A Web-Services Architecture for Efficient XML Data Exchange

Sihem Amer-Yahia
AT&T Labs—Research
180 Park Ave, Florham Park, NJ 07932
sihem @research.att.com

Abstract

Business applications often exchange large amounts of
enterprise data stored in legacy systems. The advent of XML
as a standard specification format has improved applica-
tions interoperability. However, optimizing the performance
of XML data exchange, in particular, when data volumes
are large, is still in its infancy. Quite often, the target sys-
tem has to undo some of the work the source did to assem-
ble documents in order to map XML elements into its own
data structures. This publish&map process is both resource
and time consuming.

In this paper, we develop a middle-tier Web services ar-
chitecture to optimize the exchange of large XML data vol-
umes. The key idea is to allow systems to negotiate the
data exchange process using an extension to WSDL. The
source (target) can specify document fragments that it is
willing to produce (consume). Given these fragmentations,
the middle-ware instruments the data exchange process be-
tween the two systems to minimize the number of neces-
sary operations and optimize the distributed processing be-
tween the source and the target systems. We show that our
new exchange paradigm outperforms publish&map and en-
ables more flexible scenarios without necessitating substan-
tial modifications to the underlying systems.

1. Introduction

Large organizations use a plethora of systems to support
their daily operations. Depending on the application, a sys-
tem may act as a data broker by disseminating information
that is consumed by the receiving applications. For instance,
in a telecom provider like AT&T, a sales and ordering sys-
tem provides an interface to extract data on customer or-
ders. This data is used to drive a provisioning process that
implements changes to the physical network in order to sup-
port the line features requested by customers. Finally, this
data, along with usage information generated from the op-
eration centers, is consumed by a biller to setup customer

Yannis Kotidis
AT&T Labs—Research
180 Park Ave, Florham Park, NJ 07932
kotidis @research.att.com

accounts in order to collect revenue. In such real-world ap-
plications, the data that is exchanged can reach very large
volumes. As an example, usage data from the telephony net-
work easily exceeds 60GB per day. In this paper, we focus
on the optimization of data exchange between two applica-
tions when the amount of data is large.

In order to collaborate, applications implement pair-wise
agreements that define the format of the data to exchange.
To this end, XML is most commonly used. Web services
are typical examples that use XML as the grammar for de-
scribing services on the network as a collection of systems
capable of exchanging data and messages. The specifica-
tion of a Web Service Description Language (WSDL) doc-
ument hides the details involved in data communication by
focusing on the format in which that data is being produced
and consumed and the services that are provided at each
endpoint [12]. However, optimizing the performance of ex-
changing large data volumes has not attracted a lot of at-
tention. Quite often, the target system has to undo some of
the work the source did to assemble documents in order to
map XML elements into its own data structures. This pro-
cess is both resource and time consuming.

In a typical data exchange scenario, that we will refer to
as publish&map, XML documents are built at a source ap-
plication and shipped to be consumed at a target one. The
process of publishing an XML document from stored data
translates often to costly combine operations (through joins
in case of relational stores) that piece document fragments
together. Quite often, some of these fragments are stored
similarly at the source and at the target systems, in which
cases combining such fragments at the source is unneces-
sary because the target system will split them again into
its internal structures. Furthermore, in publish&map, XML
documents are built at the source and consumed at the tar-
get, imposing a strict processing distribution that does not
explore the capabilities of the underlying systems.

1.1. Motivating Example

We sketch a typical exchange scenario between a sales
and ordering system in which data is stored in a relational

database conforming to schema S, and a provisioning sys-
tem that stores data in a LDAP directory that conforms
to schema T. A LDAP instance is a tree. The LDAP data
model [7] provides the notion of a class defined by a name
and a set of attributes. A class has at least two attributes:
DN that stands for distinguished name and corresponds to
the Dewey [7] identifier of a node in the tree instance; and
objectclass (omitted here) that contains the name of
the class to which a node in the tree belongs.

Schema S

CUSTOMER [C_CUSTKEY, C_NAME]

ORDER [O_ORDERKEY, O_CUSTKEY]

SERVICE[S_SERVICEKEY, S_NAME, S_ORDERKEY]

LINE_FEATURE [L_LINEKEY,I_FEATUREKEY,L_TELNO,
F_FEATUREID, L_ORDERKEY]

SWITCH[S_SWITCHKEY, S_ID,S_LINEKEY]

Schema T
CUSTOMER_T OBJECT-CLASS
MUST CONTAIN DN, C_NAME
TYPE C_NAME STRING
ORDER_SERVICE_ T OBJECT-CLASS
MUST CONTAIN DN, S_NAME
TYPE S_NAME STRING
LINE_SWITCH T OBJECT-CLASS
MUST CONTAIN DN, L_TELNO,S_SWITCHID
TYPE L_TELNO STRING
TYPE S_SWITCHID STRING
FEATURE_T OBJECT-CLASS
MUST CONTAIN DN,F_FEATUREID
TYPE F_FEATUREID STRING

S and T (sketched above) contain information on customers
that order phone service. A customer might have several
phone lines each of which has a telephone number, a switch
that the line is connected to and a list of features (for ex-
ample, caller ID). S and T agree on exchanging data using
the WSDL specification of Figure 1. This specification de-
fines a single service, CustomerInfoService, providing
information on orders that are grouped per customer and
information on phone services (local, long-distance etc.)
grouped per order. This service is deployed using the SOAP
1.1 protocol [11] over HTTP. When requested, it returns a
set of XML documents that conform to the XML Schema
specified in the WSDL definition. The service can take one
or several arguments that will be used to subset the data.
Since they are not required in further discussions, we omit
message, port and binding elements in the WSDL specifi-
cation and refer the reader to [12] for examples of complete
definitions.

When T requests CustomerInfoService, S exe-
cutes it by building one XML document for each customer
and sending those documents to T. Intuitively, this pro-
cess can be improved as follows. Building XML data
from the relational data stored in S requires combin-
ing document fragments together. This operation translates
into relational joins which are the most expensive oper-
ations when building XML documents from relational
data (see [5, 6] and our experiments in Section 5). If we
knew that the XML fragment containing Customer ele-
ments is stored similarly at S and T (which is the case in our

<?xml version="1.0"?2>
<definitions name="CustomerInfo"
targetNamespace="http://customers.wsdl"
<types>
<schema targetNamespace="http://customers.xsd"
xmlns="http://www.w3.org/XMLSchema">
<element name="Customer">
<sequence>
<element name="CustName"
type="string"/>
<element name="Order"
maxOccurs=unbounded/>
<sequence>
<element name="Service"/>
<element name="ServiceName"
type="string"/>
<element name="Line"
maxOccurs=unbounded>
<sequence>
<element name="TelNo"
type="string"/>
<element name="Switch">
<element name="SwitchID"
type="string"/>
</element>
<element name="Feature"
maxOccurs=unbounded/>
<element name="FeatureID"
type="string"/>
</element>
</sequence>
</element>
</sequence>
</element>
</sequence>
</element>
</schema>
</types>
<service name="CustomerInfoService">
<documentation>Provides customer
information</documentation>
<port name="CustomerInfoPort"
binding="tns:CustomerInfoBinding">

<soap:address location="http://customerinfo"/>

</port>
</service>
</definitions>

Figure 1. WSDL specification for Customer
Data Exchange

example), S could ship the customers fragment to T with-
out combining it with the other document fragments. In ad-
dition, in T, orders and services are stored together in
the class ORDER_SERVICE._T. This class can be popu-
lated by creating a fragment that combines data from the
two relations ORDER and SERVICE without further com-
bining this data with the rest of the document. Finally, in or-
der to populate the class FEATURE._T, we could split and
project LINE_FEATURE in S into a fragment contain-
ing features and ship it to T.

Consequently, if data could be sent fragmented from S
to T, unnecessary computations would be avoided. How-

Get

2)

Register Generate Source-Target Register
Fragmentatioy (Mapping and Data Transfer) Fragmentatior
N Programs

i

3)

— e Py —
Optimize
- Cost Model Cost Model
S S

(* Assign Exceution

Discovery Agency

Figure 2. End-to-End XML Data Exchange

i

e

ever, in general, internal data representations (schemas, in-
dices, etc.) are not exposed in a Web services architecture.
Negotiations have to be established using a higher level in-
terface such as WSDL. Thus, WSDL needs to be extended
with a notion of fragmentation of the initial XML Schema.
As an example, S could provide a fragmentation into five
XML Schemas, each of which corresponds to a relation in
S. The interpretation of a fragmentation at a source is that it
is willing to produce fragments of documents that conform
to that fragmentation. The interpretation of a fragmentation
at a target is that it is best for it to consume XML fragments
that conform to that fragmentation. Specifying a fragmen-
tation does not correspond to revealing systems internals.
In general, systems participating in a data exchange might
have different performance reasons to provide a fragmenta-
tion of the agreed upon XML Schema. For example, a sys-
tem might already have indexing mechanisms that are more
efficient to build if data is consumed in a particular frag-
mentation. Systems should not have to specify a fragmenta-
tion. The initial XML Schema would be used by default if
no fragmentation is provided as in publish&map.

Having the ability to specify a fragmentation does not
mean that the source and target systems are not willing to
do some work to exchange data. In fact, fragmentations gen-
erate a whole new set of optimization opportunities. For ex-
ample, S could define a fragmentation in which it produces
Order and Service elements in two separate fragments
and T could specify that it expects to consume a fragment in
which Order and Service are combined in which case,
the two source fragments might be combined at either sys-
tems. Furthermore, S and T could have specified the same
fragmentation, in which case, S will do all the work to gen-
erate the corresponding fragments which are shipped to T.

This new level of abstraction does not require substantial
modifications to the underlying systems because the least
we can expect from S (resp. T) is to produce (resp. con-
sume) documents that conform to the agreed upon XML
Schema and therefore, to a fragmentation of it. Further-
more, the exchange process does not violate the principle

behind Web services: manipulate XML data without re-
vealing internal data structures and how data is produced
and consumed. The lowest granularity of a fragment is a
single element in the XML Schema. However, a fragment
could correspond to the result of a service call. For in-
stance, S could provide a fragment that defines a service,
TotalMRCService, standing for the total monthly recur-
ring charges for all lines ordered by a customer, without re-
vealing how this fragment is computed.

1.2. Contributions

We summarize our contributions as follows:

o We exploit a Web services architecture to enable the ex-
change of document fragments thereby optimizing the
exchange process. Our new architecture does not neces-
sitate substantial modifications to the underlying systems
and complies with the platform independence principle
provided by the use of XML as the exchange format.

e We define high level operations that operate on XML
fragments and are used to express the exchange of XML
documents between two systems without revealing their
internals.

e We present experiments that study the costs of exchang-
ing XML data between two relational back-ends. To the
best of our knowledge, this is the first attempt to chart de-
tailed performance in an end-to-end realistic XML data
exchange. We compare our solution with publish&map
in which publishing is optimized using the techniques in-
troduced in [6]. Our first finding is that, in most cases,
our solutions compare favorably to the time to do XML
publishing only! Furthermore, when compared to pub-
lish&map, our techniques are up to six times faster in
data processing and they provide up to 43% reduction in
the overall data exchange time.

Section 2 describes our Web services architecture. Sec-
tion 3 defines the data model and primitive operations. Sec-
tion 4 describes the cost model, the plan generation and the
cost-based distributed processing algorithms. Experiments
are presented in Section 5. Related work is given in Sec-
tion 6 and concluding remarks in Section 7.

2. Data Exchange Architecture

In a typical Web services architecture [9], a service
provider has a service that is made available to other sys-
tems to use. The provider creates a WSDL service descrip-
tion that defines the service interface, that is, the opera-
tions of the service and the input and output messages for
each operation. The provider publishes its WSDL service
description to a discovery agency. Service requesters find

services via discovery agencies and use the WSDL descrip-
tion to interact with the corresponding service provider. A
typical exchange scenario that results from a Web service
call induces the following steps: (i) execute the service at
the provider and produce relevant XML documents from
source data and, (ii) ship the produced documents to the re-
quester that consumes them. We use this architecture as the
basis for exchanging large data volumes and extend it with
the ability to register fragmentations and with optimization
capabilities.

Figure 2 extends the basic architecture as follows. First,
the source and target systems independently specify their
respective fragmentations using an extension to WSDL and
register it at a discovery agency (Step (1)). Discovery agen-
cies are repositories of WSDL specifications which may be
mapped to Universal Description Discovery and Integra-
tion (UDDI) [9] for publishing and discovery of existing
services. The discovery agency generates a mapping be-
tween the two fragmentations and a data transfer program
that combines and splits source fragments to generate target
ones (Step (2)). The decision of where to perform an oper-
ation depends on how much it costs at each system. As in
publish&map, we expect the service endpoints to be able to
split fragments in order to store them. They may not how-
ever have the ability, or the intention, to combine fragments.
This is captured in our cost model. Distributed processing
is achieved by probing the source and target systems, which
implement an interface to provide the cost of each primi-
tive operation (Step (3)). In step (4), the discovery agency
assigns operations to the source and the target that gener-
ate and execute code on their internal data structures.

The discovery agency acts as a middle-ware that does not
know about the internal data structures used by the source
and target systems. All it sees is the fragmentations defined
by each system and a cost interface. The way each fragment
is actually produced or consumed by a system is hidden by
the WSDL interface. Therefore, the discovery agency needs
only high level operations to transform fragments. The next
section defines the data model and these operations.

3. Data Model and Primitive Operations
3.1. Data Model

We view XML Schemas as trees.

Definition 3.1 (Fragment) A fragment of a XML Schema
is any subtree of that schema. In addition, the root of the
fragment is assigned two attributes: ID and PARENT.

The ID attribute of a fragment uniquely identifies frag-
ments. Its PARENT attribute contains the ID value of its
parent fragment. For example, the XML Schema fragment
Order_Service is defined below from the XML Schema
in Section 1.1.

<fragment name="Order_Service">
<element name="Order">
<attribute name="ID" type="string"/>
<attribute name="PARENT" type="string"/>
<element name="Service">
<element name="ServiceName" type="string"/>
</element>
</element>
</fragment>

Definition 3.2 (Fragment Instance) A fragment instance
of a XML Schema fragment is any XML document that con-
forms to the XML Schema fragment.

Definition 3.3 (XML Schema Fragmentation) A XML
Schema fragmentation is a set of fragments of that XML
Schema.

Definition 3.4 (Validity) A fragmentation F is valid with
respect to an XML Schema iff, (i) each element in the XML
Schema is defined only once in F and, (ii) If F contains
more than one fragments, for any fragment f in F, there
exists another fragment fo in F such that fi is a parent of

fo or f1 is a child of fo.

Validity defines non-redundant and complete fragmenta-
tions. The example below is a valid fragmentation of the
XML Schema defined in Section 1.1 that T might provide.
We refer to it as the T-fragmentation.

<fragmentation name="T-fragmentation">
<fragment name="Customer.xsd">
<element name="Customer">
<attribute name="ID" type="string"/>
<attribute name="PARENT" type="string"/>
<element name="CustName" type="string"/>
</element>
</fragment>
<fragment name="Order_Service.xsd">
<element name="Order">
<attribute name="ID" type="string"/>
<attribute name="PARENT" type="string"/>
<element name="Service">
<element name="ServiceName"
type="string"/>
</element>
</element>
</fragment>
<fragment name="Line_Switch.xsd">
<element name="Line">
<attribute name="ID" type="string"/>
<attribute name="PARENT" type="string"/>
<sequence>
<element name="TelNo" type="string"/>
<element name="Switch">
<element name="SwitchID"
type="string"/>
</element>
</sequence>
</element>
</fragment>
<fragment name="Feature.xsd">
<element name="Feature">
<attribute name="ID" type="string"/>
<attribute name="PARENT" type="string"/>
<element name="FeaturelID" type="string"/>
</element>

</fragment>
</fragmentation>

Definition 3.5 (Mapping) A mapping is defined by
(XMLSchema, S, T, M), where XMLSchema is the ini-
tial XML Schema, S and T are valid fragmentations of
XMLSchema and M is a function from T to the power-
set of S that associates each fragment in T with one or
multiple source fragments.

3.2. Primitive Operations

We now introduce our primitive operations on fragments.

Definition 3.6 (Scan) Scan(f) reads an input fragment
f and returns it as output. It also computes the ID and
PARENT attributes of each fragment instance.

Since each system implements it own Scan, this opera-
tion might correspond to a set of lower-level operations that
are not revealed to the middle-ware.

Definition 3.7 (Combine) Combine(fi, f2) modifies the
input fragment f1 by combining its child fragment fo with
it. Combine removes the 1D and PARENT attributes of fo.

Combine 1is used to construct document struc-
ture by “inlining” a child fragment with its parent frag-
ment. In the initial XML Schema, a child fragment could
be either unique or repeated (*) and the order of chil-
dren elements matters. This information is recovered
from the initial XML Schema when combining frag-
ments. Given the T-fragmentation defined in Section 3.1,
Combine (Customer, Order_Service) results in a
new fragment Customer Order_Service:
<fragment name="Customer_Order_Service.xsd">

<element name="Customer">

<attribute name="ID" type="string"/>
<attribute name="PARENT" type="string"/>
<sequence>

<element name="CustName" type="string"/>

<element name="Order" maxOccurs=unbounded/>
<element name="Service">

<element name="ServiceName" type="string"/>

</element>
</element>
</sequence>
</element>
</fragment>

Definition 3.8 (Split) Split(f, fi,..., fn) splits a frag-
ment f into the set of disjoint fragments {f1,..., fu}.

Split resembles projection. In addition, it introduces
distinct ID and PARENT attributes in each projected frag-
ment to represent the parent/child relationships dictated by
the XML Schema. As an example, the T-fragmentation is
obtained by performing three splits on the XML Schema.

Definition 3.9 (Write) Write(f) stores a fragment.

Scan (Customer) ~ Scan (Order)

N

Combine (Customer,Order)

Scan (Service) Scan (Line_Feature) ~ Scan (Switch)

Combine (Line_Feature,Switch)

Combine (Customer_Order,Service) /

Combine (Customer_Order_Service,Line_Feature_Switch)

‘Write (Customer_Order_Service,Line_Feature_Switch)

Figure 3. Publishing from the s-
fragmentation to XML Schema

This operation depends on the system on which it is ex-
ecuted. As an example, if we want to publish an XML doc-
ument from the source system S defined in Section 1.1,
Write would write its input to a file which is then pub-
lished. If the application is to load documents into a rela-
tional database, Write would correspond to SQL LOAD
statements.

We do not use a relational or XML algebra because (i)
their granularity is too fine and would reveal the underly-
ing storage structures and, (ii) source and target systems
could be any persistent store, relational, object, LDAP di-
rectories or file systems. Our operations focus on the most
expensive parts of a data exchange process: combining and
splitting fragments. If the Web service takes arguments as
input, we assume the source system will filter the data ac-
cordingly and provide us with the relevant pieces. For ex-
ample, the service CustomerInfoService defined in Sec-
tion 1.1 could take an argument that specifies customers lo-
cation based on their state. In this case, the ordering applica-
tion will provide us with customers that reside in that state.
In Section 6, we briefly discuss extensions to this frame-
work to support more complex operations on fragments.

3.3. Data Transfer

Definition 3.10 (Data Transfer) A data transfer, associ-
ated to a mapping (XMLSchema, S, T, M), is a program
that defines instances of fragments in T from instances of

fragments in S. We express this program as a set of expres-

sions (composition of primitive operations), one for each

fragment in T and the fragments in S that are associated to

it with M. Expressions that define fragments in T from frag-
ments in S may not be disjoint in which case, a single ex-
pression might define multiple fragments in T.

Figures 3 and 4 show two possible data transfer programs
between a S-fragmentation and a T-fragmentation. A data
transfer program can express transforming data from one
format to another. Thus, it can be used to represent pub-
lishing data into XML documents, loading XML documents
into a database or sending data from a system to another.

Scan (Customer_Order_Service_Line_Feature_Switch)

l

Split (Customer_Order_Service_Line_Feature_Switch,
Customer,Order_Service_Line_Switch_Feature)

l

Split (Order_Service_Line_Switch_Feature,
Order_Service,Line_Switch_Feature)

|

Split (Line_Switch_Feature,Line_Switch,Feature)

l

Write (Line_Switch)

‘Write (Customer)

Write (Order_Service)

‘Write (Feature)

Figure 4. Loading from XML Schema to the T-
fragmentation

A data transfer program is a directed acyclic graph
(DAG) whose nodes are primitive operations and
whose edges describe data flow between those op-
erations. For instance, in the DAG in Figure 3,
Combine (Customer, Order) consumes the outputs of
operations Scan (Customer) and Scan (Order). In
this Figure, relational data stored in S is published as XML
documents conforming to the XML Schema given in Sec-
tion 1.1. Input fragments are combined to reconstruct the
tree structure. In the loading example (Figure 4), the frag-
ment conforming to the XML Schema defined in Sec-
tion 1.1, is scanned and then split into multiple fragments
in the T-fragmentation.

Figure 5 shows a possible data exchange program be-
tween a S-fragmentation and a T-fragmentation. We expect
this scenario to beat publish&map (See Section 5) because
several combines (that build full documents) are avoided.

4. Optimization

There is often more than one program that can be used
to express a data transfer for a given mapping. For exam-
ple, a program that is equivalent to the one in Figure 3 may
first combine Order with Service and then combine the
resulting fragment Order_Service with Customer.

Once fragmentations are registered at the middle-ware,
we explore different rewriting strategies for data transfer
(Sections 4.2 and 4.3). The resulting programs may differ
substantially in their execution times based on the cost of
each operation. In what follows, we present the cost model
that we implemented in our experiments of Section 5.

4.1. Cost Model

The cost of a program is the execution cost of the oper-
ations at the nodes of the DAG added to the cost of ship-
ping data from the source to the target. Each node in the

Scan (Customer) — Write (Customer)

Scan (Order)

Combine (Order,Service) — Write (Order_Service)
Scan (Service)
Scan (Switch) ,:: Combine (Line,Switch) ~ — Write (Line_Switch)

— Write (Feature)

’—> Split (Line_Feature,Line,Feature)

Scan (Line_Feature)

Figure 5. Data Transfer from s to T fragmen-
tations

DAG has an annotation S or T, indicating that the opera-
tion is to be performed at the source or at the target.

LetOP €{Scan,Combine, Split,Write} beanode
in the DAG. Function comp_cost(OP,location) returns the
cost of executing the operation OP at the system specified
by location (S or T). We assume that this function is given
to us or that reliable estimates can be obtained from the indi-
vidual systems. For instance, in [6] the middle-ware probes
underlying systems for collecting estimates of the execu-
tion cost of a given query.

We can easily encode additional restrictions in this setup.
For instance, in a publishing scenario, the target system
might not have the capability to implement a Combine (a
dumb client). In such cases, we assume the computation cost
of these operations to be infinite at the target.

The second component of the execution cost is the cost
of shipping fragments from one system to another. When
fragments are shipped in XML format there are only small
differences in the size of the data. In case fragments are
shipped in the form of sorted feeds such as in [5, 6], differ-
ent plans may have different communication costs because
of the presence of NULL values and repeated elements due
to inlining. Furthermore, when the Web service has addi-
tional arguments that subset the data, the selectivity of the
combines affects the amount of data being shipped.

A cross-edge in the input DAG, is an edge whose end-
nodes are executed at different systems. It indicates data
shipping, since the corresponding output fragment has to
be sent from one system to another. We only consider one-
way data shipping, that is, from the source to the target. A
cross-edge in this scenario is an edge between an operation
executed at the source, whose output is consumed by an op-
eration executed at the target. Let e=(OP1,0P2) be an edge
in our DAG; function comm_cost(e) returns some positive
value if e is a cross-edge, zero otherwise. In our implemen-
tation, we use:

size(OP1l.out) if e is cross-edge

comm.cost(e) = { 0 otherwise

where OP1.out is the output fragment of OP] that is con-
sumed by OP2 and size() is a function that returns the size

Scan (Customer) — Write (Customer)

Scan (Order) Write (Order_Service)
Scan (Service)
Scan (Line_Feature)

Split (Line_Feature,Line,Feature) — Write (Feature)

Scan (Switch) Write (Line_Switch)

Figure 6. Intermediate Graph G,

of a fragment.

The execution cost of a program is the sum of the com-
putation and communication costs, weighted accordingly
(Weomp and weopm, are weights that might be used to bal-
ance computation and communication costs), G = {N, E}:

cost(G) = Weomp * Y_open comp-cost(OP)+
Weom *) e pp COMM_cost(e)

D

4.2. Optimal Program Generation

The generation of a data exchange program starts with
instantiating a DAG G| as follows:

e Create node Scan(f) for each fragment f in S.
e Create node Write(f) for each fragment f in T.

o Create a cross-edge between a Scan and aWrite if they
both operate on the same fragment.

The next step augments Go by adding Splits when
needed. For instance, Line_Feature in the S-
fragmentation is split to produce Line (used to pop-
ulate Line_Switch in the T-fragmentation) and
Feature (used to populate Feature). If the out-
put of a split corresponds to a target fragment, for instance
Feature in this example, we also add an edge be-
tween the Split and Write. This process results in a
new DAG G, shown in Figure 6.

If every Write node in GG; has an incoming edge,
then the final data transfer program is G = G;. If this
is not true (like in Figure 6), a final step combines in-
termediate fragments to generate the input of each
dangling Write node. In Figure 6, fragments Line
(the result of the Split) and Switch will be com-
bined using a Combine (Line, Switch) and input to
Write (Line_Switch). Similarly, Order will be com-
bined with Service to produce Order_Service.

In the general case, a series of pair-wise Combines
might be needed to produce a composite fragment for a
Write. This problem roughly relates to the problem of
join-ordering in relational query optimization [8]. Each pos-
sible combine order results in a different graph instance G.

Algorithm 1 Cost_Based _Optim
Require: G
1: for each OP==Write € G do

2: set OP location=T

3: end for

4: set OpenProblems={G}

5: while OpenProblems.size() > 0 do

6: G'=0OpenProblems.pop()

7. foreach OP € G’ with OP location={} do

8 set OP.location to S

9 {list nodes in all paths from OPto aWrite}
10 assign all downstream nodes (from OP) to T
11: {list nodes in all paths from a Scan to OP}
12: assign all upstream nodes (to OP) to S
13:
14
15
16
17
18

if no unassigned operation left in G’ then
compute cost(G"), keep best seen so far
else
add G’ to OpenProblems
end if
end for
19: end while

20: return best program seen

A significant difference with relational join order is that
we must adhere to the XML Schema tree structure when
we combine fragments (Definition 3.7). For example, Line
and Customer have no parent-child relationship and can-
not be combined which results in specific join conditions
(primary-key/foreign-key joins). This property reduces the
size of the search space considerably.

The next optimization step is to decide where to execute
each primitive operation of the program (at the source or
at the target), so that the overall cost (processing and com-
munication) is minimized. Obvious choices are to place all
Scans at the source and all Writes at the target. The re-
maining operations, namely Splits and Combines need
more consideration.

Given a graph instance G, we assign each node

to the source or the target using the exhaustive
Cost_Based Optim algorithm (Algorithm 1). We
assume the input graph G has no assigned opera-
tion.! As an example, if Combine (Line, Switch)
in Figure 5 is assigned to the source, then
all upstream operations (i.e. Scan(Switch),
Split (Line_Feature,Line,Feature),
Scan (Line Feature)) will be assigned to the source,
while Write (Line_Switch) will be assigned to the tar-
get and its incoming edge will be a cross-edge denoting
data shipping between the two systems.

Each program G (generated by different combine order-
ing) is given as input to the Cost _Based_Optim algo-
rithm. The best program is the least expensive one (deter-
mined by formula 1) among the ones returned by the cost-
based distributed processing algorithm.

1 Some details are omitted here, for instance the algorithm as presented
may enumerate the same program multiple times; we resolve this by
marking nodes with the id of the target fragment that the down-stream
path leads to.

4.3. Greedy Program Generation

Searching exhaustively all possible programs based on
different orderings of combines and different processing
distribution alternatives is computationally prohibitive for
complex programs. In our tests, we saw that optimal pro-
gram generation takes too long for XML Schemas with
more than 40 nodes. For such cases, we propose a single al-
gorithm that chooses combine ordering and distributed pro-
cessing greedily.

The greedy algorithm works are follows. Given graph
G (i.e. before adding combines), we add combines one by
one using the least expensive one first. For estimating its
cost, this heuristic assumes the operation is executed at S.
The result is a single program G to be considered for dis-
tributed processing.

The greedy algorithm further expedites the search when
doing distributed processing using the following heuristic.
For each unassigned operation in the plan, we probe both
the source and the target to estimate its cost. The opera-
tion OP with the largest absolute difference of the two es-
timates is the one that will be most affected by a wrong
placement. Thus, our heuristic is to fix OP to its loca-
tion of preference. If this location is the source, all up-
stream operations in a path from a Scan to OP are as-
signed to the source. If instead, O P is assigned to the target,
all downstream operations from OP to a Write are placed
on the target. Finally, if no difference in the two costs is
observed, we make the edge between two unassigned op-
erations (OP1,0P2) € G a cross edge, in particular the
one with the minimum communication cost, i.e., the one
that outputs the smallest fragment size (O P1.out) and up-
date the location of the upstream/downstream operations.
The intuition is that we want to avoid shipping large docu-
ment fragments. The greedy algorithm terminates when all
operations in G have been assigned a location.

5. Experiments

We present an evaluation of our data exchange architec-
ture on a real data transfer between two remote relational
systems and demonstrate that our optimizations result in
substantial benefits in terms of overall exchange times. We
also present experiments using a simulator we developed for
exploring data exchange scenarios under a variety of source
and target system configutarions.

We used the XMark XML data generator? and a sub-
set of the XMark DTD, shown in Figure 7. Leaf nodes are
omitted. We created two different relational schemas. Each
schema is seen as a fragmentation registered by a system. In
both schemas, document structure is captured through for-

2 http://monetdb.cwi.nl/xml

<!-=— DTD for subset of auction database -->

<!ELEMENT site (regions, categories,
catgraph, people,
openauctions,

closedauctions) >

<!ELEMENT categories (category+) >
<!ELEMENT category (cname, cdescription) >
<!ATTLIST category id ID #REQUIRED>
<!ELEMENT cdescription (id ID)>

<!ELEMENT catgraph (id ID)>

<!ELEMENT regions (africa,asia,

australia,europe,
namerica, samerica) >

<!ELEMENT africa item*) >
<!ELEMENT asia item*) >
<!ELEMENT australia item*) >

<!ELEMENT samerica item*) >

<!ELEMENT europe item*) >

<!ELEMENT item location,quantity,
iname, payment,
idescription,

shipping, mailbox) >

id ID #REQUIRED

featured CDATA #IMPLIED>

(

(

(
<!ELEMENT namerica (item*) >

(

(

(

<!ATTLIST item

<!ELEMENT idescription (id ID)>
<!ELEMENT mailbox id ID)>

(
<!ELEMENT people (id
(

<!ELEMENT closedauctions (

ID) >
<!ELEMENT openauctions id ID)>
ID) >

Figure 7. DTD used in Data Exchange

eign keys. The first fragmentation, denoted MF (for Most-
Fragmented), contains a separate fragment for each element
in the DTD. The second fragmentation, denoted LF (for
Least-Fragmented), inlines fragments that have an one-to-
one relation with their parent. It contains the following three
fragments:

1. SITE.REGIONS_AFRICA_ASIA AUSTRALIA_

EUROPE_NAMERICA_SAMERICA_CATEGORIES_CATGRAPH_

PEOPLE_OPENAUCTIONS_CLOSEDAUCTIONS
2. ITEM_LOCATION_-QUANTITY_INAME PAYMENT._
IDESCRIPTION_SHIPPINGMAILBOX
3. CATEGORY_CNAME_CDESCRIPTION

Given MF and LF, we have four potential data exchange
scenarios: transfer from MF to MF, denoted M F — MF,
and similarly MF — LF,LF — MF and LF — LF.

For these experiments, the source and the target sys-
tems were similarly equipped Pentium III 500MHz PCs
with 128MB of memory and a 10GB IDE drive running
Linux. We installed and used MySQL3.23.49 on both ma-
chines. The two machines were physically located in differ-
ent states in the US and were connected through the Inter-
net.

For the results reported here, we tested transferring a sin-
gle document of varying size (2.5MB, 12.5MB and 25MB)
from one system to the other. Before each run the PCs were
rebooted to avoid having the data buffered in memory. The
target database was initially empty.

Scan (REGIONS) Scan (AUSTRALIA) Scan (NAMERICA)

}Zﬁ Combine () — Combine)— Combine ()— Combine ()
Scan (AFRICA)
Scan (ASIA) Scan (EUROPE, Combine ()
Scan (SAMERICA

Scan (CATGRAPH) Scan (PEOPLE)

Scan(SITE)
Combine ()— Combine ()—= Combine ()

Scan (CATEGORIES) Scan (OPENAUCTIONS)

Combine ()

Combine ()
l Write ()
Scan (CLOSEDAUCTIONS) j

Scan(QUANTITY) _l Scan(INAME) Combine (

Scan(ITEM)
Combine ()— Combine ()— Combine ()—== Combine ()

Scan (LOCATION) Scan(PAYMENT)
Sean (CATEGORIES Scan(IDESCRIPTION) ——— Combine ()

Scan(MAlLBOX)—*

Combine ()

Scan(CNAME) ———— Combine ()

Scan(SHIPPING)
Scan (CDESCRIPTION)— Combine ()
Combine ()

Write ()

Write ()

Figure 8. M F' — LF Data Transfer

5.1. Data Exchange using Publish&Map

Publish&Map is obtained by publishing the full XML
document at the source and transferring it to the target sys-
tem where it is stored into relations. Recent research how-
ever [6], indicates that naive publishing of the XML docu-
ment at the source is inefficient. Assuming the data is stored
at the source using a relational schema that corresponds to
M F, one may simply write a SQL query to obtain a sorted
feed (i.e., a fragment) for each element in the DTD. These
fragments are then merged and tagged in order to build the
XML document. The other extreme alternative is to create
the document through a single complex SQL query.

Between these two choices there is a large spectrum of
queries that can be used for publishing. For a fair compari-
son with our system, we explored various ways to do pub-
lishing, as described in [6], and picked the set of queries that
minimize the overall processing and communication times
for publishing the document.

For storing a document in a relational schema (i.e.,
shredding), we implemented the SAX C API for expat-
1.95.1 (http:/fwww.jelark.com/xml/expat.html). We used a
stack to maintain paths when parsing and discarded the con-
tent of the stack as soon as tuples were flushed to files.
Shredding time corresponds to the time to parse the doc-
ument, manipulate the stack and generate ASCII files for a
particular fragmentation.

The following steps are required by publish&map for an
end-to-end transmission: (1) Execute queries at the source
for publishing the document, (2) Tag query results, (3) Ship
XML document to target, (4) Parse and Shred document at
target, (5) Load shredded pieces to target database and, (6)
Update indexes at the target.

| Document Size: || 2.5MB | 12.5MB [25MB |

MF — MF 5.37 25.21 50.42
MF — LF 6.67 32.89 66.06
LF - MF 4.21 20.64 41.77
LF — LF 1.25 14.11 28.55

Table 1. Times (secs) to execute queries
(Step 1) in Optimized Data Exchange

| Document Size: || 25MB | 125MB | 25MB |
MF — MF | 7.16+7.85 | 39.76+42.52 | 87.32+85.83
MF — LF || 7.16+4.66 | 39.76+41.65 | 87.32+81.44
LF — MF || 3.13+7.85 | 6.80+42.52 | 31.36+85.83
LF —» LF | 3.13+4.66 | 6.80+41.65 | 31.36+81.44

Table 2. Times (secs) for Publish (first
value/Step 1)&Map (second value/Step 4)

5.2. Optimizing Data Exchange

The data exchange architecture of Figure 2 allows the
source and target systems to register their fragmentations
that are used to generate an optimized data exchange pro-
gram thus avoiding the need for publishing the whole doc-
ument. In the case where the source and target fragmenta-
tions are the same (M F' — MF and LF — LF) the pro-
gram simply transfers the corresponding fragment instances
from one system to the other. In this setup, the program is
a series of Scan (f) —» Write (f) operations. This ob-
servation offers an opportunity for parallelism in the execu-
tion that we did not pursue here. All pieces of the programs
were executed sequentially in all of our experiments.

The exchange when the source and target fragmentations
are different are more interesting. Figure 8 shows the pro-
gram for transferring a XML document in the M F' — LF
setup. It contains one expression per target fragment. The
program for LF' — M F is a mirrored image where each
group of Combine operators is replaced with a Split.

The following steps are required in the optimized
data exchange for an end-to-end transmission: (1) Ex-
ecute queries (parts of the program) assigned to the
source, (2) Ship query results to the target, (3) Exe-
cute queries (parts of the program) assigned to the target
(if needed), (4) Load data to target database and, (5) Up-
date indexes at the target.

| Document Size: | 2.5MB [12.5MB | 25MB |

Optimized Data Exchange
(Targetis M F) 17.85 65.02 | 131.45
Optimized Data Exchange
(Targetis LF') 14.96 52.82 | 101.75
Publish&Map 22.98 81.37 | 158.65
Table 3. Communication Times (secs)
| Document Size: || 25MB | 125MB | 25MB |
MF 3+8.20 29.12+40.32 | 49.74+121.57
LF 1.06+2.36 | 10.20+11.62 | 24.79+33.50

Table 4. Times (secs) to load target db (first
value) and create indices (second value)

5.3. Comparison of Times

We ran the Cost_Based-Optim algorithm in the
MF — LF setup. The output of the algorithm sug-
gested to run the whole data exchange program, except the
Writes, at the source (source and target machines are sim-
ilar), therefore, for data exchange, there were no queries
executed at the target (no Step 3). Loading and index-
ing the target database take the same time in both pub-
lish&map and the optimized data exchange since the
underlying data is the same. Thus, in this setup, the dif-
ferences between the two exchange strategies are be-
tween steps (1), (3), (4) in publish&map and steps (1), (2)
in the optimized data exchange.

Table 1 shows the execution times of the optimized data
exchange programs (Step 1) for the four exchange scenar-
ios between MF and LF. Programs where data is shipped
from LF require fewer combines and are, thus, faster. Ta-
ble 2 shows the corresponding times for publishing (using
an optimized set of queries as in [6]) and shredding the doc-
ument in publish&map (Steps 1,4). The cost of shredding
the XML document is significant. In particular, when the
source is LF' (bottom two rows), it shadows the cost of
publishing. In most cases, running the optimized data ex-
change program compares favorably to the cost of publish-
ing only. We point out here that we tried several optimiza-
tions for speeding up shredding but such a difference can-
not be erased by simple optimization tricks. Shredding the
document requires first parsing it. For that we used a pub-
lic domain parser (Expat). The times for parsing (that are
included in the reported times) were 0.87, 9.08 and 15.14
secs for the 2.5MB, 12.5MB and 25MB documents respec-
tively.

Indexing Target DB
Loading Target DB
Shradtding
Communicatian Timg
Processing at Sowce

Time (secs)
P
=8
=2 =4

MF-MF MFHF ME-slF MFaLF LFsWE LFoNF LRl LRLF
DE PM DE PM DE PM DE PM

Figure 9. Times for end-to-end transfer

Table 3 shows the times for sending the data through
TCP connections over the Internet. In the optimized data
exchange, the communicated fragments depend only on the
fragmentation on the target, since all combines are done at
the source.

Table 4 shows the times for loading and indexing the data
at the target database (which are the same for both pub-
lish&map and optimized data exchange) and depend only
on the target fragmentation and the size of the document.

Figure 9 combines all our measurements for transferring
the 25MB document in the MF — MF, MF — LF,
LF — MF and LF — LF setups. DE indicates opti-
mized data exchange and PM, publish&map. The optimized
data exchange architecture provides saving between 23%
and 43% in the overall execution depending on the case.
The main reason of this gain is the reduction of the num-
ber of operations. For the LF' — LF case, the optimized
data exchange is faster in all accounts. In fact, if we ignore
loading and indexing of the target database (which are the
same between DE and PM), the reduction in total execu-
tion is about 53%.

5.4. Simulation Study

In this section, we present multiple experiments using
a simulator that we developed for testing various data ex-
change configurations. All experiments presented here were
run on a 1GHz Pentium-III PC with 256MB of memory
running Linux 7.2. All of our algorithms have been imple-
mented on top of this simulator, using the same code-base,
thus providing a fair platform for timing the algorithms.

5.4.1. Data Exchange between Systems with Different
Processing Power. The purpose of these experiments is
to see how the data exchange programs benefit from cost-
based distributed processing when the source and target sys-

8 Communication Cost
i Computation Cost

Data Exchange Publish

Figure 10. Optimized Data Exchange versus
Publishing, similar source and target sys-
tems

tems vary significantly in terms of processing power. In
what follows the cost of shredding (in publish&map) is
omitted.

We first used a configuration in which the server and the
target systems are equally fast. The DTD was a balanced
tree with 3 levels and fan-our 4. The source and the target
contained different complete sets of 11 randomly selected
fragments.

Figure 10 shows the relative cost of the optimized data
exchange program over the cost of publishing. For publish-
ing, unlike the real measurements in the previous section,
we used a single query for producing the document and we
did not try optimizing this part. Again, we do not account
for tagging. Overall, data exchange compared to publish-
ing only, results in about 65% reduction in the estimated
cost of the transfer. This relates to the 53% reduction ob-
served in the real experiment.

One benefit of the data exchange program is that it bal-
ances much better than publish&map processing between
the two systems. This may not be very important when the
source machine is faster (i.e., when we want to do all com-
bines there anyway). If the target system happens to be sig-
nificantly faster, or if the source is loaded, the distributed
processing algorithm may decide to place some of the com-
bines at the target. To demonstrate this, we repeated the
same experiment using a target system that was 10 times
faster than the source. This resulted in the relative costs
shown in Figure 11. The optimized data exchange program
provides saving of 85% because it takes advantage of the
very fast client and places all combines there.

5.4.2. Evaluation of the Greedy Algorithm. In order to
evaluate the quality of the solutions selected by the greedy
algorithm for program creation and distributed processing,
we compare them to (i) the optimal program produced by
an exhaustive search in the space of all solutions and (ii)
the worst program that we see in the search space of algo-

§ Communication
| Cost
i Computation Cost

Data Exchange Publish

Figure 11. Optimized Data Exchange versus
Publishing for fast (x10) target

rithm Cost_Based_Optim (in terms of estimated cost).
The comparison against the worst-case program is neces-
sary to assess the opportunity for optimization that both the
optimal and the greedy algorithms may build upon.

For these tests, we used a DTD of height 2 with fan-
out 5, resulting in a tree with 31 nodes. We varied the rela-
tive speed of the source over the target as follows: 5/1, 2/1,
1/1, 1/2 and 1/5. That is, we tested a source being five times
faster, twice faster, equally fast, twice slower and five times
slower than the target system respectively.

Relative speed Ratio Ratio
(source/target) || Worst/Optimal | Greedy/Optimal
5/1 1.9354 1.0077
2/1 1.3120 1.0045
1/1 1.0786 1.0095
172 1.2269 1.0024
1/5 1.8725 1.0127

Table 5. Ratios of cost of greedy and worst-
case programs over the cost of optimal one

For each source and target setup, we used ten different
DTDs and documents, each with randomly selected frag-
mentations at the source and the target. For each document,
we computed the costs of the optimal, and worst-case data
exchange programs. Table 5 shows the average ratio of these
programs over the optimal one. For these documents, opti-
mizing the data exchange program offers a window of op-
portunity up to 94%, that is the worst-case program has al-
most twice the cost of the optimal one.

Notice that this window is larger when there are signif-
icant differences among the relative speeds of the two sys-
tems e.g., when one system is five times faster than the

other. When the two systems are equally fast the worst pro-
gram is near optimal (7.8% difference)! This is explained as
follows. In these tests, we assumed a fast interconnect net-
work, so computation cost was the major factor (see also
Figures 10 and 11). When the source is as fast as the target,
distributed processing (placement of the operations) is not
that important and any performance difference arises from
optimizing the order of the combines.

Overall, the greedy algorithm produces highly optimized
programs, practically as good as the optimal ones. We note
here that finding a solution using the greedy algorithm takes
a few milliseconds (even on larger DTDs) while algorithm
Cost_Based_Optim is substantially slower; on the aver-
age it took 80.9secs, for each run, in these experiments.

6. Related Work

WSDL is becoming increasingly popular in adver-
tising information sources on the Web. In a recent pub-
lication [10], the authors argue that the current WSDL
paradigm is inadequate for declaring the large, or even in-
finite, number of parameterized queries supported by
many powerful data sources with structurally rich informa-
tion. In turn, they propose a WSDL extension called Query
Set Specification Language (QSSL) for the concise descrip-
tion of parameterized queries. Our data exchange paradigm
involves fewer parameters. Interestingly, QSSL uses a no-
tion of fragmentation of the XML schema but is driven by
the input parameters supported by the Web service and con-
centrates on query rewriting, while our notion of frag-
mentation is related to the underlying storage and index-
ing decisions. In [1], the authors present their work in the
context of the Active XML project. Web services are de-
scribed by functions embedded in XML documents. The
authors focus on devising a strategy to distribute and repli-
cate Active XML documents in a P2P architecture.

Publishing relational data in XML [3, 4, 5, 6] is a spe-
cial case of the data exchange problem. In [6], the authors
emphasize the need for optimization when publishing rela-
tional data as XML documents. Their framework is akin to
publish&map where publishing is optimized.

This work could also be seen as a special case of dis-
tributed cost-based optimization of relational queries [8,
13]. However, the fact that we manipulate fragments, and
thus, limit the complexity of join optimization, reduces the
complexity of the problem. A more detailed analysis of
complexities could be carried to illustrate this.

7. Conclusions

We presented a novel approach to XML data exchange of
large documents based on a middle-tier Web services archi-
tecture. The source and target systems can, optionally, spec-

ify fragmentations that are then used by the middle-ware to
derive an exchange program that combines and splits doc-
ument fragments as needed. The middle-ware then decides
where to execute each operation using a cost model based
on the capabilities of the two systems involved in the ex-
change. Our experiments show that this new data exchange
approach is very promising. In the future, we would like to
explore solutions to derive the best fragmentation for a sys-
tem based on its internal indices and data structures.

8. Acknowledgments

We would like to thank Jérome Siméon, Mary Fernandez
and the anonymous reviewers for their valuable comments.

References

[1] S. Abiteboul, A. Bonifati, G. Cobena, I. Manolescu,
T. Milo. Dynamic XML documents with distribution and
replication. SIGMOD 2003.

[2] S. Amer-Yahia, M. Ferndndez.
XML. Tutorial. ICDE 2002.

[3] M. Benedikt, C.Y. Chan, W. Fan, R. Rastogi, S. Zheng,
A.Zhou. DTD-Directed Publishing with Attribute Transla-
tion Grammars. VLDB 2002.

[4] P. Bohannon, H. Korth, PP.S. Narayan, S. Ganguly,
P. Shenoy. Optimizing View Queries in ROLEX to Support
Navigable Tree Results. VLDB 2002.

[5] M. J. Carey, J. Kiernan, J. Shanmugasundaram,
E. J. Shekita, S. N. Subramanian. XPERANTO: Mid-
dleware for Publishing Object-Relational Data as XML
Documents. VLDB 2000.

[6] M. Fernandez, A. Morishima, D. Suciu. Efficient Evalua-
tion of XML Middle-ware Queries. SIGMOD 2001.

[7] T. Howes, M. Smith, G. S. Good. Understanding and de-
ploying LDAP Directory Services. Macmillan Technical
Publishing, Indianapolis, Indiana, 1999.

[8] Y.loannidis, Y. Kang. Randomized algorithms for Optimiz-
ing Large Join Queries. SIGMOD 1990.

[9] C. Ferris, J. Farrell. What Are Web Services? Communica-
tions of the ACM 46(6), June 2003.

[10] M. Petropoulos, A. Deutsch, Y. Papakonstantinou. The
Query Set Specification Language (QSSL) . WebDB 2003.

[11] Simple Object Access Protocol (SOAP) 1.1.
http://www.w3.org/TR/soap

[12] Web Services Description Language (WSDL) 1.1.
http://www.w3.org/TR/wsdl

[13] M. .T. Ozsii, P. Valduriez. Principles of Distributed
Database Systems. Prentice Hall 1991.

Techniques for Storing

