevl. SNAP Datasets: Stanford large
network dataset collection, June 2014.

[16] Y. Low, J. Gonzalez, A. Kyrola, D. Bickson, C. Guestrin, and
J. M. Hellerstein. Graphlab: A New Parallel Framework for
Machine Learning. In Proceedings of UAI, July 2010.

[17] G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert,
I. Horn, N. Leiser, and G. Czajkowski. Pregel: A System for
Large-scale Graph Processing. In Proceedings of SIGMOD,
pages 135–146, New York, NY, USA, 2010.

[18] J. Nishimura and J. Ugander. Restreaming graph partitioning:
Simple versatile algorithms for advanced balancing. In Proc.
of SIGKDD, pages 1106–1114, New York, NY, USA, 2013.

[19] F. Pellegrini and J. Roman. Scotch: A software package for
static mapping by dual recursive bipartitioning of process
and architecture graphs. In Proceedings of HPCN, pages
493–498, London, UK, 1996. Springer-Verlag.

[20] A. Pothen, H. D. Simon, and K.-P. Liou. Partitioning sparse
matrices with eigenvectors of graphs. SIAM J. Matrix Anal.
Appl., 11(3):430–452, May 1990.

[21] H. D. Simon. Partitioning of unstructured problems for
parallel processing, 1991.

[22] A. J. Soper, C. Walshaw, and M. Cross. A Combined
Evolutionary Search and Multilevel Optimisation Approach
to Graph-Partitioning. Journal of Global Optimization,
29(2):225–241, June 2004.

[23] V. Spyropoulos and Y. Kotidis. Dynamic partitioning of big
hierarchical graphs. In Proceedings of the First International
Workshop on Big Dynamic Distributed Data, Riva del
Garda, Italy, August 30, 2013, pages 37–42, 2013.

[24] I. Stanton and G. Kliot. Streaming graph partitioning for
large distributed graphs. In Proceedings of SIGKDD, pages
1222–1230, New York, NY, USA, 2012.

[25] C. Tsourakakis, C. Gkantsidis, B. Radunovic, and
M. Vojnovic. Fennel: Streaming graph partitioning for
massive scale graphs. In Proceedings of WSDM, pages
333–342, New York, NY, USA, 2014.

[26] Z. Xu, Y. Ke, Y. Wang, H. Cheng, and J. Cheng. A
model-based approach to attributed graph clustering. In
Proceedings of the 2012 ACM SIGMOD International
Conference on Management of Data, SIGMOD ’12, pages
505–516, New York, NY, USA, 2012.

