
Digree: Building A Distributed Graph Processing
Engine out of Single-node Graph Database

Installations∗

Vasilis Spyropoulos
Athens University of Economics and Business

Athens, Greece
vasspyrop@aueb.gr

Yannis Kotidis
Athens University of Economics and Business

Athens, Greece
kotidis@aueb.gr

ABSTRACT
In this work we present Digree, a system prototype that
enables distributed execution of graph pattern matching
queries in a cloud of interconnected graph databases.
We explain how a graph query can be decomposed into
independent sub-patterns that are processed in parallel
by the distributed independent graph database systems
and how the results are finally synthesized at a master
node. We experimentally compare a prototype of our
system against a popular big data engine and show that
Digree provides significantly faster query execution.

1. INTRODUCTION
Attempts to utilize relational databases and big

data systems for storing and querying graph datasets
are often hindered by the fact that neither technol-
ogy natively supports navigational primitives over
the graph structure. For instance, evaluating sim-
ple path expressions requires costly joins between
tables storing adjacency list data in a relational sys-
tem. Native graph databases permit much faster
execution of navigational primitives because they
promote object relationships as first class citizens
in their storage model. Moreover, they offer declar-
ative access to the underlying graph via high-level
languages like Cypher.

In this work we utilize graph databases as lo-
cal worker nodes in a distributed system, Digree,
which is used to manage large graph datasets. User
queries, in the form of graph patterns are decom-
posed into smaller elements, utilizing the capabil-
ities of the underlying graph databases to process
path expressions. These expressions are executed
in parallel by all worker nodes and their results are
transmitted to a master node, where intermediate
answers are consolidated in order to form the final
∗This research is financed by the Research Centre of
Athens University of Economics and Business, in the
framework of the project entitled ’Original Scientific
Publications’

result set to the user query. Key to the success of
the proposed architecture are (i) the efficiency of
the native local graph databases in processing path
expressions and (ii) the increased parallelism offered
by the query decomposition process that enables all
worker nodes to contribute in evaluating a user ex-
pression.

In our prior work [1], we have formally described
the query decomposition phase and the subsequent
synthesis of the intermediate results and proven their
correctness. In this paper, we first illustrate these
processes using a simple running example. We then
discuss a new greedy heuristic that leads to an ef-
ficient decomposition of a user pattern query. We
additionally present new optimizations that we em-
ploy in order to expedite the execution of complex
graph patterns. The first optimization termed early
termination is used to detect when the distributed
execution will return an empty result before all dis-
tributed processing is concluded. This is impor-
tant since often query patterns cannot be matched
against the data graph and early identification of
such scenarios helps avoid unnecessary utilization of
resources in the distributed system. The second op-
timization is used to push additional filters towards
the local workers in order to reduce selectivity and,
consequently, the sizes of intermediate results. We
then describe the architecture of our Digree system
prototype and compare its performance against a
popular big data system extended to support graph
pattern matching queries.

2. OVERVIEW

2.1 Data Model
The scale of modern graph datasets such as those

encountered in social network applications, easily
overwhelms single node installations. This neces-
sitates multi-node deployments that partition the
large graphs intro smaller chunks that are managed

Graph Partition A Graph Partition B

Graph Partition C

a1
a2

a3 a4**

b3*

b3**

a4* b3*

c1

c2 c3

b1

b4

b2

b5

Figure 1: Example of a distributed Graph
Dataset. A single asterisk by the name of
a node indicates the special label REF . A
double asterisk indicates the label REFED.

by different servers [2]. Following this premise, Di-
gree manages graph datasets that are partitioned
across a number of worker nodes. Each graph parti-
tion is managed by a local graph database, which in
our implementation is Neo4j. From an architecture
perspective, Digree can utilize any graph database
engine or combination of graph databases running
at the worker nodes, as long as they implement a
basic API for querying path expressions.

The graph data model that we employ is one of
the most widely adopted models, namely the labeled
property graph model, which is made up of nodes,
relationships, properties and labels. Digree assumes
that when a node u in graph partition GP1 has an
outgoing edge to a node v that exists in another
partition GP2 then:

• in GP1 we maintain a local reference v′ to v.
We apply to it the label REF , indicating that
this node is a REFerence to “remote” node v.

• all nodes in GP1 that have outgoing edges to
v are using the same single reference v′.

• at GP2 we append to node v the label REFED,
indicating that the node is REFErenceD by a
remote node.

An example is shown in Figure 1. We note that
the partitioning process is happening during inges-
tion of a new dataset and is orthogonal to the tech-
niques we present here. Any partitioning algorithm,
including dynamic partitioning techniques [2, 3] can
be used as long as special care is taken in order to
assign the aforementioned labels into the bound-
ary nodes. These nodes can be located by follow-
ing cross-edges between the graph partitions in a

Path Queries

Distributed Queries

Fragment Queries

Path Results

Distributed Results

Fragment Results

Query Result Set

Parallel Search

Figure 2: A high-level overview of the pro-
cess we follow in order to answer a graph
pattern query. Downward and upward di-
rections respectively show the query decom-
position and results combination processes.

static scheme or when performing node migration in
a dynamic partitioner [2]. Moreover, this labeling
is performed at the system level in a manner that is
transparent to the applications using the data that
need not be concerned with the details of the graph
partitioning layout.

2.2 Query Processing
Given a pattern query, i.e. a directed graph with

vertices and edges possibly with labels and proper-
ties, the fundamental task is to find subgraphs of
the database that are isomorphic (structurally and
semantically) to the pattern query [4].

Digree takes as input a pattern query and decom-
poses it into smaller elements that are processed
in parallel by the worker nodes. All computed re-
sults are shipped to a designated master node that
combines the partial results to produce the global
result set. Figure 2 presents an overview of the
operations that decompose an input pattern query
into smaller sub-patterns that are processed inde-
pendently by the graph databases. The results to
these sub-pattern queries are fused by Digree in or-
der to compile the final result set. In what follows
we use a running example to illustrate this process.

Taking as input the graph pattern query (from
now on referred to as base query) depicted in Fig-
ure 3, Digree first decomposes it into a set of path
queries. A possible decomposition consisting of two
path queries is shown in Figure 4 and consists of
path queries pq1 and pq2. Node B, depicted in or-
ange indicates the location where results from these
two path queries need to be “joined” in order to
produce matching patterns to the input base query.

Next, we take an intermediate step where for each
of the path queries we find out on which nodes

bq: D

A B C

E

Figure 3: Running Example: The letters in-
side the depicted nodes are variable names so
we can refer to specific nodes of the pattern
query. Nodes may also have multiple labels
and/or properties which we omit in this sim-
plified example.

pq2: E D B C

pq1: A B

Figure 4: Two path queries obtained from
the base query of Figure 3. Orange nodes
denote locations where partial results need
to be joined.

they should be “taken apart”, in order to account
for nodes that are possibly stored in different par-
titions. We refer to these nodes as break-points.
This process forms a new set of queries that we
call distributed queries and are shown in Figure 5
(the break-points are colored in blue). From path
query pq1 we generate just one distributed query
dq1, while path query pq2 gives us four different
distributed queries, namely dq2, dq3, dq4 and dq5.

dq5: E D B C

dq4: E D B C

dq3: E D B C

dq2: E D B C

dq1: A B

Figure 5: Resulting set of Distributed
Queries. Nodes in blue are break-points.
These nodes refer to possible locations where
a path may be split and the resulting sub-
paths may be stored in different nodes.

As one can see, we take all combinations of break-
point choices which, for every respective path query
of length k, results in 2k−2 distributed queries, since
break-points cannot exist at path start and terminal
nodes. The results gathered for each distributed
query should be unioned in order to generate the
result set for the respective path query.

Each distributed query depending on the break-
points it contains generates a number of fragment
queries. These are the actual queries that will be
submitted to the underlying graph databases. The
fragment queries of our example are shown in Fig-
ure 6. Essentially, each distributed query represents
a possible layout of the path it came from in the dis-
tributed setting. For example distributed query dq4
(E → D → B → C), where the break-point is node
B, aims to retrieve all instances of the path where
the part E → D lies in one database while the frag-
ment B → C lies in another one. Though, due to
the data model, if such a result exists then node B
should exist in both partitions, in the first labeled
as REF and in the second as REFED. Thus, the
fragment queries that will be generated will be fq5:
E → D → BREF and fq6: BREFED → C. In the
results combination process all fragment results for
such fragment sets will be joined on their common
node (in our example that one is B). One such join-
able pair of fragment results for the example shown
in Figure 1 would be a1→ a3→ b3∗ and b3∗∗ → b4.

One can see that there are duplicate fragment
queries, e.g. fq3 and fq7. It is sufficient to execute
just one instance of those and use the results for all
instances.

fq9: B C

fq8: D B

fq7: E D

fq6: B C

fq5: E D B

fq4: D B C

fq3: E D

fq2: E D B C

fq1: A B

Figure 6: The Fragment Queries that will be
submitted to the graph databases. For du-
plicate sets (such as fq3-fq7 and fq6-fq9) we
submit just one query and reuse its results.

The full decomposition from the base query all
the way down to it’s fragment queries queries can
be seen in Figure 7. Most of these tasks can be ex-
ecuted in parallel. Fragment queries are submitted
to the worker nodes and when all fragment results
that correspond to a distributed query’s decomposi-
tion are gathered the computation of the distributed

query may start. Parallelization is also possible at
the ”higher“ layer when all distributed results that
are required to answer a path query are gathered.

bq

pq1 pq2

dq1 dq2 dq3 dq4 dq5

fq1 fq2 fq3 fq4 fq5 fq6 fq7 fq8 fq9

Figure 7: The decomposition mapping for
Base Query into Path Queries, Distributed
Queries and Fragment Queries (referring to
Figures 3, 4, 5 and 6).

2.3 Key Intuition
While most of the approaches in the literature

use some kind of decomposition, be it edge-level
or subgraph-level of the user query and the sub-
sequent combination of the partial results so as to
answer distributed queries, there is a significant ad-
vantage in our setting. This is a result of the use of
REF and REFED labels at the partitions’ bound-
ary nodes. Due to the existence of these special
labels we expect, and usually achieve, low selectiv-
ity while answering the fragment queries. Take for
example fragment queries E → D, B → C and
D → B (Figure 6). These all contain nodes labeled
either REF or REFED and this not only allows for
much more efficient execution of the query (based
on available indexes at the local nodes) but may
significantly reduce the number of results. Other
systems that opt to get results for each edge of the
input query and then join them using some execu-
tion plan [5] would execute the respective plain edge
queries (E → D, B → C and D → B) and end up
with a potentially much higher number of results
to join at the next step. In our setting the query
results that are local to a partition are collected by
the execution of longer, more selective paths that
contain them, e.g. local results for E → D are dis-
covered by the execution of fragment queries fq2
(E → D → B → C) and fq5 (E → D → B).

3. OPTIMIZATIONS

3.1 Path Queries Selection
If we consider the decomposition of the base query

into path queries, we are faced with many alterna-
tive selections. Consider for example the base query
from Figure 3. Instead of decomposing it into the

fq4+: D

B C

A

fq4: D B C

Figure 8: Fragment query fq4 and it’s aug-
mented version fq4+.

path queries pq1 and pq2 as shown in Figure 4 some-
one could decompose it into paths A→ B → C and
E → D → B, a choice that would affect the further
decomposition but also the efficiency of the execu-
tion. As the input graph query grows larger the
number of choices is increasing and the cost analysis
needed to select the best one is non trivial. The de-
sign and implementation of such a query optimizer
is a work in progress of our own but preliminary
results have shown that the system is favoured by
the choice of longer path queries. Based on that, for
the prototype of Digree we decided to use a heuris-
tic algorithm that (i) creates an empty solution list,
(ii) enumerates all possible (non-trivial) paths, (iii)
adds them in a priority queue in decreasing order
by their length, (iv) removes the first path from the
queue and adds it to the solution list, and (v) un-
til the base query is covered removes the next path
from the queue and adds it to the list if it does not
overlap with any of the paths already in the queue.

3.2 Early Termination
Because of the way that the queries are broken

into path queries we can assert that if any of the
path queries result set is empty, then the result set
for the base query is also empty since it is computed
by joining the path results. Before submitting the
fragment queries to the partitions we sort them by
shortest ancestor path query. That way, we are able
to get path results early in the query execution and
increase the chance to find out that one of them,
and consequently the base query, has an empty re-
sult set. In that case an interrupt signal is sent
throughout the system and the empty result set an-
swer is returned to the user.

3.3 Fragment Query Augmentation
When fragment queries are submitted to the local

nodes, they are augmented with additional struc-
tural conditions from the base query in order to help
the underlying graph database system to answer the
query more efficiently. A node in a fragment query
is in one of three states. It is either a REF node, a
REFED node, or a pure-local node. A pure-local
node can be augmented by any other node (and the

Master
Process

Processing
Engine

Slave
Process

Slave
Process

Slave
Process

…

Graph Partition 1 Graph Partition 2 Graph Partition k

Figure 9: Digree architecture overview

related edge) from the base query that is its neigh-
bour, connected either by an incoming or outgoing
edge since all of them should exist in the same parti-
tion. A REFED node can be augmented by its out-
going edges neighbours since due to our data model
all of them should exist in the same partition, but
not by its incoming neighbours since at least one
of them lies in another partition and we have no
way knowing about it. Last, the REF nodes can-
not augment since they are actually pseudo-nodes
referencing a node existing in another partition.

For example, consider the base query in Figure 3
and the fragment query fq4 in Figure 6. Applying
this technique, we can augment fq4 by the addition
of node A and the respective edge A→ B, as shown
in Figure 8. It is not possible to further augment
fq4 by the use of node E since this is an incoming
node to node D (the respective edge is E → D)
which, in the context of fq4, is a REFED node.

4. SYSTEM ARCHITECTURE
Digree is designed as a distributed system that

consists of two main processes, namely the master
process and the slave process, and a main processing
engine. A deployment should consist of a single
instance of the master process, one slave process for
each of the managed databases/partitions and one
processing engine. The processing engine is a layer
over a data management system (e.g. a relational
database system, a graph database or a big data
system) and handles the temporary storage of the
partial results and the operations (union, join) that
need to be applied to them. An overview of Digree
architecture is shown in Figure 9.

The master process receives the user graph query
and performs the described decomposition to frag-
ment queries that are then submitted to the slave
processes. In order to manage a different graph stor-
age engine one needs to implement an API so that

Table 1: Datasets Overview

#nodes #edges #labels

Amazon 548.552 1,788,725 11
Youtube 155,513 2,969,826 14

it can communicate with it at least a simple path
expression. When a fragment query is answered at
a partition the slave process takes care that the re-
sults are transferred to the processing engine and
also that a signal is sent to the master process. The
master, depending on the signals it receives from the
slaves, decides when a results combination process
can start (e.g. union distributed results to compute
a path result set) and triggers the appropriate op-
eration at the processing engine.

5. EXPERIMENTAL EVALUATION
We deployed our system on a cluster consisting

of 18 Linux virtual machines (VMs). Each VM had
4 cores and 8 GB of memory. We used one VM
to run the master process, one VM to host a Post-
greSQL database server acting as the processing en-
gine and the rest 16 VMs to host the partitions of
the graph database (one Neo4j database per node)
and the slave processes. We compared Digree to the
motif finding feature of Graphframes [6], a package
for Apache Spark which provides DataFrame-based
Graphs. Graphframes was deployed on the same
cluster using the default Spark setup. We used two
real world datasets for our experiments which are
the Amazon product network1 [7] and the Youtube
video graph.2 The details of the datasets are shown
in Table 1. For partitioning the datasets we used
the popular METIS [8] algorithm. All measure-
ments are made after the datasets have been loaded
and partitioned on the respective systems. In [1]
we present additional experiments running Digree
on a much larger twitter dataset consisting of over
35 million nodes and 900 million edges, having 232
different labels. Graphframes however, in the afore-
mentioned cluster, could not handle that dataset so
we do no present the respective results here.

In the first experiment of Figure 10(a), we evalu-
ate how each system scales while answering simple
path queries of increasing length. For each dataset
and for path lengths from 3 to 8 we created 5 graph
queries of random labels. In the figure we report
the average execution time of these queries. We also
used seven graph pattern matching queries from [5].
For each pattern query we created 5 randomly la-

1https://snap.stanford.edu/data/
2http://netsg.cs.sfu.ca/youtubedata/

 0

 20

 40

 60

 80

 100

 120

3 4 5 6 7 8

ti
m

e
 (

s
e

c
)

path length

Digree
Graphframes

(a) path length

 0

 20

 40

 60

 80

 100

Amazon Youtube

ti
m

e
 (

s
e

c
)

dataset

Digree
Graphframes

(b) datasets

 0

 20

 40

 60

 80

 100

 120

 140

 160

1 2 3 4 5

ti
m

e
 (

s
e

c
)

mutation degree

Digree
Graphframes

(c) mutation degree

Figure 10: Average execution time

beled instances and ran all of them on the two sys-
tems. We present average execution times for each
dataset in Figure 10(b). In all cases, Digree is sig-
nificantly faster.

We then took the pattern queries from the last
experiment and created a number of mutations for
each of those. These mutations have been created
by randomly choosing a vertex from the graph query
and attaching a new vertex to it, randomly incom-
ing or outgoing. As shown in Figure 10(c), Digree
outperforms Graphframes which presents a steady
linear increase in execution time with respect to the
number of mutations.

6. RELATED WORK
A number of systems were developed for distributed

graph processing such as Google Pregel [9], Apache
Giraph [10] and GraphX [11]. However, none of
these systems is specialized in graph pattern match-
ing. In [5] the authors explore relational optimiza-
tions for graph pattern matching. The work of [2]
also suggests bulding a distributed graph database
out of local Neo4j installations. The authors pro-
pose a novel lightweigt dynamic repartitioner that
increases data locality while maintaining load bal-
ance. This work is complementary to ours as it
focuses on maintaining a good partitioning scheme
in evolving datasets, while Digree focuses on par-
allel processing of complex query patterns over the
resulting partitions.

7. CONCLUSION
In this paper we presented Digree, a distributed

graph processing engine that exploits the efficient
graph processing primitives provided by local graph
databases, while at the same time benefits from the
increased parallelism offered by the proposed query
decomposition process. We have compared Digree
against a popular big data system and shown that
it consistently provides better performance.

8. REFERENCES
[1] V. Spyropoulos, C. Vasilakopoulou, and

Y. Kotidis, “Digree: A Middleware for a
Graph Databases Polystore,” in Proceedings
of IEEE BigData, 2016.

[2] D. Nicoara, S. Kamali, K. Daudjee, and
L. Chen, “Hermes: Dynamic Partitioning for
Distributed Social Network Graph
Databases,” in Proceedings of EDBT, 2015.

[3] I. Filippidou and Y. Kotidis, “Online and
On-demand Partitioning of Streaming
Graphs,” in Proc. of the IEEE Big Data, 2015.

[4] B. Gallagher, “Matching Structure and
Semantics: A survey on Graph-based Pattern
Matching,” AAAI FS, vol. 6, 2006.

[5] J. Huang, K. Venkatraman, and D. J. Abadi,
“Query Optimization of Distributed Pattern
Matching,” in Proceedings of ICDE, 2014.

[6] A. Dave, A. Jindal, L. E. Li, R. Xin,
J. Gonzalez, and M. Zaharia, “GraphFrames:
An Integrated API for Mixing Graph and
Relational Queries,” in Proceedings of
GRADES, 2016.

[7] J. Leskovec, L. A. Adamic, and B. A.
Huberman, “The dynamics of viral
marketing,” ACM Trans. Web, 2007.

[8] G. Karypis and V. Kumar, “Analysis of
multilevel graph partitioning,” in Proceedings
of IEEE Supercomputing Conference, 1995.

[9] G. Malewicz, M. H. Austern, A. J. Bik, J. C.
Dehnert, I. Horn, N. Leiser, and
G. Czajkowski, “Pregel: A System for
Large-scale Graph Processing,” in Proceedings
of ACM SIGMOD, 2010.

[10] M. Han and K. Daudjee, “Giraph Unchained:
Barrierless Asynchronous Parallel Execution
in Pregel-like Graph Processing Systems,”
Proc. VLDB Endow., vol. 8, May 2015.

[11] R. S. Xin, J. E. Gonzalez, M. J. Franklin, and
I. Stoica, “GraphX: A Resilient Distributed
Graph System on Spark,” in GRADES, 2013.

