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Abstract. Association Rule Mining algorithms operate on
a data matrix (e.g., customers× products) to derive associ-
ation rules [AIS93b, SA96]. We propose a new paradigm,
namely,Ratio Rules, which are quantifiable in that we can
measure the “goodness” of a set of discovered rules. We also
propose the “guessing error” as a measure of the “goodness”,
that is, the root-mean-square error of the reconstructed val-
ues of the cells of the given matrix, when we pretend that
they are unknown. Another contribution is a novel method
to guess missing/hidden values from the Ratio Rules that
our method derives. For example, if somebody bought $10
of milk and $3 of bread, our rules can “guess” the amount
spent on butter. Thus, unlike association rules, Ratio Rules
can perform a variety of important tasks such as forecasting,
answering “what-if” scenarios, detecting outliers, and visu-
alizing the data. Moreover, we show that we can compute
Ratio Rules in asingle pass over the data set with small
memory requirements (a few small matrices), in contrast
to association rule mining methods which require multiple
passes and/or large memory. Experiments on several real
data sets (e.g., basketball and baseball statistics, biological
data) demonstrate that the proposed method: (a) leads to
rules that make sense; (b) can find large itemsets in binary
matrices, even in the presence of noise; and (c) consistently
achieves a “guessing error” of up to 5 times less than using
straightforward column averages.
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1 Introduction

Data mining has received considerable interest [FU96], of
which the quintessential problem in database research has
been association rule mining [AIS93b]. Given a data ma-
trix with, for example, customers for rows and products for
columns, association rule algorithms find rules that describe
frequently co-occurring products, and are of the form

{bread, milk} ⇒ butter (90%),

meaning that customers who buy “bread” and “milk” also
tend to buy “butter” with 90% confidence. What distin-
guishes database work from that of artificial intelligence,
machine learning, and statistics is its emphasis on large data
sets. The initial association rule mining paper [AIS93b], as
well as all the follow-up database work [AS94], proposed al-
gorithms to minimize the time to extract these rules through
clever record-keeping to avoid additional passes over the
data set.

The major innovation of this work is the introduction of
Ratio Rulesof the form

Customers typically spend1 : 2 : 5 dollars

on bread: milk : butter.

The above example of a rule attempts to characterize pur-
chasing activity: ‘if a customer spends $1 on bread, then
s/he is likely to spend $2 on milk and $5 on butter’. What is
also novel about this work is that, in addition to proposing a
fully automated and user-friendly form of quantitative rules,
it attempts to assesshow goodthe derived rules are, an is-
sue that has not been addressed in the database literature.
We propose the “guessing error” as a measure of the “good-
ness” of a given set of rules for a given data set. The idea
is to pretend that a data value (or values) is (are) “hidden”,
and to estimate the missing value(s) using the derived rules;
the root-mean-square guessing error (averaged over all the
hidden values) indicates how good the set of rules is. To-
wards this end, we provide novel algorithms for accurately
estimating the missing values, even when multiple values
are simultaneously missing.

As a result, Ratio Rules can determine (or recover) un-
known (equivalently, hidden, missing, or corrupted) data,
and can thus support the following applications:
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– Data cleaning: reconstructing lost data and repairing
noisy, damaged, or incorrect data (perhaps as a result
of consolidating data from many heterogeneous sources
for use in a data warehouse).

– Forecasting: ‘If a customer spends £1 on bread and £2.50
on ham, how much will s/he spend on mayonnaise?’

– “What-if” scenarios: ‘We expect the demand for Cheerios
to double; how much milk should we stock up on?’ 1

– Outlier detection: ‘Which customers deviate from the typ-
ical sales pattern?’

– Visualization: Each Ratio Rule effectively corresponds
to an eigenvector of the data matrix, as we discuss later.
We can project the data points on the 2- or 3-D hyper-
plane defined by the first 2 or 3 Ratio Rules, and plot
the result, to reveal the structure of the data set (e.g.,
clusters, linear correlations,etc.).

This paper is organized as follows: Section 2 reviews
the related work. Section 3 defines the problem more for-
mally. Section 4 introduces the proposed method. Section 5
presents the results from experiments. Section 6 provides a
discussion. Finally, Sect. 7 lists some conclusions and gives
pointers to future work.

2 Related work

[AIS93a] distinguish between three data mining problems:
identifying classifications, finding sequential patterns, and
discovering association rules. We review only material rel-
evant to the latter, since it is the focus of this paper. See
[CHY96] for an excellent survey of all three problems.

The seminal work of [AIS93b] introduced the problem
of discovering association rules and presented an efficient al-
gorithm for mining them. Since then, new serial algorithms
[AS94, PCY95, SON95] and parallel algorithms [AS96]
have been proposed. In addition, generalized association
rules have been the subject of recent work [SA95, HF95].

The vast majority of association rule discovery tech-
niques are Boolean, since they discard the quantities of the
items bought and only pay attention to whether something
was bought or not. A notable exception is the work of
[SA96], where they address the problem of mining quan-
titative association rules. Their approach is to partition each
quantitative attribute into a set of intervals which may over-
lap, and to apply techniques for mining Boolean association
rules. In this framework, they aim for rules such as

bread: [3 − 5] and milk: [1 − 2]

⇒ butter : [1.5 − 2] (90%)

The above rule says that customers that spend between 3–
5 dollars on bread and 1–2 dollars on milk, tend to spend
1.5–2 dollars on butter with 90% confidence.

Traditional criteria for selecting association rules are
based on the support-confidence framework [AIS93b]; recent
alternative criteria include the chi-square test [BMS97a] and

1 We can also use Ratio Rules for “what-if” scenarios on the aggregate
level, e.g., given the ruleCheerios: milk = 1 : 1 and thescenario that
‘We expect the demand for Cheerios to double for the average customer;
how much milk should we stock up on?’, we get that ‘The demand for milk
should double.’

probability-based measures [ST96]. Related issues include
outlier detection and forecasting. See [Jol86] for a textbook
treatment of both, and [AAR96, Hou96, BMS97b] for recent
developments.

3 Problem definition

The problem we tackle is as follows. We are given a large
set ofN customers andM products organized in anN ×M
matrix X, where each row corresponds to a customer trans-
action (for example, market basket purchase), and entryxij

gives the dollar amount spent by customeri on productj.
To make our discussion more concrete, we will use rows
and “customers” interchangeably, and columns and “prod-
ucts” interchangeably2. The goal is to find Ratio Rules of
the form v1 : v2 : · · · : vM such that the rules can be used
to accurately estimate missing values (“holes”) when one or
manysimultaneousholes exist in any given row of the ma-
trix. As previously mentioned, this will enable Ratio Rules
to support the applications enumerated in Sect. 1.

Next, we give more intuition behind Ratio Rules and
discuss a method for computing them efficiently.

4 Proposed method

The proposed method detects Ratio Rules usingeigensystem
analysis, a powerful tool that has been used for several set-
tings, and is similar to Singular Value Decomposition, SVD,
[PTVF92], Principal Component Analysis, PCA, [Jol86], La-
tent Semantic Indexing, LSI, [FD92], and the Karhunen-
Loeve Transform, KLT, [DH73]. Eigensystem analysis in-
volves computing the eigenvectors and eigenvalues of the
covariance matrix of the given data points (see Sect. 4.1
for intuition and Sect. 4.2 for more formal treatment). In
Sect. 4.3, we present an efficient,single-passalgorithm to
compute thek best Ratio Rules. A fast algorithm is ex-
tremely important for database applications, where we ex-
pect matrices with several thousands or millions of rows.
Section 4.4 presents one of the major contributions of this
paper: the introduction of a measure for the “goodness” of a
given set of rules. Section 4.5 presents another major contri-
bution: how to use the Ratio Rules to predict missing values.

4.1 Intuition behind Ratio Rules

Figure 1a lists a set ofN customers andM products orga-
nized in anN × M matrix. Each row vector of the matrix
can be thought of as anM -dimensional point. Given this
set ofN points, eigensystem analysis identifies the axes (or-
thogonal directions) of greatest variance, after centering the
points about the origin. Figure 1b illustrates an example of
an axis that this analysis finds. In Fig. 1 we haveM=2 prod-
ucts, and so our customers can be represented by 2-D points.
The directionx′ suggested by this analysis is shown, and its

2 Of course, the proposed method is applicable to anyN ×M matrix,
with a variety of interpretations for the rows and columns, e.g, patients and
medical test measurements (blood pressure, body weight, etc.); documents
and terms, typical in IR [SM83], etc
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bread butter
customer ($) ($)
Billie .89 .49
Charlie 3.34 1.85
Ella 5.00 3.09
· · · · · · · · ·
John 1.78 .99
Miles 4.02 2.61

$ 
sp

en
t o

n 
bu

tte
r

$ spent on bread

("v
olume")

(0.866,0.5)

x’

a b

Fig. 1. A data matrixa in table form andb its counterpart in
graphical form, after centering (original axis drawn with dotted
lines). As the graph illustrates, eigensystem analysis identifies
the vector (0.866, 0.5) as the “best” axis to project along

Table 1. Symbols and their definitions

symbol definition
N number of records (matrix rows)
M number of attributes (matrix columns)
k number of Ratio Rules retained

R set of Ratio Rules
H set of hidden values (“holes”) in a given row
h number of hidden values (“holes”)

GE1 guessing error in reconstructing one hole usingR

GEh guessing error in reconstructingh simultaneous
holes usingR

X N ×M data matrix
Xc column-centered version ofX
Xt transpose ofX
xi,j value at rowi

and columnj of the matrixX
x̂i,j reconstructed (estimated) value at

row i and columnj
x̄ mean cell value ofX
C M ×M covariance matrix (Xt

c × Xc)
V M × r day-to-concept similarity matrix
U N × r customer-to-concept similarity matrix
Λ r × r eigenvalue matrix

meaning is that, if we are allowed only one rule, the best
direction to project on is the direction ofx′. The directionx′
is a Ratio Rule(RR) that governs the correlations between
money spent on the products, based on the customer pur-
chasing activity in the matrix. In this case, the projection of
a data point on thex′ axis gives the overall “volume” of
the purchase. The coordinates of the first RR = (0.866, 0.5)
are those of the unit vector in the directionx′. They imply
the rule “bread : butter ⇒ $0.866 : $0.5”; that is, for most
of our customers, the relative spendings bread-to-butter are
close to the ratio 0.866:0.5. As we shall discuss later, these
Ratio Rules can be used for forecasting, “what-if” scenar-
ios, outlier detection, and visualization. In addition, they are
often amenable to interpretation as underlying factors that
describe, in this case, purchasing behavior.

4.2 Formal treatment of Ratio Rules

We shall use the following notational conventions from lin-
ear algebra:

– Bold capital letters denote matrices, for e.g.,U, X.
– Bold lower-case letters denotecolumnvectors,

e.g.,u, v.

– The “×” symbol indicates the multiplication of two ma-
trices, two vectors, or a matrix and a vector.

Ratio Rules are based on the concepts ofeigenvaluesand
eigenvectorsand are closely related to the Singular Value
Decomposition from matrix algebra. These concepts are de-
fined below. Table 1 gives a list of symbols and their defi-
nitions.

Definition 1. For a squaren × n matrix S, a unit vectoru
and a scalarλ that satisfy

S× u = λ × u (1)

are called aneigenvectorand its correspondingeigenvalue,
respectively, of the matrixS.

In order to proceed, we must explain the Singular Value
Decomposition (SVD). The formal definition for SVD is as
follows:

Theorem 1 (SVD). Given anN × n real matrix X we can
express it as

X = U × Λ × Vt (2)

where U is a column-orthonormalN × r matrix, r is the
rank of the matrixX, Λ is a diagonalr × r matrix of the
eigenvaluesλi of X, and V is a column-orthonormaln × r
matrix.

Proof: See [PTVF92, p. 59]. �
Recall that a matrixU is calledcolumn-orthonormalif

its columnsui are mutually orthogonal unit vectors. Equiva-
lently, Ut×U = I , whereI is the identity matrix. Also, recall
that the rank of a matrix is the highest number of linearly
independent rows (or columns).

Equation 2 equivalently states that a matrixX can be
brought in the following form, the so-calledspectral decom-
position [Jol86, p. 11]:

X = λ1u1 × vt
1 + λ2u2 × vt

2 + . . . + λrur × vt
r (3)

whereui, andvi are column vectors of theU andV matrices
respectively, andλi the diagonal elements of the matrixΛ.
Without loss of generality, we can assume that the eigen-
valuesλi are sorted in decreasing order. Figure 2 illustrates
the rotation of axes that SVD implies for an example where
M=2 (i.e., 2-D points). The corresponding two directions
(x′ and y′) that SVD suggests are shown, meaning that, if
we are allowed onlyk=1 axis, the best direction to project
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x
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Fig. 2. Illustration of the rotation of axis that SVD implies: the “best” axis
to project isx′

onto is the direction ofx′; if we are allowedk=2, the best
directions arex′ andy′.

One of the by-products of SVD is that it reduces the
dimensionality of a data set while retaining as much varia-
tion as possible. This is done by identifying the direction of
maximum variance (given by the largest eigenvalue/vector)
and then identifying the orthogonal direction with maximum
variance (the second eigenvalue/vector), and so forth. In
the end, only the eigenvectors associated with thek largest
eigenvalues are kept while the remaining ones are truncated.
Thesek largest eigenvectors give the Ratio Rules.

In order to choose a good cutoffk of rules to retain, the
simplest textbook heuristic (and the one used in this paper)
is to retain enough eigenvectors so that the sum of their
eigenvalues covers 85% of the grand total [Jol86, p. 94].
That is, choose the cutoffk such that∑k

i=1 λi∑M
j=1 λj

≈ 85% (4)

In addition to being a method for performing axis rota-
tion and truncation, another intuitive way to view the SVD is
that it tries to identify “rectangular blobs” of related values
in the matrixX. This is best illustrated through an example.

Example: In the “toy” matrix of Table 2, we have two
“blobs” of values, while the rest of the entries are zero.
This is confirmed by the SVD, which identifies them both:

X = U × Λ × Vt =




0.18 0
0.36 0
0.18 0
0.90 0
0 0.53
0 0.80
0 0.27




×
[

9.64 0
0 5.29

]
(5)

×
[

0.58 0.58 0.58 0 0
0 0 0 0.71 0.71

]

or, in “spectral decomposition” form:

X = 9.64×




0.18
0.36
0.18
0.90

0
0
0




× [0.58, 0.58, 0.58, 0, 0] +

Table 2. Example of a customer-product matrix

Item milk bread butter tire oil
Customer
Smith 1 1 1 0 0
Doe 2 2 2 0 0
Johnson 1 1 1 0 0
Lee 5 5 5 0 0
Taylor 0 0 0 2 2
Sullivan 0 0 0 3 3
Thompson 0 0 0 1 1

+5.29×




0
0
0
0

0.53
0.80
0.27




× [0, 0, 0, 0.71, 0.71]

Notice that the rank of theX matrix is r=2; there are
effectively two types of customers and, respectively, two
types of rules: food shoppers and automotive shoppers, and
two concepts (i.e., groups-of-products): the “food concept”
(i.e., the group{milk, bread, butter}), and the “automotive
concept” (i.e., the group{tire, oil}). The intuitive meaning
of U andV is as follows:

Observation 1. U can be thought of as thecustomer-to-
conceptsimilarity matrix.

Observation 2. Symmetrically,V is theproduct-to-concept
similarity matrix.

For example,v1,2 = 0 means that the first product (milk) has
zero similarity with the second concept (the “automotive
concept”). V contains Ratio Rules in its columns; in the
above example,V contains the following two rules:

1. Customers typically spend.58 : .58 : .58 : 0 : 0dollars

on bread: milk : butter : tire : oil.

2. Customers typically spend0 : 0 : 0 : .71 : .71 dollars

on bread: milk : butter : tire : oil.

The interpretation is that a customer will either spend an
equal amount on all food products and none on automotive
products, or vice versa.

Lemma 1. The matrixXt × X is a symmetric matrix, whose
eigenvalues are the squares of theλi elements ofΛ of the
SVD ofX. Moreover, the columns ofV are the eigenvectors
of Xt × X.

Xt × X = V × Λ2 × Vt (6)

Proof: See [Fal96]. �
The intuitive meaning of theM×M matrixXt×X is that

it gives the product-to-product similarities. In our example,
we have the following product-to-product similarities:

Xt × X =




31 31 31 0 0
31 31 31 0 0
31 31 31 0 0
0 0 0 14 14
0 0 0 14 14
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/* input : training set X on disk */
/* output: covariance matrix C */
for j := 1 to M do

colavgs[j] ← 0;
for l := 1 to M do

C[j][l] ← 0;
for i := 1 to N do

Read ith row of X from disk;
for j := 1 to M do

colavgs[j] += X[i][j];
for l := 1 to M do

C[j][l] += X[i][j]* X[i][l];
for j := 1 to M do

colavgs[j] /= N ;
for j := 1 to M do

for l := 1 to M do
C[j][l] -= N ∗ colavgs[j] * colavgs[l];

input:
covariance matrix C in main memory

output:
eigenvectors v1, . . . , vk (i.e., the RRs)

compute eigensystem:
{v1, . . . , vM} ← eigenvectors( C);
{λ1, . . . , λM} ← eigenvalues( C);
sort vj according to the eigenvalues;
choose k based on Eq. 4;
return the k largest eigenvectors;

complexity:
O(M3) main memory

a Single-pass over data matrix b Eigensystem computation

Fig. 3. Pseudocode for efficiently computing Ratio Rules

Next we present a method for computing Ratio Rules by
eigensystem analysis in a single pass.

4.3 A single-pass algorithm for Ratio Rules

A covariance matrixC = [cij ] is a “column-to-column” sim-
ilarity matrix, which has a highcij value if the columnsi
andj are correlated. Mathematically, it is defined as

C ≡ Xt
c × Xc (7)

where Xc is derived fromX by subtracting the respective
column average from each and every cell. That is,Xc is a
zero-mean, or “centered”, matrix in the sense that its column
averages are all zero. Thus, the covariance matrixC is a
real, symmetric square matrix of sideM . The computation
of Ratio Rules involves determining the eigenvectors ofC,
which, by Lemma 1, can be transformed into those ofXc.

The following steps will compute the Ratio Rules in an
I/O-efficient way: (a) zero-mean the input matrix to derive
Xc and simultaneously computeC from Eq. 7 by updating
partial sums; (b) compute the eigenvalues/vectors ofC and
pick the first k. We assume thatC can fit in memory: it
needsM2 cells, whereM is the number of columns, which
should typically be on the order of one thousand for real ap-
plications [AIS93b]. Under this assumption, we can compute
the column averages and the covariance matrix with a single
pass over theN (≈ millions) rows of the givenX matrix,
using the algorithm of Fig. 3a. Once we haveC in main
memory, we can use any off-the-shelf eigensystem package
to determine its eigenvalues and eigenvectors, as shown in
Fig. 3b.3

The proposed algorithm requires asingle passto com-
pute the covariance matrix. In more detail, it requires O(N )
I/Os to read the matrixX from disk, during which partial
sums are maintained and zero-mean centering is performed,
and O(NM2) CPU operations to build the corresponding

3 If the number of columns is much greater than one thousand, as po-
tentially might be the case in some market basket data analyses, then the
methods from [BDO95] could be applied to efficiently compute the eigen-
system of the resulting sparse matrix.

covariance matrixC. It then requires O(M3) CPU opera-
tions to compute the eigensystem. Since the number of rows
N is typically in the hundreds of thousands (e.g., sales, or
customers), and the number of columnsM in the hundreds
(e.g., products, or patient symptoms), the algorithm of Fig. 3
is very efficient. It should be noted that the algorithms of
[AS96] require more than one pass over the data set in an
attempt to find large itemsets. Also note that the O(M3) fac-
tor for the eigensystem computation is negligible compared
to the O(NM2) operations needed to build the covariance
matrix, since we assume thatN � M .

4.4 Measuring the goodness of a rule-set:
the “guessing error”

Let R be a given set of rules. We would like to be able to
assess how goodR is. The association rule mining litera-
ture has not defined a criterion to assess the “goodness”, or
accuracy, of a set of discovered rules. We propose a remedy,
namely, the “guessing error”. The fundamental requirement
is thatR must allow for estimations of missing values in a
given record/row.

Let’s consider a specific row (customer)xi of the matrix,
and pretend that thej-th attribute is hidden from us (i.e., the
amount spend on thej-th product, say, bread). GivenR
and the rest of the valuesxi,m (m /= j), we should be able
to estimate the missing value as ˆxij . Theguessing errorfor
this specific cell (i, j) is x̂ij − xij .

Definition 2. The “single-hole guessing error”, or simply
the “guessing error”, for a set of rulesR on a data matrix
X is defined as the root-mean-square of the guessing errors
of the individual cells, that is,

GE =

√√√√ 1
NM

N∑
i

M∑
j

(x̂ij − xij)2 (8)

More specifically, we also define it as thesingle-hole guess-
ing error GE1 because we allowed only a single hole at a
time. The generalization to theh-hole guessing error GEh
is straightforward.
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/* input: bH , a 1×M row vector with holes */
/* output: b̂, a 1×M row vector with holes filled */
1. V′ ← EH × V; /* ‘‘RR-hyperplane’’ */
2. b′ ← EH × bt

H
; /* ‘‘feasible sol’n space’’ */

3. solve V′ × xconcept = b′ for xconcept /* solution in k-space */
4. d← V × xconcept; /* solution in M -space */
5. b̂← b× [EH c ]t + d× [EH ]t;

Fig. 4. Pseudocode for filling holes based on Ratio Rule matrixV

Definition 3. The “h-hole guessing error” for a set of rules
R on a data matrixX is defined as the root-mean-square of
the guessing errors of configurations ofh simultaneouscells,
that is,

GEh =

√√√√ 1
Nh|Hh|

N∑
i

∑
H ∈Hh

∑
j∈H

(x̂ij − xij)2 (9)

whereHh contains some subset of the
(
M
h

)
combinations of

setsH with h “holes”.

The way thatR is derived is independent of the def-
inition of the “guessing error”. We expect that the typical
practice in machine learning will be followed: we can use
a portion Xtrain of the data setX to derive the rulesR
(“training set”), and some other portionXtest of the data
setX to compute the guessing error (“testing set”). The de-
tails of the choice of training and testing sets is orthogonal
to our definition, and outside the scope of this paper, since
they have been extensively examined in the machine learn-
ing and classification literature [Qui93]. A reasonable choice
is to use 90% of the original data matrix for training and the
remaining 10% for testing. Another possibility is the use
of the entire data matrix for both training and testing. In
this paper, we report only the results for the former choice
because the two choices above gave very similar results.

The ability to measure the goodness of a set of rules for
a given testing data set is very important, for developers of
data-mining products and for end-users alike:

– For developers, it allows benchmarking and comparison
with competing products and designs: a low “guessing
error” over a variety of input matrices indicates a good
product.

– For end-users that use a given product on a specific data
set, a low “guessing error” implies that the derived rules
have captured the essence of this data set, and that they
can be used for estimation of truly unknown values with
more confidence.

It should be highlighted that the definition of the “guess-
ing error” can be applied toany type of rules, as long as
they can do estimation of hidden values. In the next section
we focus on the proposed Ratio Rules, and show how to use
them to obtain such estimates.

4.5 Determining hidden and unknown values

Here we present an algorithm for determining unknown val-
ues of a data matrix both algebraically and geometrically. If
we can reconstruct these so-called “holes”, then we can find

hidden values or forecast future values. This framework is
also applicable to “what-if” scenarios where we can spec-
ify some of the values (‘What if the demand for Cheerios
doubles?’) and then forecast the effect on other attributes
(‘Then the demand for milk will double.’). In addition, it can
be used to discover outliers by hiding a cell value, recon-
structing it, and comparing the reconstructed value to the
hidden value. A value is an outlier when the value predicted
is significantly different (e.g., two standard deviations away)
from the existing hidden value.

We begin by developing some notation necessary for
formulating the problem algebraically. We show how the
problem leads to an algebraic system of equations. Figure 4
gives the pseudocode. Figures 5–7 illustrate the solution ge-
ometrically.

Definition 4. Anh-hole row vectorbH is defined as a vector
with holes (denoted with “?”s) at indices given inH , where
H is the set of “holes”.

An example of a 1× 5 2-hole row vector is the following:

b{2,4} = [b1, ?, b3, ?, b5]

Definition 5. An (M − h) × M elimination matrix E H is
defined as anM × M identity matrix withh = |H | rows
removed, where the row indices are given in the setH .

An example of a 3× 5 elimination matrix is the following:

E{2,4} =


 1 0 0 0 0

0 0 1 0 0
0 0 0 0 1




An elimination matrix is very useful in helping us pick and
choose entries from vectors. For example, we can eliminate
the “?”s fromb{2,4} as follows:

bread

butter

RR1

Given value

feasible locations

expected locations

butter
guess

guess

Fig. 5. The exactly-specified case
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RR1

bread

milk

butter

Given

feasible

guess

expected

Fig. 6. The over-specified case

bread

milk

butter

RR1

RR2

Given valueguess

feasible

RR-plane

Fig. 7. The under-specified case

E{2,4} × bt
{2,4} =


 1 0 0 0 0

0 0 1 0 0
0 0 0 0 1


 ×




b1
?
b3
?
b5


 =


 b1

b3
b5




Once the user has specified partial knowledge from a
transactionbH (e.g., the dollar amounts spent by a new
customer, for some products), the set of unknownsH are
determined by thek Ratio Rules that have been kept, and
are reported aŝb, that is,bH with the holesH filled in.
The geometric intuition is the following: the rules form a
k-dimensional hyper-planeV′ (= EH × V) in M -space, the
“RR-hyperplane”, on or close to which the data points lie.
The h holes result in anh-dimensional hyper-planeb′ (=
EH × bt

H
) in M -space, the “feasible solution space”, on

which the solution is constrained. We want to find a point
that agrees with our given partial data (“feasible solution
space”), and is as close to (or exactly on) the RR-hyperplane.

Figure 5 illustrates the case in the simplest possible form:
we haveM=2 products (say, amount spent on “bread” for
the x-axis, and amount spent on “butter” for the y-axis),k=1
rule, andh=1 hole. We know (a) that a customer spends the
given amount on bread and (b) that most of our previous
customers fall on or close to the line defined by the first rule

(RR1). We want to find the amount spent on butter (the hole).
The intersection of “feasible locations” (vertical dashed line)
and “expected locations” (solid diagonal line) gives our best
prediction for the 2-D point that corresponds to that sale; the
value on the “butter” axis, labeled as “guess” is our proposed
estimate for the required amount spent on butter.

The intersection of the two hyper-planes corresponds to
a system of linear equationsV′ × xconcept = b′, from which
the solution ofxconcept determines the unknowns.

Recall that the intersection of “feasible locations” and
“expected locations” gives our best prediction. There are
three possibilities regarding the intersection of the two hy-
perplanes, which are illustrated in Figs. 5–7. Respectively,
there are three possibilities regarding the equation from step
3 of the pseudocode,

V′ × xconcept = b′ (10)

given that there are (M − h) equations andk unknowns.

CASE 1: (EXACTLY-SPECIFIED) The two hyper-planes
intersect at a point. This occurs when (M − h) = k.
The respective linear equations have an exact solution
determined by

xconcept = (V′)−1 × b′ (11)

Figure 5 illustrates an example inM = 2 dimensions, for
h = 1 hole and cutoffk = 1 ratio rule.

CASE 2: (OVER-SPECIFIED) The two hyper-planes do not
intersect. This occurs when (M −h) > k. The respective
equations are over-determined, and the closest distance
between them is chosen for the solution toxconcept based
on the Moore-Penrose pseudo-inverse ofV′ [PTVF92].
This uses the singular value decomposition ofV′:

V′ = R × diag(µj) × St (12)

SinceV′ is singular, no inverse exists, but we can find a
pseudo-inverse:

[V′]−1 = S× diag(1/µj) × Rt (13)

and, thus,

xconcept = [V′]−1 × b′ (14)

Figure 6 illustrates an example inM = 3 dimensions, for
h = 1 hole and cutoffk = 1.

CASE 3: (UNDER-SPECIFIED) The intersection of the two
hyper-planes forms a (min(k, h)−1)-dimensional hyper-
plane. This occurs when (M − h) < k. The respective
equations are under-determined. Among the infinite so-
lutions, we propose to keep the one that needs the fewest
eigenvectors. Thus, we ignore (k +h)−M rules to make
the system exactly-specified, and then solve it using
CASE 1. Figure 7 illustrates an example inM = 3 di-
mensions, forh = 2 holes and cutoffk = 2.4

4 We also experimented with the Moore-Penrose pseudo-inverse to find
a least-squares estimation for this case, but the solution presented turned
out to give more accurate estimations.
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5 Experiments

We ran four sets of experiments. The first was to investigate
the prediction accuracy achieved by the proposed method;
the second was to examine the robustness of Ratio Rules in
estimating more than one simultaneous hole (i.e., that the
relative accuracy does not diminish as the number of holes
is increased); the third was to examine our method on binary
data; the fourth was to see how our method scales up for
large data sets.

Methods: Since the literature on association rules has not
addressed the issue of reconstructing missing/hidden values,
there is no way to do an objective comparison with them.
While it may be possible that current AR methods can be
adapted for interpolations (e.g., by choosing the “centroid”
of the most similar rule), it is an open problem as to how
well such techniques would work. Should a clever scheme
for reconstruction based on AR be proposed in the future,
we have set forth a framework for a fair comparison against
Ratio Rules, using our guessing error framework5. In any
event, note that AR are inherently unable to give extrapo-
lations. Thus, we compared Ratio Rules with a straightfor-
ward technique for predicting values, namedcol-avgs :
for a given hole, use the respective column average from the
training set. Note thatcol-avgs is identical to the pro-
posed method withk = 0 eigenvalues.

Notice that linear regression, for example, [Hou96], is
unable to fill in arbitrary holes. The reason is that we need
one regression model for each combination of holes. Specif-
ically, linear regression hasn independent variables, that
have to be given to us, and onedependentvariable. The re-
gression model will then express the value of the dependent
variable as a linear combination of the values of then inde-
pendent ones. That is, if we want to predict the amount spent
on “bread”, given the amount spent on “milk” and “butter”,
we have to build one regression model; if we want to regress
“bread” on “butter” only, we have to buildanotherregres-
sion model, and so on. Thus, if we want to predict a given
attribute, for any combination of holes in the otherM − 1
attributes, we clearly need the power set: 2M−1 different re-
gression models. In order to predictany attribute, given an
arbitrary set of the other attributes, we need an exponential
number of regression models, namelyM × 2M−1, which is
clearly impractical even for moderate values ofM . In con-
trast, Ratio Rules can predict any attribute, given any subset
of the other attributes.

We cannot compare Ratio Rules with any association-
based methods because, as we argue in Sect. 6.3, association-
based methods do not lead to prediction of missing values.

Error Measure: We use the GEh “guessing error” which
was described in Sect. 4.4.

Data sets: We ran our experiments on a variety of real data
sets (see Sect. 6.1 which displays scatter-plots of them), de-
scribed as follows:

5 The ability to have an objective, numerical estimate of the goodness
of a set of rules was exactly the motivation behind this paper.

– ‘nba’ (459 × 12) - basketball statistics from the 1991–
92 NBA season, including minutes played, field goals,
rebounds, and fouls;

– ‘baseball’ (1574 × 17) - batting statistics from Major
League Baseball for four seasons; fields include batting
average, at-bats, hits, home runs, and stolen bases;6

– ‘abalone’ (4177× 7) - physical measurements of an in-
vertebrate animal, including length, diameter, and
weights.7

Preliminary to running these experiments, for each data
set we chose 90% of the matrix rows for the training ma-
trix; the remaining 10% were used as the testing matrix. We
computed the Ratio Rules from the training matrix, along
with the column averages of the training matrix for use as
the competitor (col-avgs ).

5.1 Reconstruction accuracy

Figure 8 shows the GE1 guessing error for the‘nba’ , ‘base-
ball’ , and ‘abalone’ data sets, normalized by the guessing
error attained bycol-avgs . As a frame of reference, we
also present the normalized GE1 of col-avgs , which is, of
course, 100%. Note that the proposed method method was
the clear winner for all data sets we tried and gave as low
as one-fifth the guessing error ofcol-avgs .

Fig. 8. Ratio of guessing error between RR andcol-avgs , for ‘nba’ ,
‘baseball’, and ‘abalone’

5.2 Guessing error for simultaneous holes

In Fig. 9, we show GEh for the ‘nba’ and ‘baseball’ data
sets, for 1≤ h ≤ 5 holes. The results for the‘abalone’ data
set were similar, and are omitted for brevity. Note that the
guessing error is rather insensitive for up to several simul-
taneous holes. Note that GEh is constant with respect toh
for col-avgs since the computation of GEh turns out to
be the same for allh, for that method.

6 ‘baseball’ is available at
www.usatoday.com/sports/baseball/sbstats.htm .

7 ‘abalone’ is available at
www.ics.uci.edu/ ∼mlearn/MLSummary.html .
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Fig. 9. Guessing error vs. number of
holes (1–5) for the‘nba’ and ‘base-
ball’ data sets

Table 3. Binary matrix of customers and products and its first three Ratio Rules

milk bread butter tire bulb oil shirt pants shoes hat

Smith 1 1 1 0 0 0 0 0 0 0
Doe 1 1 1 0 0 0 0 0 0 0
. . . . . .
Johnson 0 0 0 1 1 1 0 0 0 0
Taylor 0 0 0 1 1 1 0 0 0 0
. . . . . .
Lee 0 0 0 0 0 0 1 1 1 1
Sullivan 0 0 0 0 0 0 1 1 1 1
. . . . . .
noise1 0 1 0 0 1 1 0 0 0 0
noise2 0 0 0 1 0 0 0 0 0 1
noise3 0 1 0 0 0 1 0 1 1 0
. . . . . .

field RR1 RR2 RR3

milk .003 .018 .577
bread .003 .018 .577
butter .002 .018 .578

tire .002 .576 .019
bulb .003 .576 .019
oil .003 .579 .015

shirt .500 .001 .002
pants .500 .003 .002
shoes .500 .003 .002
hat .500 .002 .002

a matrix of food, automotive and clothes groups b first three Ratio Rules

5.3 Ratio rules on binary data

We performed some experiments on binary (e.g., market bas-
ket) data. The goal was to see if Ratio Rules could dis-
tinguish between three different groups of items where the
groups were food (milk, bread, butter), automotive (tire,
bulb, oil), and clothes (shirt, pants, shoes, hat). Most of the
matrix rows represented transactions involving items from
one and only one group. In other words, given any pair of
rows, all the items were either from exactly the same group
or from two mutually disjoint groups. The rest of the rows
were ‘noise’, which was generated by randomly selecting
items across separate groups, and it was possible that repre-
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Fig. 10. Sensitivity analysis of ‘noise’ as a function of guessing error

sentatives from several groups could be chosen. This matrix
format is illustrated in Table 3a.

Table 3b shows the Ratio Rules for this type of matrix
with 10000 rows and with the 10 attributes listed above. The
rows comprise of 17.5% from the first group, 25% from the
second group, 50% from the third group, and 7.5% noise; the
dominant values of each rule vector are highlighted. Note
that the component values of the Ratio Rules are roughly
mutually disjoint, i.e., values outside the primary group are
close to zero. From Table 3b we see that the three ratio
rules are essentially: RR1: shirt : pants : shoes: hat = 1 :
1 : 1 : 1, RR2: tire : bulb : oil = 1 : 1 : 1, and RR3:
milk : bread : butter = 1 : 1 : 1. In this case, the Ratio
Rules were able to identify almost perfectly the three groups
despite the presence of noise: RR1 represents the “clothes”
group, RR2 the “automotive” group, and RR3 the “food”
group.

We performed a sensitivity analysis to understand how
the reconstruction accuracy is affected by noise. As in the ex-
ample above, we used a matrix of 10000 rows with the same
items and groups. Figure 10 displays the one-hole guess-
ing error (GE1) of Ratio Rules as a function of noise. The
noise varied from 2–10% with the remaining (noise-free)
rows chosen with equal probability from the three groups.
Note that the guessing error grows slowly with increasing
noise.
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5.4 Scale-up

Figure 11 demonstrates the scale-up of our algorithm. The
vertical axis is the average actual computation time to de-
termine the Ratio Rules (in seconds), as measured by the
time utility of UNIX. The horizontal axis is the number of
data matrix rowsN . Since all of our data sets are relatively
small (N < 5000) for this experiment, we used a 100000
× 100 data matrix created using the Quest Synthetic Data
Generation Tool.8 The methods were implemented inC and
Splus . The experiments ran on a dedicated Sun SPARCsta-
tion 5 with 32 Mb of main memory, running SunOS 4.1.3.
The disk drive was a Fujitsu M2266S-512 model ‘Cranel-
M2266SA’ with minimum positioning time of 8.3 ms and
maximum positioning time of 30 ms.

The plot is close to a straight line, as expected. They-
intercept of the line is the time to compute the eigensystem,
which is alwaysO(M3) = O(1003), which apparently has a
negligible effect on the curve.
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6 Discussion

Here we show the visualization capabilities that Ratio Rules
offer by presenting 2-D scatter-plots of the data sets used.
Using the ‘nba’ data set, we demonstrate how these Ra-
tio Rules can be interpreted, with references to the plots.
Finally, we present a qualitative comparison of the Ratio
Rules versus general association rules [SA96].

6.1 Visualization

Recall that Ratio Rules identify the axes of greatest variation.
Just like with PCA, by projecting the points onto the best
two or three of these axes (i.e., the eigenvectors associated
with the largest eigenvalues), the points can be plotted to
give an idea of the density and structure of the data set. For
example, Fig. 12 shows a scatter-plot of‘nba’ , statistics over
the 1991–92 basketball season, ofN=459 players forM=12
attributes and has been reduced to 2-dimensional RR-space
(i.e., two Ratio Rules). In Fig. 12a, the x-axis corresponds to

8 Quest is available at
www.almaden.ibm.com/cs/quest/syndata.html .

the first (and strongest) rule RR1; the y-axis corresponds to
RR2. In Fig. 12b, the x-axis corresponds to RR2 and the y-
axis corresponds to RR3. Most of the points are very close
to the horizontal axis, implying that they all closely fol-
low the first eigenvector and are considerably linear. The
plot also shows that many of the attributes are correlated
with one another, such as field goals and minutes played.
There are two points that are clearly outliers: (3000, 971) and
(2100,−1296), corresponding to Michael Jordan and Dennis
Rodman, respectively. Figure 13 shows 2-D plots for part a
‘baseball’ and part b‘abalone’.

6.2 Interpretation of the Ratio Rules

In this section, we discuss an example using the‘nba’ data
set of how a set of Ratio Rules can be interpreted as mean-
ingful rules. The methodology is outlined in Fig. 14.

Table 4 presents the first three Ratio Rules (RR1, RR2,
and RR3) for the ‘nba’ data set, which records statistics such
as minutes played, points, total rebounds, assists, and steals.
Based on a general knowledge of basketball and through ex-
amination of these rules, we conjecture that RR1 represents
the level of activity of a player, separating the starters from
those who sit on the bench, and gives a 0.808:0.406≈ 2:1
ratio. This is a Ratio Rule with the obvious interpretation:
the average player scores 1 point for every 2 mins. of play
(equivalently, 1 basket for every 4 mins. played). According
to RR1, Michael Jordan was by far the most active player
in almost every category (see Fig. 12a). RR2 shows that
the number of rebounds is negatively correlated with points
in a 0.489:0.199≈ 2.45:1 ratio. This is because a goal at-
tempt makes it difficult for a player to get in a good position
for rebounding, and vice versa. For that reason, “minutes
played” and “points” are also negatively correlated, mean-
ing that a rebounder scores less as a percentage of time on
the field than players who place emphasis on offense. Thus,
RR2 roughly represents the field position, separating the
guards, who get the most opportunities to shoot, from the
forwards, who are more likely to be rebounders. For exam-
ple, we see, in Fig. 12a, the extremes among active players:
star shooting guard Michael Jordan at one end with 2404
points and 91 rebounds, and power forward (and excellent
rebounder) Dennis Rodman at the other with 800 points and
523 rebounds. RR3 says that rebounds are negatively corre-
lated with assists and steals. Typically, tall players make bet-
ter rebounders because they can reach high and short players
are better at assists and steals because they can move fast.
Thus, RR3 roughly represents the height of a player, with
Mugsy Bogues (5’3”) and Karl Malone (6’8”) at opposite
extremes (see Fig. 12b).

We looked at the Ratio Rules of the other data sets and
found that they are also amenable to interpretation, and that
they give intuitive rules. RR1 for ‘baseball’ indicates the
effectiveness of a batter, giving a formula relating the total
number of at-bats to the total number of hits, doubles and
home runs; RR2 distinguishes between those players who
got on base by slugging and those who often drew a walk;
RR3 identifies the base stealers. The Ratio Rules from the
‘abalone’ set were interpreted as follows: RR1 gives a for-
mula relating the amount of weight of different parts of a
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Table 4. Relative values of the RRs from‘nba’

field RR1 RR2 RR3

minutes played .808 −.4
field goals

goal attempts
free throws

throws attempted
blocked shots

fouls
points .406 .199

offensive rebounds
total rebounds −.489 .602

assists −.486
steals −.07

mollusk to one other; RR2 points out an negative relationship
between the amount of shucked weight and the remaining
weight; RR3 distinguishes between long-thin and short-fat
body types.

6.3 Ratio rules vs. association rules

Ratio Rules are quite different from association rules in
many qualitative aspects. Here we compare and contrast the
two paradigms. Of the association rules, we examine both

1. Solve the eigensystem;
2. Keepk strongest rules according to Eq. 4;
3. Display Ratio Rules graphically in a histogram;
4. Observe positive and negative correlations;
5. Interpret.

Fig. 14. Interpretation of Ratio Rules

Boolean and quantitative rules. Examples of each type of
rule with which we are concerned follow:

– Boolean association rules [AIS93b]:
{bread, milk} ⇒ butter

– Quantitative association rules [SA96]:
bread: [2 − 5] ⇒ butter : [1 − 2]

– Ratio Rules:
ratio of spendingsbread:butter = 2:3

Boolean association rules have the advantages that they
are easy to interpret and relatively easy to implement. The
major drawback, however, is that a given data matrixX
with, for example, amounts spent per customer per product
is converted to a binary matrix by treating non-zero amounts
as plain “1”s. This simplifies the data mining algorithms but
tends to lose valuable information.

Quantitative association rule algorithms perform an im-
portant step to retain the above information. Figure 15a il-
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bread and butter:a quantitative association rulesb Ratio Rules.
The “given” entry asks for an estimation for butter, for the given
amount spent on bread

lustrates how these rules might work for a fictitious data set
with a few customers (points) andM = 2 products only,
namely, “bread” and “butter”. In this data set, the quantita-
tive association rules will derive rules that correspond to the
dashed rectangles of the figure. For example, the first two
lower-left rectangles will yield the rules

bread: [1 − 3] ⇒ butter : [.5 − 2.5]

bread: [3 − 5] ⇒ butter : [2 − 3]

Ratio Rules, for the same setting of Fig. 15 and with
k = 1 rule, will fit the best possible line through the data
set; its unit vector is exactly the first rule of the given data
matrix. Thus, the corresponding rule will be

bread: butter= .81 : .58

For the remaining discussion, we focus only on quantita-
tive association rules since the focus is on real-valued data
such as dollar amounts spent by customers on products. We
compare the strengths of quantitative association rules with
those of Ratio Rules.
The advantages of quantitative association rules include the
following:

– They will be more suitable if the data points form clus-
ters.

– They have been applied to categorical data.

The advantages of Ratio Rules include the following:

– They achieve more compact descriptions if the data
points are linearly correlated, as in Fig. 15, or as in the
real data sets that we saw earlier. In such cases, a single
Ratio Rule captures the correlations, while several mini-
mum bounding rectangles are needed by the quantitative
association rules to convey the same information.

– They can perform extrapolations and predictions. For ex-
ample, in Fig. 15, suppose that we are given that a cus-
tomer bought $8.50 of bread and we want to know how
much butter s/he is expected to buy. Ratio Rules will
predict $6.10 on butter, as Fig. 15b illustrates. Quantita-
tive association rules have no rule that can fire because
the vertical line of “feasible solutions” intersects none of
the bounding rectangles. Thus they are unable to make
a prediction.

– Their derivation requires a single pass over the data set.
– They are easily implemented: thanks to highly fine-tuned

eigensystem packages, and the remaining programming
effort is minimal.

7 Conclusions

We have proposed a completely different type of rules as
the target of data mining efforts, namely,Ratio Rules. These
rules have significant advantages over Boolean and quanti-
tative association rules:

– They lead to a natural measure, the “guessing error”,
which can quantify how good a given set of rules is.

– They can be used to estimate one or more unknown
(equivalently, missing, hidden or corrupted) values when
a new data record is given, based on the novel method
proposed in Sect. 4.5; thus, they can also be used in
forecasting, for “what-if” scenarios, and for detecting
outliers.

– They are easy to implement. The most difficult part of
our method is the solution of an eigensystem for which
reliable packages and/or source code are widely avail-
able.

– They are fast and scalable, requiring asingle passover
the data matrix, and growing linearly on the largest di-
mension of the matrix, presumably the numberN of
rows (customers).

– They give visualization for free, thanks to the dimen-
sionality reduction properties of Ratio Rules.

We described how to interpret Ratio Rules and we dis-
cussed their qualitative differences from association rules.
Finally, we presented experiments on several real data sets,
which showed that the proposed Ratio Rules scale-up for
large data sets, and can achieve up to 5 times smaller guess-
ing error than its competitor. Our experiments on binary
matrices showed that Ratio Rules can find large itemsets,
even in the presence of noise. Future research could focus
on applying Ratio Rules to data sets that contain categorical
data.
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