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Abstract. Association Rule Mining algorithms operate on 1 Introduction

a data matrix (e.g., customess products) to derive associ-

ation rules [AIS93b, SA96]. We propose a new paradigm,Data mining has received considerable interest [FU96], of
namely, Ratio Ruleswhich are quantifiable in that we can Which the quintessential problem in database research has
measure the “goodness” of a set of discovered rules. We alsBeen association rule mining [AIS93b]. Given a data ma-
propose the “guessing error” as a measure of the “goodnesstfix with, for example, customers for rows and products for
that is, the root-mean-square error of the reconstructed Vapolumns, association rule algorithms find rules that describe
ues of the cells of the given matrix, when we pretend thatfrequently co-occurring products, and are of the form

they are unknown. Another contribution is a novel method {pread, mil§ = butter (90%),

to guess missing/hidden values from the Ratio Rules that . . ., —

our method derives. For example, if somebody bought $1dn€aning that customers who buy “bread” and “milk” also
of milk and $3 of bread, our rules can “guess” the amounti€Nd to buy "butter” with 90% confidence. What distin-
spent on butter. Thus, unlike association rules, Ratio Rule§Uishes database work from that of artificial intelligence,
can perform a variety of important tasks such as forecastingh@chine leaming, and statistics is its emphasis on large data
answering “what-if” scenarios, detecting outliers, and visu-Sets. The initial association rule mining paper [AIS93b], as

alizing the data. Moreover, we show that we can compute/Vell @s all the follow-up database work [AS94], proposed al-
Ratio Rules in asingle pass over the data set with small gorithms to minimize the time to extract these rules through

memory requirements (a few small matrices), in contrasicléver record-keeping to avoid additional passes over the

to association rule mining methods which require multiple9ata set. _ _ _ _ _

passes and/or large memory. Experiments on several real The major innovation of this work is the introduction of

data sets (e.g., basketball and baseball statistics, biologic&tatio Rulesof the form

data) demonstrate that the proposed method: (a) leads @Qustomers typically sperti: 2 : 5dollars

rules_ that make_ sense; (b) can find I_arge itemsets m_bmary on bread: milk : butter

matrices, even in the presence of noise; and (c) consistently

achieves a “guessing error” of up to 5 times less than using he above example of a rule attempts to characterize pur-

straightforward column averages. chasing activity: ‘if a customer spends $1 on bread, then
s/he is likely to spend $2 on milk and $5 on butter’. What is

Key words: Data mining — Forecasting — Knowledge dis- @lso novel about this work is that, in addition to proposing a

covery — Guessing error fully automated and user-friendly form of quantitative rules,
it attempts to assedsow goodthe derived rules are, an is-
sue that has not been addressed in the database literature.
We propose the “guessing error” as a measure of the “good-
ness” of a given set of rules for a given data set. The idea
is to pretend that a data value (or values) is (are) “hidden”,
and to estimate the missing value(s) using the derived rules;
the root-mean-square guessing error (averaged over all the

This material is based upon work supported by the National Science Founhidden values) indicates how good the set of rules is. To-

dation under Grants No. IRI-9625428, DMS-9873442, 11S-9817496, andwards this end, we provide novel algorithms for accurately

11IS-9910606, and by the Defense Advancgt_j Researc_h Projects Agency U’éstimating the missing values, even when muItipIe values

der Contract No. N66001-97-C-8517. Additional funding was provided by are simultaneously missing.

donations from NEC and Intel. Any opinions, findings, and conclusions or A It Ratio Rul d .
recommendations expressed in this material are those of the author(s) and S a resg t, Ratio _u es Can_ e}ermme (or recover) un-
do not necessarily reflect the views of the National Science FoundationKnown (equivalently, hidden, missing, or corrupted) data,

DARPA, or other funding parties. and can thus support the following applications:
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— Data cleaning: reconstructing lost data and repairingprobability-based measures [ST96]. Related issues include
noisy, damaged, or incorrect data (perhaps as a resutiutlier detection and forecasting. See [Jol86] for a textbook
of consolidating data from many heterogeneous sourcetreatment of both, and [AAR96, Hou96, BMS97b] for recent
for use in a data warehouse). developments.

— Forecasting:If a customer spends £1 on bread and £2.50
on ham, how much will s/he spend on mayonnaise?

— “What-if” scenarios: We expect the demand for Cheerios 3 Problem definition
to double; how much milk should we stock up 'dn?

— OQutlier detection: Which customers deviate from the typ- The problem we tackle is as follows. We are given a large
ical sales pattern? set of N customers and/ products organized in aN x M

— Visualization: Each Ratio Rule effectively corresponds matrix X, where each row corresponds to a customer trans-
to an eigenvector of the data matrix, as we discuss lateraction (for example, market basket purchase), and enfry
We can project the data points on the 2- or 3-D hyper-gives the dollar amount spent by customiesn product;.
plane defined by the first 2 or 3 Ratio Rules, and plotTo make our discussion more concrete, we will use rows
the result, to reveal the structure of the data sey),( and “customers” interchangeably, and columns and “prod-
clusters, linear correlationsfc). ucts” interchangeably The goal is to find Ratio Rules of

the formwvy : vy @ -+ : vy, such that the rules can be used

. ' to accurately estimate missing values (“holes”) when one or
the related work. Section 3 defines the problem more for- anysimultaneousioles exist in any given row of the ma-

mally. Section 4 introduces the proposed m?thOd- Sec_tion ix. As previously mentioned, this will enable Ratio Rules
presents the results from experiments. Section 6 provides 2 support the applications en1umerated in Sect. 1
discussion. Finally, Sect. 7 lists some conclusions and gives Next, we give more intuition behind Ratio.Rl.JIes and

pointers to future work. discuss a method for computing them efficiently.

This paper is organized as follows: Section 2 reviews

2 Related work 4 Proposed method

[AIS93a] distinguish between three data mining problems:the proposed method detects Ratio Rules usiggnsystem
identifying classifications, finding sequential patterns, andanalysis a powerful tool that has been used for several set-
discovering association rules. We review only material rel'tings, and is similar to Singular Value Decomposition, SVD,
evant to the latter, since it is the focus of this paper. SeE[PTVFQZ], Principal Component Analysis, PCA, [Jol86], La-
[CHY96] for an excellent survey of all three problems. tent Semantic Indexing, LSI, [FD92], and the Karhunen-
The seminal work of [AIS93b] introduced the problem | jeve Transform, KLT, [DH73]. Eigensystem analysis in-
of discovering association rules and presented an efficient al;q}yeg computing the eigenvectors and eigenvalues of the
gorithm for mining them. Since then, new serial algorithms coyariance matrix of the given data points (see Sect. 4.1
[AS94, PCY95, SON95] and parallel algorithms [AS96] for intuition and Sect. 4.2 for more formal treatment). In
have been proposed. In addition, generalized associatioggct. 4.3, we present an efficiestngle-passalgorithm to
rules have been the subject of recent work [SA95, HF95]. compuyte thek best Ratio Rules. A fast algorithm is ex-

_ The vast majority of association rule discovery tech-yemely important for database applications, where we ex-
niques are Boolean, since they discard the quantities of thgect matrices with several thousands or millions of rows.
items bought and only pay attention to whether somethingsection 4.4 presents one of the major contributions of this
was bought or not. A notable exception is the work of yaper: the introduction of a measure for the “goodness” of a
[SA96], where they address the problem of mining quan-giyen set of rules. Section 4.5 presents another major contri-

titative association rules. Their approach is to partition eactytion: how to use the Ratio Rules to predict missing values.
guantitative attribute into a set of intervals which may over-

lap, and to apply techniques for mining Boolean association
rules. In this framework, they aim for rules such as 4.1 Intuition behind Ratio Rules

bread: [3 — 5] and milk: [1 — 2] i 1a list ol . &/ oroduct
) igure la lists a se customers and/ products orga-
= butter: [1.5 2] (90%) nized in anN x M matrix. Each row vector of the matrix

The above rule says that customers that spend between Zan be thought of as an/-dimensional point. Given this
5 dollars on bread and 1-2 dollars on milk, tend to spendset of N points, eigensystem analysis identifies the axes (or-
1.5-2 dollars on butter with 90% confidence. thogonal directions) of greatest variance, after centering the

Traditional criteria for selecting association rules are points about the origin. Figure 1b illustrates an example of
based on the support-confidence framework [AIS93b]; recen@n axis that this analysis finds. In Fig. 1 we ha\ve2 prod-
alternative criteria include the chi-square test [BMS97a] anducts, and so our customers can be represented by 2-D points.
- The directionz’ suggested by this analysis is shown, and its

1 We can also use Ratio Rules for “what-if” scenarios on the aggregate

level, e.g., given the rul€heerios: milk = 1 : 1 and thescenario that 2 Of course, the proposed method is applicable to Ahy M matrix,
‘We expect the demand for Cheerios to double for the average customemyith a variety of interpretations for the rows and columns, e.g, patients and
how much milk should we stock up an®e get that The demand for milk  medical test measurements (blood pressure, body weight, etc.); documents
should doublé. and terms, typical in IR [SM83], etc
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| o .
bread  butter : = “\e‘\
customer ($) (%) ! = O
Billie 89 49 | s L
Charlie 3.34 1.85 ! S o o i e
Ella 500  3.09 ! &
e . e 1 & B e
‘ls/loiltl:ns 41132 2'9691 ! L ° (0.866,0.5) Fig. 1. A data matrixa in table form andb its counterpart in
. : ! .o * $spentonbread graphical form, after centering (original axis drawn with dotted
L.t lines). As the graph illustrates, eigensystem analysis identifies
L. the vector (0866, 0.5) as the “best” axis to project along
a T b B

Table 1. Symbols and their definitions

symbol | definition
N number of records (matrix rows)
M number of attributes (matrix columns)
k number of Ratio Rules retained
Rz set of Ratio Rules
4 set of hidden values (“holes”) in a given row
h number of hidden values (“holes”)
GE; guessing error in reconstructing one hole usirgy
GE;, guessing error in reconstructirigsimultaneous
holes using#
X N x M data matrix
Xe column-centered version of
Xt transpose oK
x4 value at row:
and columnj of the matrixX
Zi reconstructed (estimated) value at
row ¢ and columny
3 mean cell value oX
o M x M covariance matrixX% x X.)
\% M x r day-to-concept similarity matrix
U N x r customer-to-concept similarity matrix
A r X r eigenvalue matrix

meaning is that, if we are allowed only one rule, the best

direction to project on is the direction af. The direction:’

— The “x” symbol indicates the multiplication of two ma-
trices, two vectors, or a matrix and a vector.

Ratio Rules are based on the concepteigenvaluesand
eigenvectorsaand are closely related to the Singular Value
Decomposition from matrix algebra. These concepts are de-
fined below. Table 1 gives a list of symbols and their defi-
nitions.

Definition 1. For a squaren x n matrix S, a unit vectoru
and a scalar) that satisfy

Sxu=\Axu

1)
are called aneigenvectorand its correspondingigenvalue
respectively, of the matriS.

In order to proceed, we must explain the Singular Value
Decomposition (SVD). The formal definition for SVD is as
follows:

Theorem 1 (SVD). Given anN x n real matrix X we can

express it as
X=UxAxV! )

where U is a column-orthonormalV x r matrix, r is the

is a Ratio Rule(RR) that governs the correlations between rank of the matrixX, A is a diagonalr x r matrix of the
money spent on the products, based on the customer pueigenvalues\; of X, andV is a column-orthonormah x r
chasing activity in the matrix. In this case, the projection of matrix.

a data point on thes’ axis gives the overall “volume” of

the purchase. The coordinates of the first RR = (0.866, 0.5 T00f: See [PTVF92, p. 59].

are those of the unit vector in the directieh They imply
the rule ‘bread: butter = $0.866 : $05"; that is, for most

O
Recall that a matriXJ is called column-orthonormaif
its columnsu; are mutually orthogonal unit vectors. Equiva-

NS, € . OJONe :
of our customers, the relative spendings bread-to-butter ariently, U"x U =1, wherel is the identity matrix. Also, recall
close to the ratio 0.866:0.5. As we shall discuss later, thesé@t the rank of a matrix is the highest number of linearly
Ratio Rules can be used for forecasting, “what-if’ scenar-ndependent rows (or columns).

ios, outlier detection, and visualization. In addition, they are

Equation 2 equivalently states that a matkxcan be

often amenable to interpretation as underlying factors thaProught in the following form, the so-callespectral decom-

describe, in this case, purchasing behavior.

4.2 Formal treatment of Ratio Rules

We shall use the following notational conventions from lin-
ear algebra:

— Bold capital letters denote matrices, for eld,,X.
— Bold lower-case letters denot®lumnvectors,
e.g.,u, v.

position[Jol86, p. 11]:
3)

whereu;, andv; are column vectors of thd andV matrices
respectively, and\; the diagonal elements of the mattik
Without loss of generality, we can assume that the eigen-
values); are sorted in decreasing order. Figure 2 illustrates
the rotation of axes that SVD implies for an example where
M=2 (i.e., 2-D points). The corresponding two directions
(' andy’) that SVD suggests are shown, meaning that, if
we are allowed only=1 axis, the best direction to project

X = AqUp X Vi + XoUp X V5 +... + AU, x VE
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Table 2. Example of a customer-product matrix

Item | milk bread butter tire oil
Customer
Smith 1 1 1 0 0
Doe 2 2 2 0 0
Johnson 1 1 1 0 0
Lee 5 5 5 0 0
Taylor 0 0 0 2 2
N o Sullivan 0 0 0 3 3
. 3 X Thompson 0 0 0 1 1
Fig. 2. lllustration of the rotation of axis that SVD implies: the “best” axis
to project isz’ 0
0
. . . . 0
onto is the direction oft’; if we are allowedk=2, the best
directions arex’ andy’. 529 % 0%3 = [0, 0, 0, 0.73, 0.71]
One of the by-products of SVD is that it reduces the 0.80
dimensionality of a data set while retaining as much varia- 0'27

tion as possible. This is done by identifying the direction of

maximum variance (given by the largest eigenvalue/vector)  Noiice that the rank of th& matrix is r=2; there are
ano_l then identifying the Qrthogonal direction with maximum effectively two types of customers and, respectively, two
variance (the second eigenvalue/vector), and so forth. Iyheq of rules: food shoppers and automotive shoppers, and
the end, only the eigenvectors associated withithargest o concepts (i.e., groups-of-products): the “food concept”
eigenvalues are kept while the remaining ones are truncate(é-r_e_ the group{milk, bread, butte}), and the “automotive

Thesel: largest eigenvectors give the Ratio Rules. concept” (i.e., the grougtire, oil}). The intuitive meaning
In order to choose a good cutdffof rules to retain, the ¢ |y andV is as follows:

simplest textbook heuristic (and the one used in this paper) .
is to retain enough eigenvectors so that the sum of theiobservation 1. U can be thought of as theustomer-to-
eigenvalues covers 85% of the grand total [Jol86, p. 94]conceptsimilarity matrix.

That is, choose the cutoff such that Observation 2. SymmetricallyV is the product-to-concept

ko similarity matrix.
@ ~ 85% (4) _ .
Z;‘ﬁl A For examplep, 2 = 0 means that the first produeh{lk) has

zero similarity with the second concept (the “automotive
In addition to being a method for performing axis rota- concept”).V contains Ratio Rules in its columns; in the
tion and truncation, another intuitive way to view the SVD is above exampley contains the following two rules:
that it tries to identify “rectangular blobs” of related values
in the matrixX. This is best illustrated through an example. )
1. Customers typically spen&8 :.58 :.58 : 0 : Odollars
on bread: milk : butter: tire : oil.

Example: In the “toy” matrix of Table 2, we have two )
“blobs” of values, while the rest of the entries are zero.2- Customers typically sper@: 0:0:.71:.71 dollars

This is confirmed by the SVD, which identifies them both: on bread: milk : butter: tire : oil.
r0.180 7 The interpretation is that a customer will either spend an
0.36 0 equal amount on all food products and none on automotive
0.18 0 products, or vice versa.
_ . 9640
X=UxAxVi= 0900 [o 5,29} (5)  Lemma 1. The matrixX’ x X is a symmetric matrix, whose
0 053 eigenvalues are the squares of theelements ofd of the
0 080 SVD ofX. Moreover, the columns &f are the eigenvectors
[0 027] of Xt x X.
y [0.58 0580580 O } Xt X =V x A2 x V' (6)
0 0 0 Q71071
) N Proof: See [Fal96]. O
or, in “spectral decomposition” form: The intuitive meaning of theZ x M matrix X! x X is that
r0.187 it gives the product-to-product similarities. In our example,
0.36 we have the following product-to-product similarities:
0.18 3131310 0
X =9.64x |090| x[0.58 0.58 0.58 0, 0] + 3131310 0
0 XtxX=1]3131310 0
0 0 0 01414
| 0 | 0 0 01414
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/* input: training set X on disk */ input:
. . : : N :
! _ogt_put. covariance matrix c covariance matrix C in main memory
for j = 1 to M do
colavgs[j] <« O; .
- output:
for | o 1 to M do eigenvectors Vi,...,V, (i.e., the RRs)
Cm +~ 0
o IR(:;adl :ﬁ row]\éf OIOX from disk; compute eigensystem:
for i z 1 to M do ' {vi,...,var} < eigenvectors(  C);
Jco.l_av ol += X0 {\1,..., A} < eigenvalues(  C);
for I“_]_ 1 to M c’lo sort v; according to the eigenvalues;
. - ) choose k based on Egq. 4;
Cll += X[ X e :
forj =1 to M do return the k largest eigenvectors;
colavgs[j] I= N; .
. complexity:
forj:=1to M do 3 .
for I :== 1 to M do O(M?) main memory
C[ln = N x colavgs[j] *  colavgs]l];
a Single-pass over data matrix b Eigensystem computation

Fig. 3. Pseudocode for efficiently computing Ratio Rules

Next we present a method for computing Ratio Rules bycovariance matrixC. It then requires Q(/3) CPU opera-
eigensystem analysis in a single pass. tions to compute the eigensystem. Since the number of rows
N is typically in the hundreds of thousands (e.g., sales, or
customers), and the number of columhsin the hundreds
4.3 A single-pass algorithm for Ratio Rules (e.g., products, or patient symptoms), the algorithm of Fig. 3
is very efficient. It should be noted that the algorithms of
A covariance matrixC = [¢;;] is a “column-to-column” sim-  [AS96] require more than one pass over the data set in an
ilarity matrix, which has a high;; value if the columng attempt to find large itemsets. Also note that theé.GJ fac-
and; are correlated. Mathematically, it is defined as tor for the eigensystem computation is negligible compared
C =Xt %X R to the O(VM?) operations needed to build the covariance

matrix, since we assume that > M.
where X, is derived fromX by subtracting the respective
column average from each and every cell. Thatds,is a .
zero-mean, or “centered”, matrix in the sense that its columrf-4 Measuring the goodness of a rule-set:
averages are all zero. Thus, the covariance matriis a  (he “guessing error
real, symmetric square matrix of sidd. The computation
of Ratio Rules involves determining the eigenvector<of
which, by Lemma 1, can be transformed into thoseXof

The following steps will compute the Ratio Rules in an

I/O-efficient way: (a) zero-mean the input matrix to derive
X. and simultaneously compute from Eq. 7 by updating
partial sums; (b) compute the eigenvalues/vector€ @nd .

given record/row.

pick the firstk. We assume tha€ can fit in memory: it : : - .
needsM? cells, whereM is the number of columns, which Let's consider a.specm.c row _(cugtomen;)of the matrix,
should typically be on the order of one thousand for real ap_and pretend that thgth attribute is hidden from us (i.e., the

oot ; ; amount spend on thg-th product, say, bread). Givea?
plications [AIS93b]. Under this assumption, we can compute’ nd the rest of the values, ,, (m # 7), we should be able

the column averages and the covariance matrix with a singl : N - ;

pass over theV (= millions) rows of the givenX matrix, 0 estimate the mls.S|_ngAvaIue ag."The guessing erroffor

using the algorithm of Fig. 3a. Once we ha@ein main S SPecific cell{ j) is & — ;.

memory, we can use any off-the-shelf eigensystem packagBefinition 2. The “single-hole guessing error”, or simply

to determine its eigenvalues and eigenvectors, as shown ithe “guessing error”, for a set of rules”Z on a data matrix

Fig. 3b3 X is defined as the root-mean-square of the guessing errors
The proposed algorithm requiressingle passo com-  of the individual cells, that is,

pute the covariance matrix. In more detail, it requiresvQ(

I/Os to read the matrix from disk, during which partial 1 ~

sums are maintained and zero-mean centering is performe&fE = NM Z Z(xij — x5)? €

and O(VM?) CPU operations to build the corresponding i

Let.Z2 be a given set of rules. We would like to be able to
assess how good? is. The association rule mining litera-
ture has not defined a criterion to assess the “goodness”, or
accuracy, of a set of discovered rules. We propose a remedy,
namely, the “guessing error”. The fundamental requirement
is that.#2 must allow for estimations of missing values in a

N M

3 If the number of columns is much greater than one thousand, as po:'vIore speC|f|caIIy, we also define it as tlsﬂngle-hole guess-

tentially might be the case in some market basket data analyses, then tHQg error Gk, bec"f‘us? we allowed only a .Smgle hole at a
methods from [BDOY5] could be applied to efficiently compute the eigen- time. The generalization to the-hole guessing error GE
system of the resulting sparse matrix. is straightforward.
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/* input: bss, @ 1x M row vector with holes */

/* output: b, a 1x M row vector with holes filled */

1. V'« Eg XV, /* “RR-hyperplane” */

2. b« Exxbl; [+ “feasible sol'n space” */

3. solve V' X Xconcept =b’ for  Xconcept [* solution in k-space */
4. d <V X Xconcept; /* solution in M-space */
5. b+« bx[Expe]t +d x [Ex]E;

Fig. 4. Pseudocode for filling holes based on Ratio Rule matrix

Definition 3. The “h-hole guessing error” for a set of rules hidden values or forecast future values. This framework is
.72 on a data matrixX is defined as the root-mean-square of also applicable to “what-if’ scenarios where we can spec-
the guessing errors of configurations/oéimultaneousells,  ify some of the values What if the demand for Cheerios
that is, doubles?) and then forecast the effect on other attributes
(‘Then the demand for milk will double.In addition, it can

1 N R ) be used to discover outliers by hiding a cell value, recon-
GEy = NOEA S0 D @y —wy) (9)  structing it, and comparing the reconstructed value to the
O T wem, jew hidden value. A value is an outlier when the value predicted

. ,, o is significantly different (e.g., two standard deviations away)
where.7Z;, contains some subset of t(f%f) combinations of  from the existing hidden value.
sets.7Z with h “holes”. We begin by developing some notation necessary for
formulating the problem algebraically. We show how the
| problem leads to an algebraic system of equations. Figure 4
gives the pseudocode. Figures 5—7 illustrate the solution ge-
ometrically.

The way that#2 is derived is independent of the def-
inition of the “guessing error”. We expect that the typical
practice in machine learning will be followed: we can use
a portion X;,.;, Of the data seX to derive the rules#2

(‘training set”), and some other portioX..; of the data  pefinition 4. Anh-hole row vectob,5, is defined as a vector

setX to compute the guessing error (“testing set”). The de-yith holes (denoted with “?”s) at indices given i#, where
tails of the choice of training and testing sets is orthogonal g is the set of “holes”.

to our definition, and outside the scope of this paper, since

they have been extensively examined in the machine learnAn example of a Ix 5 2-hole row vector is the following:

ing and classification literature [Qui93]. A reasonable choiceb = b 2 a2 b

is to use 90% of the original data matrix for training and the ~{24} ~ [b1, 7, b3, 2, bs]

remaining 10% for testing. Another possibility is the use

of the entire data matrix for both training and testing. In Definition 5. An (A — h) x M elimination matrix E 5 is

this paper, we report only the results for the former choicedefined as an\/ x M identity matrix withh = |77 rows

because the two choices above gave very similar results. removed, where the row indices are given in the.gét
The ability to measure the goodness of a set of rules for

a given testing data set is very important, for developers of\N example of a 3« 5 elimination matrix is the following:

data-mining products and for end-users alike: 10000

— For developers, it allows benchmarking and comparisorrE{ZA} =100100

with competing products and designs: a low “guessing 00001
error” over a variety of input matrices indicates a good

An elimination matrix is very useful in helping us pick and

Eroducctj. that _ duct ic gaSo0Se entries from vectors. For example, we can eliminate
~ For end-users that use a given product on a specific datgy wous fromb, ,, as follows:

set, a low “guessing error” implies that the derived rules
have captured the essence of this data set, and that they
can be used for estimation of truly unknown values with

1 A
more confidence. butter

It should be highlighted that the definition of the “guess-
ing error” can be applied tany type of rules, as long as
they can do estimation of hidden values. In the next section
we focus on the proposed Ratio Rules, and show how to us@uer

guess

them to obtain such estimates. RR,

~&— expected locations

L)

mm———— - ——— o 4 guess

|

! o .
|-— feasible locations

4.5 Determining hidden and unknown values
. - 4 bread

Here we present an algorithm for determining unknown val- I

ues of a data matrix both algebraically and geometrically. If Given value

we can reconstruct these so-called “holes”, then we can findfig. 5. The exactly-specified case
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butter 4

expected

milk

Fig. 6. The over-specified case

butter 4

feasible

RR-plane

bread

milk

Fig. 7. The under-specified case

by
10000 ? b1
E{274} X b2%274} =[(00100f x [bs| =|bs3
00001 ? bs

bs

Once the user has specified partial knowledge from a

transactionb s, (e.g., the dollar amounts spent by a new
customer, for some products), the set of unknow#s are
determined by theé: Ratio Rules that have been kept, and
are reported ab, that is,bz, with the holes7Z filled in.
The geometric intuition is the following: the rules form a
k-dimensional hyper-plan€’ (= E s x V) in M-space, the
“RR-hyperplane”, on or close to which the data points lie.
The i holes result in arm-dimensional hyper-planb’ (=
Es x b',,) in M-space, the “feasible solution space”, on
which the solution is constrained. We want to find a point
that agrees with our given partial data (“feasible solution

space”), and is as close to (or exactly on) the RR-hyperplane.

Figure 5 illustrates the case in the simplest possible form
we haveM =2 products (say, amount spent on “bread” for
the x-axis, and amount spent on “butter” for the y-axis)1
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(RRy). We want to find the amount spent on butter (the hole).
The intersection of “feasible locations” (vertical dashed line)
and “expected locations” (solid diagonal line) gives our best
prediction for the 2-D point that corresponds to that sale; the
value on the “butter” axis, labeled as “guess” is our proposed
estimate for the required amount spent on butter.

The intersection of the two hyper-planes corresponds to
a system of linear equatioN8’ X X.oncepe = b’, from which
the solution ofXconcep: determines the unknowns.

Recall that the intersection of “feasible locations” and
“expected locations” gives our best prediction. There are
three possibilities regarding the intersection of the two hy-
perplanes, which are illustrated in Figs. 5—7. Respectively,
there are three possibilities regarding the equation from step
3 of the pseudocode,
V/ X Xconcept = b/ (10)

given that there areM/ — h) equations and unknowns.

CASE 1: (EXACTLY-SPECIFIED) The two hyper-planes
intersect at a point. This occurs whei/(— h) = k.
The respective linear equations have an exact solution
determined by

Xconcept = (Vl)il X b/

Figure 5 illustrates an example M = 2 dimensions, for
h =1 hole and cutoff = 1 ratio rule.

(11)

CASE 2: (OVER-SPECIFIED) The two hyper-planes do not
intersect. This occurs whed{ —h) > k. The respective
equations are over-determined, and the closest distance
between them is chosen for the solutiorkig,.,: based
on the Moore-Penrose pseudo-inverseVof[PTVF92].

This uses the singular value decompositiorVéf
V' =R x diag(u;) x s (12)

SinceV’ is singular, no inverse exists, but we can find a
pseudo-inverse:

V17! = Sx diag(1/p;) x R (13)
and, thus,
Xconcept = [V/]il X b/ (14)

Figure 6 illustrates an example M = 3 dimensions, for
h =1 hole and cutofi = 1.

CASE 3: (UNDER-SPECIFIED) The intersection of the two
hyper-planes forms ar(in(k, h) — 1)-dimensional hyper-
plane. This occurs when{ — h) < k. The respective
equations are under-determined. Among the infinite so-
lutions, we propose to keep the one that needs the fewest
eigenvectors. Thus, we ignork<{h) — M rules to make

the system exactly-specified, and then solve it using
CASE 1. Figure 7 illustrates an example id = 3 di-
mensions, forh, = 2 holes and cutoff; = 2.4

rule, andh=1 hole. We know (a) that a customer spends the™ 4 We also experimented with the Moore-Penrose pseudo-inverse to find

given amount on bread and (b) _that m_OSt of our preViOUSa least-squares estimation for this case, but the solution presented turned
customers fall on or close to the line defined by the first ruleout to give more accurate estimations.
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5 Experiments — ‘nba’ (459 x 12) - basketball statistics from the 1991—

i , , i 92 NBA season, including minutes played, field goals,
We ran four sets of experiments. The first was to investigate  rehounds, and fouls:

the prediction accuracy achieved by the proposed method;_ ‘paseball’ (1574 x 17) - batting statistics from Major
the second was to examine the robustness of Ratio Rules in | eagque Baseball for four seasons; fields include batting
estimating more than one simultaneous hole (i.e., that the 4yerage, at-bats, hits, home runs, and stolen ases;
relative accuracy does not diminish as the number of holes_ «gpajone’ (4177 x 7) - physical measurements of an in-
is increased); the third was to examine our method on binary  yerteprate animal, including length, diameter, and
data; the fourth was to see how our method scales up for \yejghts’
large data sets.
Preliminary to running these experiments, for each data

) ) o set we chose 90% of the matrix rows for the training ma-
Methods: Since the literature on association rules has NOYyrix: the remaining 10% were used as the testing matrix. We
addressed the issue of reconstructing missing/hidden Va|ue§omputed the Ratio Rules from the training matrix, along

there is no way to do an objective comparison with them.yith the column averages of the training matrix for use as
While it may be possible that current AR methods can beghe competitor ol-avgs ).

adapted for interpolations (e.g., by choosing the “centroid”

of the most similar rule), it is an open problem as to how

well such techniques would work. Should a clever scheme; 1 Reconstruction accuracy

for reconstruction based on AR be proposed in the future,

we have set forth a framework for a fair comparison againsirigyre 8 shows the GEguessing error for thaba’ , ‘base-
Ratio Rules, using our guessing error framework any |’ and‘abalone’ data sets, normalized by the guessing
event, note that AR are inherently unable to give extrapo-gror attained bycol-avgs . As a frame of reference, we
lations. Thus, we compared Ratio Rules with a straightfor-5,54 present the normalized G& col-avgs , which is, of
ward technique for predicting values, namedl-avgs :  coyrse, 100%. Note that the proposed method method was
for a given hole, use the respective column average from thene clear winner for all data sets we tried and gave as low

training set Note thatcol-avgs is identical to the pro- 55 gne-fifth the guessing error obl-avgs
posed method witlk = 0 eigenvalues.

Notice that linear regression, for example, [Hou96], is
unable to fill in arbitrary holes. The reason is that we need
one regression model for each combination of holes. Specif
ically, linear regression has independent variables, that
have to be given to us, and odependentvariable. The re-
gression model will then express the value of the depender
variable as a linear combination of the values of thede-
pendent ones. That is, if we want to predict the amount spen
on “bread”, given the amount spent on “milk” and “butter”,
we have to build one regression model; if we want to regres:
“bread” on “butter” only, we have to buildnotherregres-
sion model, and so on. Thus, if we want to predict a given 5
attribute, for any combination of holes in the othiefr — 1
attributes, we clearly need the power se¥:2 different re- i
gression models. In order to predity attribute, given an
arbitrary set of the other attributes, we need an exponential ) ] o
number of regression models, nameM « 2M_1’ which is Flg. 8. R’atlo of guess@g error between RR acd-avgs , for ‘nba’,

. . baseball’, and‘abalone
clearly impractical even for moderate valuesidt In con-
trast, Ratio Rules can predict any attribute, given any subset
of the other attributes.

We cannot compare Ratio Rules with any association-5 2
based methods because, as we argue in Sect. 6.3, association-
based methods do not lead to prediction of missing values

Relative ‘‘guessing error’’ over 3 datasets

100

==

60

40

percent error vs. col-avg

o

col-avgs  ‘nba’ *baseball”  “abalone”

Guessing error for simultaneous holes

In Fig. 9, we show GE for the ‘nba’ and ‘baseball’ data
sets, for 1< h < 5 holes. The results for thabalone’ data
was described in Sect. 4.4. guessing error is rather insensitive for up to several simul-
taneous holes. Note that GHs constant with respect th
for col-avgs  since the computation of GEturns out to
Data sets: We ran our experiments on a variety of real databe the same for alk, for that method.
sets (see Sect. 6.1 which displays scatter-plots of them), d

: 5. T .
scribed as follows: baseball’ is available at

www.usatoday.com/sports/baseball/sbstats.htm
5 The ability to have an objective, numerical estimate of the goodness 7 ‘abalone’ is available at
of a set of rules was exactly the motivation behind this paper. www.ics.uci.edu/ ~mlearn/MLSummary.html
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Guessing Error vs. # holes (‘nba’) Guessing Error vs. # holes (*baseball’)
120 14

-+ col-avgs . - - o ¥ col-avgs
wo * * * ‘= RR : Rl

1
&0

6l

- u—r”/kﬂk_/l. " Fig. 9. Guessing error vs. number of
holes (1-5) for thénba' and‘base-

il il ball' data sets
| 2 3 4 5 I 2 3 4 5

uessing error
guessing error

a

number of holes number of holes

Table 3. Binary matrix of customers and products and its first three Ratio Rules

milk  bread butter tire bulb o0il shirt pants shoes hat
L S e ELWNNN
milk .003 | .018 | .577
Johnson 0 0 0 1 1 1 0 0 0 0 bread || .003 | .018 | .577
Taylor 0 0 0 1 1 1 0 0 0 0 bl_Jtter .002 | .018 | .578
tire .002 | .576 | .019
Lee 0 0 0 0 0 0 1 1 1 1 bu_lb .003 | .576 | .019
Sullivan 0 0 0 0 0 0 1 1 1 1 oil 003 | 5791 .015
shirt .500 | .001 | .002
noisel | 0 1 0 0 11 0 0 0 0 pants || .500 | .003 ) .002
. shoes || .500 | .003 | .002
noise2 0 0 0 1 0 0 0 0 0 1 hat 500 | 002 | 002
noise3 0 1 0 0 0 1 0 1 1 0 : : :
a matrix of food, automotive and clothes groups b first three Ratio Rules
5.3 Ratio rules on binary data sentatives from several groups could be chosen. This matrix

format is illustrated in Table 3a.

_ ) Table 3b shows the Ratio Rules for this type of matrix
We performed some experiments on binary (e.g., market basg;ith 10000 rows and with the 10 attributes listed above. The
ket) data. The goal was to see if Ratio Rules could dis-qys comprise of 17.5% from the first group, 25% from the
tinguish between thr_ee different groups of items where thesecond group, 50% from the third group, and 7.5% noise; the
groups were food rfilk, bread, buttey, automotive {ire,  gominant values of each rule vector are highlighted. Note
bulb, oil), and clothesshirt, pants, shoes, hatMost of the  {hat the component values of the Ratio Rules are roughly
matrix rows represented transactions involving items frommytyally disjoint, i.e., values outside the primary group are
one and only one group. In other words, given any pair of¢jose to zero. From Table 3b we see that the three ratio

rows, all the items were either from exactly the same groupyjes are essentially: RRshirt : pants: shoes: hat= 1 :
or from two mutually disjoint groups. The rest of the rows 1 . 1 - 1 RR: tire : bulb: ol =1:1:1, and RR

were ‘noise’, which was generated by randomly selectingmiik : pread : butter = 1 : 1 : 1. Inthis case, the Ratio

items across separate groups, and it was possible that reprgyjes were able to identify almost perfectly the three groups
despite the presence of noise: Riepresents the “clothes”
group, RR the “automotive” group, and RRthe “food”

o4 ' Gues'sing Er'ror vs. l'\loise ' group.
' 0.0116 +X;'f(‘°g§g<§gga')' e We performed a sensitivity analysis to understand how
035 1 the reconstruction accuracy is affected by noise. As in the ex-
W 03t P ample above, we used a matrix of 10000 rows with the same
g 025 | 4 items and groups. Figure 10 displays the one-hole guess-
o o ing error (GR) of Ratio Rules as a function of noise. The
7 0zt 1 noise varied from 2-10% with the remaining (noise-free)
3 o015 1 rows chosen with equal probability from the three groups.
oal ¢ | Note that the guessing error grows slowly with increasing
O S noise.

Noise (%)
Fi

g. 10. Sensitivity analysis of ‘noise’ as a function of guessing error
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5.4 Scale-up the first (and strongest) rule RRthe y-axis corresponds to
RR,. In Fig. 12b, the x-axis corresponds to R&nd the y-

Figure 11 demonstrates the scale-up of our algorithm. Thewxis corresponds to RRMost of the points are very close

vertical axis is the average actual computation time to deto the horizontal axis, implying that they all closely fol-

termine the Ratio Rules (in seconds), as measured by thiew the first eigenvector and are considerably linear. The

time utility of UNIX. The horizontal axis is the number of plot also shows that many of the attributes are correlated

data matrix rowsV. Since all of our data sets are relatively with one another, such as field goals and minutes played.

small (N < 5000) for this experiment, we used a 100000 There are two points that are clearly outliers: (3(80L) and

x 100 data matrix created using the Quest Synthetic Dat4210Q —1296), corresponding to Michael Jordan and Dennis

Generation Toof. The methods were implemented@and  Rodman, respectively. Figure 13 shows 2-D plots for part a

Splus . The experiments ran on a dedicated Sun SPARCstabaseball’ and part b'abalone’.

tion 5 with 32 Mb of main memory, running SunOS 4.1.3.

The disk drive was a Fujitsu M2266S-512 model ‘Cranel-

M2266SA’ with minimum positioning time of 8.3 ms and 6.2 Interpretation of the Ratio Rules

maximum positioning time of 30 ms.

The plot is close to a straight line, as expected. The In this section, we discuss an example using‘ti®’ data
intercept of the line is the time to compute the eigensystemset of how a set of Ratio Rules can be interpreted as mean-
which is alwaysO(M?3) = O(100°), which apparently has a ingful rules. The methodology is outlined in Fig. 14.
negligible effect on the curve. Table 4 presents the first three Ratio Rules {RRR,,

and RR) for the‘nba’ data set, which records statistics such
00— Sclew as minutes played, points, total rebounds, assists, and steals.
"scaleup.dat" Based on a general knowledge of basketball and through ex-
] amination of these rules, we conjecture that;Roresents
the level of activity of a player, separating the starters from
those who sit on the bench, and gives a 0.808:040&1
ratio. This is a Ratio Rule with the obvious interpretation:
the average player scores 1 point for every 2 mins. of play
(equivalently, 1 basket for every 4 mins. played). According
to RRy, Michael Jordan was by far the most active player
in almost every category (see Fig. 12a). Réhows that
the number of rebounds is negatively correlated with points
6 10 20 30 20 0 60 70 80 90 100 in a 0.489:0.199; '2.45:1 ratio. This is bgcause a goa! at-
db size (N) in thousands tempt makes it difficult for a player to get in a good position
Fig. 11. Scale-up: time to compute RR versus db sien records for rebounding, and vice versa. For that reason, “minutes
played” and “points” are also negatively correlated, mean-
ing that a rebounder scores less as a percentage of time on
the field than players who place emphasis on offense. Thus,
6 Discussion RR, roughly represents the field position, separating the
guards, who get the most opportunities to shoot, from the

Here we show the visualization capabilities that Ratio RulegOrwards, who are more likely to be rebounders. For exam-
offer by presenting 2-D scatter-plots of the data sets used?!®: We €€, in Fig. 12a, the extremes among active players:
Using the'nba’ data set, we demonstrate how these Ra-Star shooting guard Michael Jordan at one end with 2404
tio Rules can be interpreted, with references to the plotsPOints and 91 rebounds, and power forward (and excellent
Finally, we present a qualitative comparison of the Ratiof€oounder) Dennis Rodman at the other with 800 points and
Rules versus general association rules [SA96]. 523 repounds_. RRsays that reboynds are negatively corre-
lated with assists and steals. Typically, tall players make bet-
ter rebounders because they can reach high and short players
are better at assists and steals because they can move fast.
Thus, RR roughly represents the height of a player, with

Recall that Ratio Rules identify the axes of greatest variation.'vILJgSy Bogues (5'3") and Karl Malone (6'8") at opposite

: : SO : extremes (see Fig. 12b).
Just like with PCA, by projecting the points onto the best .
two or three of these axes (i.e., the eigenvectors associat% We looked at the Ratio Rules of the other data sets and

800 r
700
600 -
500 -
400

time (seconds)

300 -
200

100 -

0

6.1 Visualization

with the largest eigenvalues), the points can be plotted t ound that they are also amenable to interpretation, and that

give an idea of the density and structure of the data set. Fo ey give intuitive rules. R.leor baseball |nd|gates the
example. Fid. 12 shows a scatter-blotrffa’ . statistics over effectiveness of a batter, giving a formula relating the total
ex: 19pgl,—93.basketball season,l‘bg459 pla{yers folf=12  humber of at-bats to the total number of hits, doubles and

attributes and has been reduced to 2-dimensional RR—spa&g{ngn rgg:;e E}?sdllusgt;gi%lgs;neds tggtsvgev?/ﬂotg?tsei %I;)csr; vV\\/IQIOk'
(€., two Ratio Rules). In Fig. 12a, the x-axis corresponds t R; identifies the base stealers. The Ratio Rules from the

8 Quest is available at ‘abalone’ set were interpreted as follows: RRives a for-
www.almaden.ibm.com/cs/quest/syndata.html . mula relating the amount of weight of different parts of a
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scatter plot of ‘nba’ scatter plot of ‘nba’
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Fig. 12. A scatter plot ofnba’: two 2-D orthogonal views
scatter plot of ‘baseball’ scatter plot of ‘abalone’
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Fig. 13. Scatter plots of ‘baseball’ andb ‘abalone’ in 2-D RR space
Table 4. Relative values of the RRs fromba’ 1. Solve the eigensystem;
field RR. RR RR; 2. Keepk strongest rules according to Eq. 4;
minutes played 808 | —4 3. Display Rat|q Rules graph|c_a||y ina hls‘togr.arn;
field goals 4.  Observe positive and negative correlations;
goal attempts . Interpret.
free throws Fig. 14. Interpretation of Ratio Rules
throws attempted
blocked shots
fouls Boolean and quantitative rules. Examples of each type of
points 406 | .199 rule with which we are concerned follow:
offensive rebounds
total rebounds —.489 | .602 — Boolean association rules [AIS93b]:
assists —.486 {bread, mil} = butter
steals —.07 — Quantitative association rules [SA96]:
bread: [2 - 5] = butter: [1 — 2]
— Ratio Rules:

mollusk to one other; RRpoints out an negative relationship
between the amount of shucked weight and the remaining
weight; RRy distinguishes between long-thin and short-fat ~ Boolean association rules have the advantages that they
body types. are easy to interpret and relatively easy to implement. The
major drawback, however, is that a given data makix
with, for example, amounts spent per customer per product
6.3 Ratio rules vs. association rules is converted to a binary matrix by treating non-zero amounts
as plain “1"s. This simplifies the data mining algorithms but
Ratio Rules are quite different from association rules intends to lose valuable information.
many qualitative aspects. Here we compare and contrast the Quantitative association rule algorithms perform an im-
two paradigms. Of the association rules, we examine botlportant step to retain the above information. Figure 15a il-

ratio of spendingdread:butter = 2:3
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?
A
} 7
o ; w . (856.1
EN T £° " RR
p e o5 .. !
8 4 e * : | 8 4 !
T3 o el [ *8' 3 |
8—2 T e ! 1 =3 s } Fig. 15. lllustration of rules from a fictitious data set of sales on
@ P | A I | bread and buttera quantitative association ruldsRatio Rules.
Tde | 1 } The “given” entry asks for an estimation for butter, for the given
1 2 3 45 6 7 ST . 1 2 3 45 06 7 BT . amount spent on bread
$spentonbread  given $spentonbread  given
a Quantitative b Ratio Rules

lustrates how these rules might work for a fictitious data set7 Conclusions

with a few customers (points) antl/ = 2 products only, _

namely, “bread” and “butter”. In this data set, the quantita-\We have proposed a completely different type of rules as
tive association rules will derive rules that correspond to thethe target of data mining efforts, namelyatio RulesThese
dashed rectangles of the figure. For example, the first twdules have significant advantages over Boolean and quanti-

lower-left rectangles will yield the rules tative association rules:

bread: [1 — 3] = butter: [.5— 2.5] — They lead to a natural measure, the “guessing error”,
which can quantify how good a given set of rules is.

bread: [3—5] = butter: [2 — 3] — They can be used to estimate one or more unknown

. . . _ (equivalently, missing, hidden or corrupted) values when
Ratio Rules, for the same setting of Fig. 15 and with 5 ha\y data record is given, based on the novel method
k = 1 rule, will fit the best possible line through the data proposed in Sect. 4.5; thus, they can also be used in

set; its unit vector is exactly the first rule of the given data forecasting, for “what-if’ scenarios, and for detecting
matrix. Thus, the corresponding rule will be outliers. '

bread: butter= .81 : .58 — They are easy to implement. The most difficult part of

our method is the solution of an eigensystem for which

For the remaining discussion, we focus only on quantita-  rgjiahle packages and/or source code are widely avail-
tive association rules since the focus is on real-valued data 4pe

such as dollar amounts spent by customers on products. We_ They are fast and scalable, requiringiagle passover
compare the strengths of quantitative association rules with 1o gata matrix. and growing linearly on the largest di-

those of Ratio Rules. L , mension of the matrix, presumably the number of
The advantages of quantitative association rules include the 4\ (customers).

following: — They give visualization for free, thanks to the dimen-
— They will be more suitable if the data points form clus-  sionality reduction properties of Ratio Rules.
ters. _ _ We described how to interpret Ratio Rules and we dis-
— They have been applied to categorical data. cussed their qualitative differences from association rules.
The advantages of Ratio Rules include the following: Finally, we presented experiments on several real data sets,

i o ) which showed that the proposed Ratio Rules scale-up for
— They achieve more compact descriptions if the datajarge data sets, and can achieve up to 5 times smaller guess-
points are linearly correlated, as in Fig. 15, or as in thejng” error than its competitor. Our experiments on binary
real data sets that we saw earlier. In such cases, a sing|@atrices showed that Ratio Rules can find large itemsets,
Ratio Rule captures the correlations, while several mini-eyen in the presence of noise. Future research could focus

mum bounding rectangles are needed by the quantitativg, applying Ratio Rules to data sets that contain categorical
association rules to convey the same information. data.

— They can perform extrapolations and predictions. For ex-
ample, in Fig. 15, suppose that we are given that a cus- _ . o
tomer bought $8.50 of bread and we want to know hOWAcknowIedgementsWe would like to thank Bjrn Thor Jobnsson and Kostas

. . ... Stathatos for their help in interpreting the Ratio Rules for'tha’ data set.
much butter s/he is eXpeCted to bUy' Ratio Rules W'”We would also like to thank Rakesh Agrawal for offering us his synthetic

predict $6.10 on butter, as Fig. 15b illustrates. Quantita-gata set generator, and Mike Franklin for providing an RS/6000 to install
tive association rules have no rule that can fire becausend run the generator.
the vertical line of “feasible solutions” intersects none of

the bounding rectangles. Thus they are unable to make
a prediction. References
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