
Random Hyperplane Projection using Derived Dimensions∗

Konstantinos Georgoulas
Athens University of Economics and Business

76 Patission Street
Athens, Greece

kgeorgou@aueb.gr

Yannis Kotidis
Athens University of Economics and Business

76 Patission Street
Athens, Greece

kotidis@aueb.gr

ABSTRACT
Computing the similarity between data objects is a fundamental op-
eration for many distributive applications such as those on the Word
Wide Wed, in Peer-to-Peer networks or even in Sensor Networks.
Locality Sensitive Hashing (LSH) has been recently proposed in or-
der to reduce the number of bits that need to be transmitted between
sites in order to permit evaluation of different similarity functions
between the data objects. In our work we investigate a particular
form of LSH, termed Random Hyperplane Projection (RHP). RHP
is a data agnostic model that works for arbitrary data sets. How-
ever, data in most applications is not uniform. In our work, we
first describe the shortcomings of the RHP scheme, in particular,
its inefficiency to exploit evident skew in the underlying data dis-
tribution and then propose a novel framework that automatically
detects correlations and computes an RHP embedding in the Ham-
ming cube tailored to the provided data set. We further discuss
extensions of our framework in order to cope with changes in the
data distribution or outliers. In such cases our technique automati-
cally reverts to the basic RHP model for data items that can not be
described accurately through the computed embedding. Our exper-
imental evaluation using several real datasets demonstrates that our
proposed scheme outperforms the existing RHP algorithm provid-
ing up to three times more accurate similarity computations using
the same number of bits.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous

General Terms
Algorithms

Keywords
Locality Sensitive Hashing, Similarity, Sensor Networks

∗This work was partially supported by the Basic Research Funding
Program, Athens University of Economics and Business.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MobiDE10, June 6, 2010, Indianapolis, Indiana, USA.
Copyright 2010 ACM 978-1-4503-0151-0/10/06 ...$10.00.

1. INTRODUCTION
Computing the similarity between data items is a fundamental

operation for many applications. Quite often, the data in question
is not available at a central location, but is rather dispersed between
sites. For example, pervasive applications are increasingly sup-
ported by networked sensory devices that interact with people and
themselves in order to provide the desired services and functional-
ity. Because of the unattended nature of many installations and the
inexpensive hardware used in the construction of the sensors, nodes
often generate imprecise individual readings due to interference or
failures [11]. Recent proposals consider mechanisms for cleaning
sensor readings by identifying and, possibly, removing outliers [2,
5, 6]. At the core of these techniques lies the need of a network-
friendly mechanism for computing the similarity between recent
measurements of distant nodes. Sensory data, collected by nodes
needs to be processed and understood in a decentralized manner, so
as to avoid depleting the limited resources available at the nodes. A
central collection of sensory data is not feasible nor desired, since
it results in high energy drain, due to the large number of transmit-
ted messages. Moreover, data in most applications, is continuously
collected by the sensor nodes, increasing the need to develop tech-
niques that limit the amount of data transmitted [3, 4].

The need to perform similarity tests between data is also evi-
dent in distributed applications such as those on the Word Wide
Wed or in Peer-to-Peer networks. Data sharing, management and
query processing in such settings requires techniques that reduce
the need to transfer or duplicate data (or meta-data) amongst sites.
As an example, recent proposals consider peer-to-peer architectures
for enabling advanced query processing, when data is horizontally
distributed amongst sites [14]. In order to facilitate efficient query
routing and processing via an overlay network topology, data clus-
tering techniques are implemented. These techniques often require
the evaluation of similarity metrics between data stored at differ-
ent peers. Likewise, when integrating data stores over the Web,
understanding not only schema but also data (dis)-similarity is fun-
damental for the success of any integration task.

All of the aforementioned applications, while diverse in their as-
sumptions and architecture share the need of a primitive operation
that will allow the assessment of similarity between descriptions of
data that are located at different sites. These descriptions need to
be (i) easily computed from the data attributes, so as to reduce pro-
cessing cost, and (ii) compact in size, so as to permit their network
transmission, instead of the original data, for similarity testing.

In our work, we provide a framework that addresses both these
challenges. Our techniques assume a generic description of data
as multidimensional points and allow the computation of common
similarity metrics such as the cosine coefficient and the correlation
coefficient. We adopt the Random Hyperplane Projection (RHP)

framework [1, 9], a novel dimensionality reduction technique based
on locality sensitive hashing (LSH) [1, 10] that is used to transform
each d-dimensional point into a much shorter bitmap of n bits. This
encoding is performed independently at each site for its local data.
RPH is a powerful technique that trades accuracy for bandwidth,
by simply varying the desired level of dimensionality reduction.
The loss of accuracy comes from the projection of the original data
into a space of lower dimensionality, however, it can be easily con-
trolled by varying the desired length of the bitmaps and through
a boosting process that utilizes multiple (shorter) bitmaps [6] for
computing the similarity of the data objects.

The main drawback of the RHP mapping is that, it assumes a
uniform distribution of the data in the d-dimensional space. Nev-
ertheless, data in real applications is unlikely to be uniform. As an
example, when sensors monitor physical quantities like humidity,
pressure or light, the collected data values are typically skewed, re-
flecting the conditions in the monitored area. In Web or P2P appli-
cations, data on peers is usually clustered into a few thematic areas
that reflect the user’s interests. As will be demonstrated, the uni-
form assumption of a typical data-agnostic RHP encoding scheme,
severely limits its performance. In this work we propose a dimen-
sionality reduction framework that takes into account skew that is
often evident in the data distribution. Our techniques deliberately
alter the way data is mapped into a lower-dimensionality space so
as to increase the accuracy of the produced bitmaps. Moreover, our
algorithms retain the advantages of the basic RHP scheme, in par-
ticular its simplicity in producing the mappings and subsequently
computing the similarity of the original data objects based on them.
This is necessary in applications where nodes have limited process-
ing capabilities (as in sensor nodes) or when large volumes of data
need to be processed (as in Web or P2P applications).

The main advantage of our proposed framework is that it de-
tects and exploits skew or correlations in the underlying data dis-
tribution. Similar to RHP, a n-dimensional representation of the
data is computed in the Hamming cube. However, our framework
also computes an extended mapping into m-additional dimensions.
This mapping is derived based on simple precomputed statistics ob-
tained from a sample of the data and the available embedding on the
n-dimensional Hamming cube. In this way, our method manages
to project the data items into a higher dimensionality space (n+m
dimensions), while still using n bits for the data encodings. The
additional, derived, m dimensions are utilized when computing the
similarity between the data items, resulting in this way in more ac-
curate evaluations. The new framework is termed RHP(n,m) in
order to distinguish it from the basic RHP technique.

The contributions of this paper can be summarized as follows:

• We introduce RHP(n,m), an LSH data reduction frame-
work that supports various popular similarity measures used
in different application areas. Examples of such measures in-
clude, but are not limited to, the cosine coefficient, the corre-
lation coefficient, or the Jaccard coefficient. Unlike the orig-
inal RHP technique that is oblivious to the underlying data,
RHP(n,m) utilizes prior knowledge of the data distribution
in order to produce, with the same space, more accurate de-
scriptions and, thus, allows a more accurate computation of
the similarity based on them.

• We describe a novel process for capturing the distribution
of the data and accordingly alter the RHP mappings. This
is achieved by computing a few intuitive statistics using a
sample obtained not from the data items (as this would negate
the benefits of the whole framework) but rather from much
shorter RHP encodings.

Figure 1: Computing Outliers ([6]): motes transmit RHP
bitmaps describing their latest d measurements to their clus-
terheads. Each clusterhead computes a local list of potential
outliers based on pair-wise similarity tests of all motes in its
cluster. Local lists are comminucated between clusterheads in
order to compute a final global list of outliers (not shown in
Figure).

• We introduce techniques that detect data items that can not be
accurately described using the available statistics. For such
items, our algorithms automatically fall back into using the
basic RHP(n) scheme that is oblivious to the data charac-
teristics.

• We present a detailed experimental analysis of our techniques
for a variety of real data sets. Our results demonstrate that
our methods can reliably compute the similarity between data
objects and consistently outperform the standard RHP scheme.

This paper proceeds as follows. In Section 2 we present an appli-
cation of our framework for computing outliers in wireless sensor
networks. In Section 3 we discuss related work. Section 4 presents
the basic Random Hyperplane Projection (RHP) technique and dis-
cusses its advantages and shortcomings. In Section 5 we formally
present our framework. Section 6 presents our experimental evalu-
ation, while Section 7 provides concluding remarks.

2. MOTIVATIONAL EXAMPLE
In our recent work we introduced a distributed framework for

computing outliers in wireless sensor networks based on RHP [6].
Our method assumes a clustered network organization depicted in
Figure 1. Regular sensor motes compute RHP encodings from their
latest d measurements. These encodings are transmitted to their
clusterheads, which can estimate the similarity amongst the latest
values of any pair of motes within its cluster by comparing their
bitmaps. Based on the performed similarity tests and a desired min-
imum support specified by the application, each clusterhead is able
to compute a potential list of local outliers. These lists are then
communicated among the clusterheads in order to compute the fi-
nal list of outliers that is reported to the application. At the core
of this process lies the requirement to accurately evaluate the simi-
larity of d-dimensional data vectors (containing the measurements
obtained by the sensors) in a network-friendly manner using the
much shorter RHP bitmaps instead. The techniques we present in
this paper can be directly applied in this application. All is re-
quired is to replace the original RHP bitmaps with the proposed
RHP(n,m) encodings. This would result in increased accuracy

Symbol Description

x,y data items described as d-dimensional vectors (points)
θ(x, y) the angle between vectors x,y
lsh(x) the bitmap encoding produced after applying RHP to x

n RHP bitmap length

ri ith random d-dimensional vector
hri

(x) hash function for ri applied on data item x

Dh(lsh(x), lsh(y)) the hamming distance between RHP bitmaps
P (j|i) probability that hrj

(x)=1 when hri
(x)=1

P (j|¬i) probability that hrj
(x)=1 when hri

(x)=0

expLsh(x) (n+m)-dim vector. First n values are obtained from lsh(x). Remaining m values are
derived using conditional probabilities Pj|i , Pj|¬i

Table 1: Notation used in this paper

when computing the similarity between sensory data, resulting in
fewer false positive/negative cases of outlier identification.

3. RELATED WORK
The Locality Sensitive Hashing (LSH) scheme that we extend in

this paper was initially introduced in [9] to provide solutions to the
MAX-CUT problem. Since then, LSH has been applied in many
applications including similarity estimation [1] and clustering [13].
Moreover, it was utilized in data structures intended to support ap-
proximate nearest neighbor queries [10] or indexing techniques for
set value attributes [8].

In our work, we investigate techniques that increase the accuracy
of LSH applied in similarity estimation. The Random Hyperplane
Projection scheme [9] that we consider can be used to compute
popular similarity metrics such as the cosine coefficient, the corre-
lation coefficient and the Jaccard index. The correlation coefficient
and the Jaccard index have been recently considered and evaluated
for detecting outliers in sensor networks [5, 6, 15]. The cosine sim-
ilarity has been used in diverse applications such as IP traffic mon-
itoring [7] and computing the similarity between documents [12].
Our techniques can be used in any of the aforementioned applica-
tions for extending the accuracy of the similarity evaluations be-
tween data items through their LSH encodings, while limiting the
amount of data that needs to be transferred between remote sites.

4. PRELIMINARIES

4.1 The RHP framework
We now present the basic locality sensitive hashing scheme that

our framework extends. The notation used in our discussion is sum-
marized in Table 1. The corresponding definitions are presented in
appropriate areas of the text.

A Locality Sensitive Hashing scheme is defined in [1] as a distri-
bution on a family F of hash functions that operate on a set of data
items, such that for two data items x, y:

PhεF [h(x) = h(y)] = sim(x, y) (1)

where sim(x, y)ε[0, 1] is some similarity measure.
In our framework we utilize a particular form of LSH termed

Random Hyperplane Projection (RHP) [1, 9]. We assume a col-
lection of data described in the d-dimensional space. In RHP, we
generate a family of hash functions as follows. We produce a spher-
ically symmetric random vector r of unit length from this d dimen-
sional space. Using r, we define a hash function hr as:

hr(x) =


1 ,if r · x ≥ 0
0 ,if r · x < 0

(2)

i.e. hr() evaluates to 1 for all data items whose dot product with r
is positive and to 0 for the rest of the data. It is easy to see ([16])

that for any two vectors x, y

P [hr(x) = hr(y)] = 1− θ(x, y)

π
(3)

If we repeat this process using n random vectors r1, . . . , rn, an
input data item x is mapped into a bitmap lsh(x) of length n. Bit i
in this bitmap is the evaluation of hri(x).

Let x and y be two input data items and lsh(x), lsh(y) their
RHP bitmaps respectively. Based on Equation 3 it follows that

θ(x, y)

π
=

Dh(lsh(x), lsh(y))

n
(4)

Dh(lsh(x), lsh(y)) in the above formula denotes the hamming
distance of the produced bitmaps. This Equation states that the
number of bits that differ in the RHP encodings of vectors x and
y is proportional to their angle. Solving the formula for θ(x, y)
allows us to estimate the angle between the two vectors from their
RHP encodings.

From the angle computation, one can trivially derive the co-
sine similarity cos(θ(x, y)) between x and y. Moreover, let E(x)
denote the mean value of vector x. The correlation coefficient
corr(x, y) between x and y can then be computed as corr(x, y) =
corr(x−E(X), y−E(y))=cos(θ(x−E(x), y−E(y)) [6]. Thus,
using the RHP bitmaps we can also compute the correlation coeffi-
cient of x and y. Both these metrics are fundamental in assessing
the similarity between data items. For instance, the cosine similar-
ity is used in [7] in evaluating the similarity between network traffic
patterns in IP networks. Similarly, the correlation coefficient has
been recently used in detecting outliers in measurements obtained
from sensor networks [5]. The LSH scheme is extended in [8] to
further support the popular Jaccard index.

4.2 Benefits and Shortcomings of RHP
The basic RHP scheme is an intuitive method for reducing the

size (dimensionality) of the input data items, while retaining the
ability to compute the angle (similarity) between them. Moreover,
the RHP scheme works easily in distributed settings. What is re-
quired, is that all sites (sensor nodes, peers, etc) utilize a common
seed value in order to generate locally the same family of random
vectors ri. (Thus, there is no need to transfer the random vectors
between sites at a pre-processing step.) Then, the lsh() encodings
can be constructed independently and communicated as needed in
order to compute similarity between data objects stored in remote
sites. The benefit of applying RHP is that much fewer bits need
to be transferred in such cases. For example, assuming a typical
32 bit internal representation of real values, the reduction ratio RR
obtained by using RHP bitmaps of length n instead of the actual
data objects is:

RR =
size of original data description

size of RHP bitmap
=

32 ∗ d

n
(5)

Thus, the benefits of RHP increase linearly with the volume of data
that needs to be transmitted. Another characteristic that increases
the suitability of RHP for restricted environments is that its encod-
ings are computed in a straightforward manner. All that is required
is to compute the sign of simple linear equations (dot products).
In case of severe memory constraints, a site does not need to store
the random vectors ri locally. Using the common seed, the random
vectors can be generated on the fly for the computation of each dot
product. Thus, the technique requires O(d) space and O(n ∗ d)
time per item.1 Both requirements are rather modest. Computing
1If all random vectors are materialized, the space requirements in-
crease to O(n ∗ d).

the angle between two data objects from their encoding through
Equation 4 entails the computation of the hamming distance be-
tween bitmaps lsh(x), lsh(y), a process that is done efficiently in
most platforms by XORing the bitmaps and counting the ones in
the result.

The shortcomings of the basic RHP scheme stem from the fact
that it requires a family F of random vectors ri that are uniformly
distributed in the d-dimensional space. When the distribution of
the data objects is not uniform, this results in under-utilizing many
members of F . Figure 2 provides an intuition of the works of RHP
in two-dimensions. For the sake of this example, let us assume that
all data objects (two dimensional points) fall in the area (slice) de-
noted as D in the Figure. It is easy to see that for all random vectors
ri that do not belong in one of the two “orthogonal” slices O1 and
O2 in the Figure, their dot product with x always has the same sign.
All such random vectors do not contribute in computing the angle
between two objects x and y (from slice D), since the correspond-
ing bits will either be both set (one) or clear (zero). Only random
vectors from slices O1 and O2 may produce different results for x
and y. When data skew increases, slices D, O1 and O2 become
thinner and, thus, the percentage of “useful” random vectors ri de-
creases proportionally. Similar arguments apply in higher dimen-
sions. This simplified example demonstrates that for data that is
not uniformly distributed in Rd, often many of the bits used in the
lsh(x) encoding cannot contribute towards computing the angle of
the vectors. This means that out of the n bits that we transmit, typ-
ically only a few of those are helpful in computing the similarity
between the data. Unfortunately, without knowing before-hand the
values of x and y it is not possible to decide, which of the random
vectors are useful and which are not.

One may be tempted to devise families of random vectors that are
tailored to a particular data set. In the example of Figure 2, this can
be easily achieved by placing all random vectors ri within slices O1

and O2. While this is possible in two-dimensions (Formula 4 needs
to be modified accordingly in such a case), there is no obvious way
to apply this process in higher dimensions. Notice that in such
cases, each pair of d-dimensional vectors x, y defines a different
plane, and therefore, hyper-slices O1, O2 are defined differently
for each input pair x, y in consideration.

5. OUR RHP(N ,M) SCHEME

5.1 Overview
We now discuss our new LSH scheme that alleviates the short-

comings of RHP while it retains its benefits. To distinguish it from
our proposed framework, we will refer to the basic RHP process
as RHP(n). As already noted, quite often many of the n random
vectors employed in RHP(n) do not contribute in the computa-
tion of the similarity, as they result in similar bits (one or zero) for
many data items. A key idea of our framework is to detect and
exploit such correlations between the random vectors ri by consid-
ering an extended family of n+m random vectors (for m ≥ 0). As
in RHP(n), this family is computed using a common seed value.
We will deliberately distinguish two types of random vectors: ma-
terialized and derived. Materialized random vectors contribute to
the encoding lsh(x) by producing a bit value based on Equation 2.
Derived random vectors rj are not used in constructing the bitmap.
As will be explained, the value of their hash function hrj (x) is es-
timated using the hri(x) values of the materialized ris and some
precomputed statistics. In total, there are n materialized random
vectors and m derived ones. Thus, the lsh(x) encoding of x in
our framework will still contain exactly n bits, entailing the same

���������	�
��
��������

�����������
�����

�

���������	�
��
��������

�����������
�����

���������	�
��
��������

�����������
�����

���������	�
��
��������

�����������
�����

�
�

�
�

Figure 2: Performance of RHP(n) when all data falls into
area D. Only random vectors in the shaded areas O1 and O2

can help distinguish between different data items.

construction and communication overhead as in RHP(n). We will
refer to our proposed framework as RHP(n,m).

The difference in the new scheme is in the way we decode the
bitmaps for computing the angle between two data items x and
y. During the decoding process all n+m random vectors are uti-
lized, resulting in increased accuracy compared to RHP(n) that
only utilizes n random vectors. In our framework, each derived
random vector rj is associated with exactly one materialized ran-
dom vector ri that we refer to as its “representative”. The repre-
sentative random vector ri is used in order to compute the prob-
ability that the j-th bit that corresponds to hrj (x) (which is not
available in the lsh() encoding) would be set. Since our main fo-
cus is to retain the benefits of the RHP scheme and in particular
(i) its simplicity in computing the angle between the data objects
and (ii) the small-space requirements of the decoding process, we
will utilize two simple statistics for each derived random vector in
the decoding step. Let Pj,i=P [hrj (x) = 1|hri(x) = 1] denote
the probability that the hash function hrj (x) evaluates to one when
hri(x)=1 over all possible data items x in our data set. Similarly,
let Pj,¬i=P [hrj (x) = 1|hri(x) = 0] denote the probability that
the hash function hrj (x) evaluates to one when the hash value for
the i-th random vector is zero. During the decoding process we uti-
lize these pre-computed probabilities in order to estimate the value
of the j-th bit.

More formally, our decoding process computes an intermedi-
ate extended representation of n+m values described as a vector
expLsh(x). The coordinates of this vector are computed as fol-
lows:

• If the j-th random vector is materialized, the value used in
the j-th coordinate of expLsh(x) is the j-th bit that has been
computed in lsh(x).

• If the j-th random vector is derived, then the value of the j-th
coordinate in expLsh(x) is computed from the representa-
tive ri of rj as Pj|i, if the i-th bit in lsh(x) is set or as Pj,¬i

otherwise.

Intuitively, the expLsh(x) encoding is an approximation of the
lsh(x) bitmap that would be obtained if all random vectors were
materialized (as in RHP(n + m)). Since, the values of hrj (x) are
not available for derived random vectors, we use the conditional
probabilities Pj,i and Pj,¬i and the available bits from their repre-
sentatives.

The angle between two input data items x and y is computed
by manipulating their expLsh() representations. Let expLshi(x)

denote the i-th coordinate of vector expLsh(x). Based on its con-
struction, expLshi(x) denotes the probability that hri(x)=1. Thus,
the probability that the i-th hash function hri() produces differ-
ent results for inputs x and y based on their available lsh(x) and
lsh(y) encodings is

diffi(lsh(x), lsh(y)) =

expLshi(x) ∗ (1− expLshi(y) +

+(1− expLshi(x)) ∗ expLshi(y) (6)

where diffi(lsh(x), lsh(y)) ∈ [0, 1]. Then, the expected ham-
ming distance of the n+m hash values for x and y can be estimated
as

expDh(lsh(x), lsh(y)) =
X

i∈[0,n+m)

diffi(lsh(x), lsh(y)) (7)

Please observe that expDh(lsh(x), lsh(y)) = Dh(lsh(x), lsh(y))
for m=0. Based on Equation 4 the angle between vectors x and y
is computed as

θ(x, y) =
expDh(lsh(x), lsh(y))

n + m
π (8)

The described decoding process requires O(n+m) space and time.
In terms of the communication cost, RHP(n,m) produces bitmaps
of length n, as in RHP(n).

5.2 Sampling the Data Distribution
In order to compute the required statistics that our method needs,

we employ a sampling process in order to obtain a random sample
S of the data set. A key point in our work is that we do not sample
from the original dataspace but rather from the RHP encodings of
the data. In particular, using the common seed value we generate
the RHP(n + m) encodings of S. In case of data stored in remote
sites, this means that only the lsh(x) bitmaps of length n+m each
are transmitted towards a central location. Let |S| denote the car-
dinality of the sampled data, then this process requires transmitting
|S|(n + m) bits. The sampled RHP encodings are stored in a two
dimensional |S| × (n + m) array sLSH . The rows of the array
correspond to different lsh(x) representations, while its columns
to the random vectors used. Thus, sLSH[i, j] denotes the j-th bit
of the lsh bitmap for the i-th data item.

An important aspect of the described sampling process is that
it does not require the transmission of the original data items but
rather their RHP(m + n) encodings. As a consequence, in an
application like the one discussed in Section 2, we use the basic
RHP(n + m) framework for the first few similarity tests, exploit-
ing the gathered bitmaps in order to construct the sample. This
results in an overhead of m bits per item compared to RHP(n),
while the sample is constructed.

5.3 Choosing Amongst Random Vectors
Recall (Equation 4) that a random vector ri contributes to com-

puting the angle between data items x and y, when hri(x) 6=
hri(y). Based on this observation we compute the utility of ran-
dom vector ri as

utilityi =
X

0≤x<|S|−1,x+1≤y<|S|

|sLSH[x, i]−sLSH[y, i]| (9)

Thus, the utility of ri measures the number of occasions random
vector ri contributes bits that differ over all possible pairs x, y in
the sample.

In addition to choosing random vectors with high utility scores,
we also want to materialize random vectors that can be used to pre-
dict the behavior of non-materialized random vectors (Equation 8).

Algorithm 1 GREEDY ALGORITHM
Require: (n, m, {ri|i = 1..(n + m)]}, T)
1: {Initially all ris are candidates for materialization}
2: Cand={ri|i = [1..(n + m)]}
3: Mat=∅ {Materialized random vectors}
4: Der=∅ {Derived random vectors}
5: while (|Mat|<n) AND (Cand 6= ∅) do
6: {Select ri with highest utility score}
7: k=argmaxi∈Cand(utilityi)
8: Mat = Mat ∪ {rk} {Mark rk as materialized}
9: Cand=Cand-{rk} {Remove from candidate list}

10: {Remove strongly correlated (to rk) random vectors}
11: for ri ∈ Cand do
12: if |corri,k| ≥ T then
13: Cand=Cand-{ri}
14: end if
15: end for
16: end while
17: {Remaining ris are marked as derived}
18: Der={ri|i = [1..(n + m)]} - Mat
19: for rj ∈ Der do
20: i=argmaxk∈Mat(|corrk,j |)
21: Representative(j) = i {Mark as representative}
22: end for

Given two random vectors ri and rj the columns i and j of array
sLSH depict the behavior of these random vectors (i.e., the val-
ues of their respective hash functions) for the sampled data. Let
sLSH[., i] denote the i-th column of sLSH . Each such column
is a bitmap of length |S|. A standard way to assess the correlation
between the values of these bitmaps is to compute their correlation
coefficient corri,j :

corri,j =
cov(sLSH[., i], sLSH[., j])

σsLSH[.,i]σsLSH[.,i]

(10)

where cov(), σ are the covariance and standard deviation functions
respectively. A strong (positive or negative) correlation between
columns sLSH[., i] and sLSH[., j] indicates that random vector
ri is a good candidate for representing rj and vise-versa. Thus, we
want corri,j be near +1 or -1. On the contrary when |corri,j | is
close to zero, then there is no evident connection (in the sample) in
the behavior of the two random vectors.

Based on these observations we propose a simple greedy algo-
rithm for selecting n random vectors to be materialized (out of the
n+m available choices). The algorithm is presented in Algorithm 1
and proceeds as follows. Initially all n+m random vectors are
candidates for materialization (set Cand, Line 2). At each step,
the algorithm selects from set Cand the random vector rk with
the highest utility score and places it in the materialized set Mat
(Lines 6-8). When random vector rk is selected for materialization,
we remove from set Cand all random vectors ri that have a strong
correlation (based on parameter T) with rk (Lines 10-16). The in-
tuition is that the hash values for these rjs can be easily estimated
using conditional probabilities Pj|i and Pj|¬i. A typical value of
T is 0.95 in our implementation. The algorithm repeats this step,
until n random vectors have been selected. At a final phase (Lines
17-22) the algorithm selects the representative of each derived ran-
dom vector (the remaining m random vectors not in set Mat at
the end of the selection process) based on the absolute values of
the correlation coefficients corrk,j between a materialized random
vector rk and a derived random vector rj . The running time of the

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0 50 100 150 200 250 300

Av
er

ag
e

L1
 E

rro
r

m

"RHP(n)"
"RHP(n,m)"

"RHP(n+m)"

Figure 3: Sensitivity to m, NBA data set (n=34). RHP(n),
RHP(n,m) use 34 bits/data item. RHP(n + m) uses 34+m
bits per data item.

algorithm is O(n × (n + m)). We note that in the applications of
interest, n, m take small values, typically, less than 100.

After the selection of the representative random vectors, it is
straightforward to compute probabilities Pj|i and Pj|¬i from the
corresponding columns sLSH[., i] and sLSH[., j]. Then, array
sLSH can be discarded. In the end of this process we have:

• A set of n random vectors Mat denoted as materialized.

• A set of m random vectors Der denoted as derived.

• The representative of each derived random vector (m values
in total).

• The conditional probabilities (2×m values in total) required
for estimating the angles between data items using Equa-
tion 8.

Using this information (of size O(n + m)) any site is able to com-
pute the similarity of two data items from their RHP(n,m) bitmaps.

5.4 Handling Evolving Data Sets
The proposed RHP(n,m) framework makes use of precom-

puted statistics in order to boost the accuracy of the standard ran-
dom hyperplane projection scheme. A natural question that arises,
is whether our techniques will be able to adapt to (transient or per-
manent) changes in the characteristics of the data sources. In this
section we introduce techniques that detect data items that cannot
be accurately described using the available statistics. In such a case,
our algorithms fall back into using the basic RHP(n) scheme that
is oblivious to the data characteristics.

In order to distinguish the encodings of the discussed RHP schemes,
we will use the notation lshk(x) to denote the bitmap obtained by
RHP(k). In our original RHP(n,m) framework we compute and
communicate lshn,m(x) bitmaps (of length n). Given the com-
mon seed value, a local site can further compute the RHP(n + m)
encoding lshn+m(x). Let x̂n,m denote the approximation of data
item x provided through its lshn,m(x) embedding and, similarly
x̂n+m denote the approximation obtained via lshn+m(x). Using
Equation 8, we can easily compute the angle θ(x̂n,m, x̂n+m) from
the corresponding bitmaps. Recall that RHP(n + m) (the basic
scheme using n+m bits) is oblivious to the data distribution and
more accurate than RHP(n) since it utilizes additional dimensions
towards creating its embedding in the Hamming cube. Based on
this observation, for each data item x we simply test whether our

 0

 2

 4

 6

 8

 10

 12

 14

 0 20 40 60 80 100 120 140 160 180

Av
er

ag
e

L1
 E

rro
r

m

"RHP(n)"
"RHP(n,m)"

"RHP(n+m)"

Figure 4: Sensitivity to m, HOUSE data set (n=12). RHP(n),
RHP(n,m) use 12 bits/data item. RHP(n + m) uses 12+m
bits per data item.

RHP(n,m) approximation x̂n,m of x is sufficiently close to the
approximation x̂n+m provided by RHP(n + m), i.e.

θ(x̂n,m, x̂n+m) ≤ θφ (11)

where θφ is a threshold denoting the tolerance of our application.
For each data item x that fails this test, we will transmit instead
the lshn(x) obtained using RHP(n), augmented with an addi-
tional bit that informs the site that will decode the embedding that
the standard RHP(n) process has been used. Given two encod-
ings lshn,m(x), lshn,m(y) (resp. lshn(x), lshn(y)), we com-
pute the angle of the original data items using Equation 8 (resp.
Equation 4). In order to compare lshn(x), lshn,m(y), we first ob-
tain expLSH(y) as already described, and then we compare the
bitmaps via Equation 8 using only the hash values of the random
vectors utilized in RHP(n) and setting m=0.

The advantages of this simple extension are twofold. First, it
can easily detect transient readings that differ significantly from
the sampled data used in learning the conditional probabilities Pj|i
and Pj|¬i and fall back into using the basic RHP(n) scheme for
them. Second, when a large number of input data items fail the test
of Equation 11, this can be used to trigger a new sampling process
in order to compute a new set of materialized random vectors using
Algorithm 1 for the updated data distribution.

6. EXPERIMENTS
In our experimental evaluation we utilize the following four real

datasets.

• TEMPERATURE: This data set contains temperature in-
formation obtained by sensor nodes at the Intel Labs [5]. We
used non-overlapping windows of 32 epochs to generate 912
32-dimensional records of sensory measurements.

• HUMIDITY: This data set contains humidity measurements
obtained by sensor nodes at the Intel Labs [5]. We used
non-overlapping windows of 32 epochs to generate 720 32-
dimensional records of sensory measurements.

• NBA: This data set contains 21,384 17-dimensional records
each representing a player’s performance per year. Attributes
include, minutes played, points, offensive/defensive rebounds,
assists, etc.

• HOUSE: This data set consists of 100,000 6-dimensional
records containing real-estate information from the United

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 20 40 60 80 100 120 140

Av
er

ag
e

L1
 E

rro
r

Reduction Ratio (RR)

"RHP(n)"
"RHP(n,m)"

Figure 5: NBA Dataset

States (data available at zillow.com). Features include price,
number of rooms, area etc.

In order to assess the performance of our proposed framework
we perform several experiments and present the average L1 error
in computing the angle between different pairs of records x, y. The
L1 error is defined as

errorL1(x, y) = |θ(x, y)− θ(lsh(x), lsh(y))| (12)

where θ(x, y) denotes the real angle between the data items and
θ(lsh(x), lsh(y)), the estimate we obtain from the LSH encodings
of the respective method. Please notice that from the L1 error it is
trivial to obtain the estimation error in computing the cosine simi-
larity. We also ran experiments using the correlation coefficient as
the similarity metric however they are omitted due to lack of space.
In all runs, we use a 10% sample as an input to Algorithm 1 (with
the exception of the much larger HOUSE dataset for which a 2%
sample was used) and for computing the conditional probabilities.
We then evaluated the accuracy of the discussed techniques using
a different sample of 100 points and evaluating the angle estimates
over all 4950 possible pairs between them.

In the experiments of Figures 3, 4 we evaluate the performance of
our technique when we vary m, the number of derived random vec-
tors. Parameter n was set to 34 and 12 for the NBA and the HOUSE
dataset respectively, so that in both experiments we achieve a re-
duction ratio of 16:1 (Equation 5). We can see that for all depicted
values of m, the RHP(n,m) framework outperforms RHP(n)
(which uses the same space per item) up to a factor of 3. More im-
portantly, the following trend seems to appear. Initially, increasing
the value of m from 1,2,... results in better estimates. However,
after we exceed a certain threshold, a further increase in m results
in worse performance. This happens because the additional derived
random vectors we introduce are not strongly correlated to the ma-
terialized set of random vectors, and thus, their behavior cannot
be accurately described by the conditional probabilities Pj|i and
Pj|¬i. We observed the same trend for different values of n and for
the other data sets. The shape of the curves in these Figures sug-
gests that, for an application-selected reduction ratio (equivalently
a given value of n) we can obtain a good selection m∗ by perform-
ing a quick search over a small range of values for parameter m,
using the sample. In all experiments reported in the rest of this
Section, we used this process in the range m : (0, 8n) in order to
select the best m in each run.

In Figures 3, 4 we also depict the performance of RHP(n + m)
that transmits m additional bits compared to the other two meth-

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 0 5 10 15 20 25 30 35

Av
er

ag
e

L1
 E

rro
r

Reduction Ratio (RR)

"RHP(n)"
"RHP(n,m)"

Figure 6: HOUSE Dataset

 0

 1

 2

 3

 4

 5

 6

 7

 0 50 100 150 200 250 300

Av
er

ag
e

L1
 E

rro
r

Reduction Ratio (RR)

"RHP(n)"
"RHP(n,m)"

Figure 7: Intel Lab Data - TEMPERATURE

ods. We can see that up to the value of m∗ our proposed method
matches (and in several instances it exceeds) the performance of
RHP(n + m), indicating that the estimation of the hash values for
the m derived random vectors using the conditional probabilities is
extremely accurate. We emphasize that for m∗=85 in Figure 3, our
technique has practically the same performance as RHP(n + m)
even-though it uses only 32 bits per item compared to 32+85=117
bits for the latter. The same trends appears in Figure 4 where
our proposed methods is using only 12 bits per data item, while
RHP(n + m) needs at least 12+85=97 bits to achieve the same
level of accuracy.

In Figures 5, 6, 7 and 8 we present graphs showing the accuracy
of out RHP(n,m) framework compared to the RHP(n) tech-
nique for different reduction ratios (x-axis in the Figures). In all
cases, our method provides significantly more accurate estimates,
reducing the estimation error by up to 70%.

We further evaluate the extension to our framework described
in Section 5.4. We trained our algorithms using a 10% sample of
the NBA data set and then used a different selection of 100 data
items for computing their similarity. During the evaluation pro-
cess, we progressively replaced data items with randomly gener-
ated data points in R17. These random points significantly differ
from the sample that we used to train our method and present the
worst case example for our technique as they uniformly cover the
data space, negating any strong correlations between materialized
and derived random vectors. On the contrary, they do not affect the
basic RHP(n) scheme that is oblivious to the data in query. The

 0

 2

 4

 6

 8

 10

 12

 0 50 100 150 200 250 300

Av
er

ag
e

L1
 E

rro
r

Reduction Ratio (RR)

"RHP(n)"
"RHP(n,m)"

Figure 8: Intel Lab Data - HUMIDITY
������

����	

��
��
�� ��� ��� ��� ��� ��� ��� ���
���
�

�

�

�

�

�

��

��

��

������ �������� �	
��
�����

��������������������������

�
�
�
��
�
�
��
�
��
��
�
�

Figure 9: Performance when random data points are injected
in the NBA data set

������

����	

��
��
�� ��� ��� ��� ��� ��� ��� ���
���
�

�

�

�

�

�

��

��

��

��

��

������ �������� �	
��
�����

��������������������������

�
�
�
��
�
�
��
�
��
��
�
�

Figure 10: Performance when random data points are injected
in the HOUSE data set

same procedure was repeated for the HOUSE data set using random
points from R6. In Figures 9, 10 we evaluate the performance of (i)
our original framework, (ii) the classic RHP(n) scheme, (iii) the
extension described in Section 5.4, denoted as Hybrid(n,m) in the
graphs, for the NBA and HOUSE data sets respectively (θφ=30).
Reduction ratio was 16:1 in all algorithms. We can see that our
technique starts loosing its accuracy, when more random data items

are used in the evaluation process (x-axis in the graphs depicts the
percentage of tested pairs for which at least one of the data items
was not from the original dataset). This is expected, as these ran-
dom items do not follow the original data distribution. We can see
in both data sets, that the Hybrid method retains the benefits of
our technique and consistently outperforms the RHP(n) scheme.
This is because the Hybrid algorithm is far better than RHP(n) for
items selected from the original data (as is depicted in Figure 5, 6),
while performs comparable to RHP(n), when random data points
are considered.

7. CONCLUSIONS
In this paper, we presented a LSH data reduction framework

to perform similarity tests between data objects located at remote
sites. Our method adopts the RHP framework but also takes into
account the data distribution, detects correlations in the underly-
ing data and achieves much better accuracy. We introduced a pro-
cess for computing statistics from a RHP-projected data sample of
higher dimensionality and then utilize these statistics in order to
select a subset of possible dimensions on which the data is finally
projected. We also discussed techniques that allow our algorithms
to cope with changes in data distribution. A detailed experimental
evaluation using several real data sets was presented and showed
that our method outperforms the original RHP technique.

8. REFERENCES
[1] M. Charikar. Similarity estimation techniques from rounding

algorithms. In STOC, 2002.
[2] J. Chen, S. Kher, and A. Somani. Distributed Fault Detection of

Wireless Sensor Networks. In DIWANS, 2006.
[3] A. Deligiannakis, Y. Kotidis, and N. Roussopoulos. Compressing

Historical Information in Sensor Networks. In ACM SIGMOD, 2004.
[4] A. Deligiannakis, Y. Kotidis, and N. Roussopoulos. Hierarchical

In-Network Data Aggregation with Quality Guarantees. In
Proceedings of EDBT, 2004.

[5] A. Deligiannakis, Y. Kotidis, V. Vassalos, V. Stoumpos, and A. Delis.
Another Outlier Bites the Dust: Computing Meaningful Aggregates
in Sensor Networks. In ICDE, 2009.

[6] N. Giatrakos, Y. Kotidis, A. Deligiannakis, V. Vassalos, and
Y. Theodoridis. TACO: Tunable Approximate Computation of
Outliers in wireless sensor networks. In SIGMOD, 2010.

[7] A. Gilbert, Y. Kotidis, S. Muthukrishnan, and M. Strauss.
QuickSAND: Quick Summary and Analysis of Network Data.
Technical report, DIMACS 2001-43, Dec 2001.

[8] A. Gionis, D. Gunopulos, and N. Koudas. Efficient and tunable
similar set retrieval. In SIGMOD, 2001.

[9] M. Goemans and D. Williamson. Improved Approximation
Algorithms for Maximum Cut and Satisfiability Problems Using
Semidefinite Programming. J. ACM, 42(6), 1995.

[10] P. Indyk and R. Motwani. Approximate nearest neighbors: towards
removing the curse of dimensionality. In STOC, 1998.

[11] S. Jeffery, G. Alonso, M. J. Franklin, W. Hong, and J. Widom.
Declarative Support for Sensor Data Cleaning. In Pervasive, 2006.

[12] N. Koudas, A. Marathe, and D. Srivastava. Propagating Updates in
SPIDER. In ICDE, pages 1146–1153, 2007.

[13] D. Ravichandran, P. Pantel, and E. Hovy. Randomized algorithms
and NLP: using locality sensitive hash function for high speed noun
clustering. In ACL, 2005.

[14] A. Vlachou, C. Doulkeridis, Y. Kotidis, and M. Vazirgiannis.
SKYPEER: Efficient Subspace Skyline Computation over
Distributed Data. In Proceedings of ICDE, 2007.

[15] X. Xiao, W. Peng, C. Hung, and W. Lee. Using SensorRanks for
In-Network Detection of Faulty Readings in Wireless Sensor
Networks. In MobiDE, 2007.

[16] G. Xue, Y. Jiang, Y. You, and M. Li. A topology-aware hierarchical
structured overlay network based on locality sensitive hashing
scheme. In UPGRADE, 2007.

