Aggregate View Management in Data Warehouses

Yannis Kotidis
AT&T Labs

kotidis@research.att.com

Abstract

Materialized views and their potential have been recently rediscovered for the content of
OLAP and data warehousing. A flurry of papers has been generated on how views can be
used to accelerate ad-hoc computations over massive datasets. In this chapter we introduce
and comment on some main-stream approaches for defining, computing, using and maintaining

materialized views with aggregations in a large data warehouse.

1 Introduction

Data warehousing is a collection of decision support technologies that aim at enabling an enterprise
to make better and faster decisions [CD97]. Finding the right information at the right time is a
necessity for survival in today’s competitive marketplace and this area has enjoyed an explosive
growth in the past few years. Data warehousing products have been successfully deployed in data
rich industries ranging from retail to financial services and telecommunications.

From a historical perspective, the data warehousing area is a byproduct of tremendous advances
in information technology. During the last few decades there has been a increasing movement to
computerize every possible business process. However, most of the applications developed over
the years were mostly stand-alone efforts. As a result there was virtually no integration among
different applications, even within the domain of a single enterprise. The situation was even more
dramatic from the data point of view. The same data item could have inconsistent definitions,

meanings and representations along different platforms.

Although relational databases were at first believed to provide direct access to a single unam-
biguous copy of the data, it was very soon realized that they couldn’t support both operational
and decision-support users. Operational workload consists of many concurrent short transactions
that access and modify a few records at a time. In addition depending on the application it
might have strict real-time requirements. The obvious examples are ATM and airline reservation
systems. Such applications automate structured and repetitive tasks that require detailed up to
date information. Decision support applications on the other hand use tactical information that
answers “who” and “what” questions about past events [olaa]. This requires a stable view of the
underlying data that can only be obtained using costly relational locking mechanisms, unless a
second copy of the information is used. Furthermore, decision support often requires historical
data that is usually unavailable in operational databases that only deal with recent data. Finally,
operational databases are designed to reflect the operational semantics of their applications and to
maximize transaction throughput. Decision support analysis on the other hand is typically ad-hoc,
based on multidimensional business models and operations that require different data models and
new access methods tailored for query intensive applications.

In the broadest sense, a data warehouse is a single, integrated informational store that provides
stable, point-in-time data for decision support applications [BE97]. Unlike traditional database
systems that automate day-to-day operations, a data warehouse provides an environment in which
an organization can evaluate and analyze its enterprise data over time. Since data might be
coming from different legacy systems within the organization, significant cleansing, transformation
and reconciliation may be necessary before it is loaded in the repository. Data cleaning involves
operations varying from data integrity tests and simple transformation tasks (e.g. inconsistent
field lengths or descriptions) to more advanced tools that look for suspicious statistical patterns

in the data.

2 DMaterialized Aggregate Views for Better Performance

Most data warehouses adopt a multidimensional approach for representing the data. The origins of

this practice go back to PC spreadsheet programs that were extensively used by business analysts.

More advanced multidimensional access is now achieved through interfaces that provide “On Line
Analytical Processing” (OLAP), which involves interactive access to a wide variety of possible
views of the information. OLAP software allows the data to be rendered across any dimension and
at any level of aggregation. For example in a sales data warehouse customer, product, location
and time of sale may be the dimensions of interest. In order to extract this information on the fly,
the navigation tool interacts with the data warehouse, which provides the core data that is being

analyzed. Examples of possible computations include among others:

e multidimensional ratios like “show me the contribution to weekly profit made by all items

sold in NJ between May 1 and May 7”.
e quantiles e.g. “show my top-5 selling products across the state of NJ”.
e statistical profiles e.g. “show sales by store for all stores in the bottom 5% of sales”.

e comparisons e.g. “sales in this fiscal period versus last period”.

The main cost in terms of the time consumed of executing this type of queries is not only doing
the actual arithmetic, but also of retrieving the data items (or “cells’ in the multidimensional
dialect) that affect the calculated functions. For a large data warehouse, executing queries with
aggregations against the detailed records takes hours, simply because of the volume of records that
are being accessed. As a result most implementations facilitate some form of pre-aggregation in
order to support complex data-intensive queries in a interactive fashion. In relational databases,
materialized derived relations (views) have long been proposed to speed up query processing. In the
data warehouse, these views store redundant, aggregated information and are commonly referred
to as summary tables [CD97]. A materialized view that contains highly consolidated information
is typically much smaller than the base relations used to store all detailed records. As a result,
querying the view instead of the base records offers several orders of magnitude faster query speeds.

Since materialized views promise high performance improvements over accessing detailed records
they are a valuable component in the design of a data warehouse. They might, for example, include

high level consolidations, which are bound to be needed for reports or ad-hoc analyzes, and which

involve too much data to be calculated on the fly. For example in a sales data warehouse, a large
majority of the queries may involve transactions over the last few weeks or months. Having these
sales summarized in a view significantly speeds up many queries.

If query response time is the only concern, an eager policy of materializing all possible ag-
gregations that might be requested will yield an excellent effect on performance since each query
will require a minimum amount of data movement and on the fly calculations. Unfortunately
this plan is not viable, as the number of possible aggregate views is exponential in the number
of dimensions that the dataset is analyzed on. Thus, materializing all possible views demands
an enormous amount of pre-processing cost and disk volume to compute and store the aggrega-
tions. Furthermore, much like a cache, the views get dirty whenever the data warehouse tables
are modified. For most organizations, the maintenance process is happening in a daily fashion,
usually overnight. In order to correctly reflect the underlying data, the views have to be updated
in a process that is known as view maintenance. Having many views materialized in the system
lengthens the duration of the daily update process and reduces the warehouse “on-line” period,
i.e. the portion of time the system is available for analysis.

Materialized views with aggregates introduce new challenges in the design and use of the data

warehouse. These challenges include:

identifying the views that we want to materialize.

efficiently computing these views from the raw data

exploiting the views to answer queries

efficiently maintaining the views when new data is shipped to the data warehouse.

Before getting to see some of the approaches for dealing with these problems we will make a
brief introduction on the star schema organization that is frequently used to model a relational data
warehouse and the data cube operator that provides broadly accepted framework for describing

materialized aggregate views.

3 A Relational Data Warehouse architecture

Information within the data warehouse is modeled in a multi-dimensional fashion. Formally, a
dimension is a structural attribute that lists members of similar type [olaa]. The time dimension
is such an example, common among most data warehouse applications. Dimension members allow
us to pin-point the raw data for analysis. We can think of them as indices to a virtual multi-
dimensional array of numeric attributes that are the target of the analysis. These attributes are
often called measures and are used as input to the aggregation functions. Such measures include
sales, revenue, inventory e.t.c.

Often dimension’s members are organized on parent-child relationships, like for example all
days, weeks, months, quarters and years along the time dimension. The resulting relations form
a hierarchy. Dimension members along the hierarchy consolidate data of all the members which
are their children. Hierarchies provide the means to encode our domain knowledge and address
the data at different levels of aggregation. This is achieved through the drill-down and roll-up
operators. By drilling-down on the aggregate data we get a more detailed view of the information.
For example starting from the total sales per year, we drill-down and ask for a monthly breakdown
of sales for the last year and then examine the actual transactions for a month with irregular
volume of sales. Roll-up is the opposite operation where information is examined at progressively
coarser granularity.

In a relational implementation, the data warehouse is usually organized in a specialized lay-out
that is known as the star schema [Kim96]. In its simplest form there is a central table F' called
the fact table that contains the facts, i.e the transactional information that is of interest. Each
record in F' consists of two parts. The first part is a list of attributes that are foreign keys to
the satellite dimension tables discussed bellow and identify a unique position for the record in the
multidimensional space in which we analyze the data. The second part contains a list of measures
that provide the numeric information on which analysis is being performed. For each dimension in
the dataset there is a single table that contains information for the specific dimension. This table
holds a primary key that is used to link dimension-specific attributes with the fact table.

Figure 1 shows a star-schema organization for a data warehouse that analyzes sales data. The

Part Dimension

partkey
name
brand
category
size
color

Facttable F

partkey
—— suppkey
cus tkey
amount

Customer Dimension

cus tke

name
Supplier Dimension Z}tr;eet
—— suppkey state
name phone
street
city
state
phone

Figure 1: A Simple Star Schema Organization

data contains sales information for parts that are being purchased from different suppliers and sold
to customers. In this simplified example each transaction records a sale to a customer. A record
contains the part identifier partkey, the identifier of the supplier suppkey from which the part
was ordered and also the identifier of the customer custkey who bought the part. There is also
a numeric attribute amount that stores how much the customer paid for the product. The star
schema provides a clean lay-out in which dimension specific attributes are hidden from the facts and
are encapsulated in the dimension tables. For example the customer table contains all customer

attributes, like name and contact info. Furthermore, it allows for easy schema modifications, fast

loading of data and incremental updates.

The simplest form of analysis against the data is to aggregate the measure(s) on one or more

selected dimensions. For example query “find the total sales per customer” is written in SQL:

q1: select custkey, sum(amount) as total_sales

from F

group by custkey

while query “find the total sales per customer and product” is translated to:

q2: select partkey,custkey, sum(amount) as total sales

from F

group by partkey,custkey

More expressiveness can be achieved by combining facts with information stored in the dimen-
sion tables. For example query “find our customers in NJ along with their aggregated sales” is

stated as:

q3: select customer.custkey, customer.name, sum(amount) as total_sales
from F, customer
where F.custkey = customer.custkey
and customer.state = ’NJ’

group by customer.custkey, customer.name

This type of queries consist of joins of the fact table with a number of dimension tables,
with possible selections on some dimension attributes and the aggregation of one or more of the
measures grouped by a subset of attributes from the dimension tables. These queries are known
as Select-Project-Join (SPJ) queries.

The group-by operator in SQL is frequently used to compute such aggregations among ad-hoc
groups. Gray et al in [GBLP96] introduced the data cube CUBE operator as a generalization
of the traditional group by syntax. Their motivation was that certain types of data analysis are
difficult to be expressed in SQL. Examples that are common in report writing are the histogram,
cross-tabulation, roll-up, drill-down and sub-total constructs. In technical terms, the data cube
is a redundant multidimensional projection of a relation. It computes all possible group by SQL
operators among the dimensions. The data cube of our three dimensional example will be the
union of all 7 aggregate queries that we can construct by grouping on different combinations of
attributes partkey, suppkey, custkey, plus the value that is derived when we aggregate over all

data:

select sum(amount) as total_sales

from F

In general for n dimensions, the data cube computes 2" group bys, corresponding to all pos-
sible combinations of the selected dimensions. Each one of these group bys can be realized as a
materialized view. In the following section we address the problem of efficiently computing these

views.

4 Efficient Computation of Views with Aggregates

For the following discussion we assume that only aggregates based on the dimensions keys
are of interest, like in queries ¢1,q2. However the results can be extended when groupings are
performed on dimension members that are part of a hierarchy.

The straightforward way to compute all these views is to rewrite the CUBE query as a collection
of 2" SQL queries and execute them separately, like for instance queries ¢; and g9 of the previous
example. However, even for small number of dimensions, this naive computation of the views is
unrealistic, because of the mere size of the raw data that needs to be accessed over and over again
to compute the aggregates. Apart from the I/O overhead an independent computation of the
aggregates does not realize possible overlap among the calculations that are needed for the views.
For example after query g» is executed and the result is materialized as view u, we can rewrite the

view that corresponds to query ¢; as:

create view v as
select custkey, sum(u.total_sales) as total_sales
from u

group by custkey

What allows this rewriting is a special property of the sum() function that allows aggregates
to be further aggregated. Such functions allow the input set to be partitioned into disjoint sets
that can be aggregated separately and later combined. Aggregate functions with this property are
called distributive and are characterized from the fact that no state-information is needed for the
function to summarize a sub-aggregation. Other distributive functions include count(), min() and

maz().

Often functions of interest can be expressed by combining two or more distributive functions.
The avg() function for example can be computed using sum() and count(). Functions that require
a fixed size state information to describe a sub-aggregate are called algebraic and can be also
optimized when computing the aggregates for multiple views in parallel. Other algebraic functions
include center of mass, standard deviation, maxN() (N largest values) and minN(). However for
functions like median() there is no bound on the size of state information that is needed to describe
a sub-aggregate. Such functions are often referred to as holistic and void all optimizations that we
describe bellow.

For non-holistic aggregate functions we can share I/O and computations among multiple views
of the data cube. These gains are realized by exploiting well-defined dependencies among the views
that are best depicted in the lattice [HRU96] of Figure 2, for our three dimensional example. Each
node in the lattice represents a view that aggregates data over the attributes present in that node;
for example node (partkey) is view v. The node labeled as none represents a view that computes
a single super-aggregate over all input cells. For our sales dataset this will be the overall volume
of sales for all records in the fact table. The lattice representation is based on a derived-from
relationship, which defines a partial ordering < among the views. For two views v and u, v < u if
and only if v can be computed from the tuples of u for any instance of the dataset. For example
(partkey) < (partkey,custkey) but not vise-versa. In the lattice notation there is a downward
path from u to v if and only if v < u.

Typically group-bys are being computed either by sort-based or by hash-based methods as
discussed in [Gra93]. [AAD"96] describes how these methods can be extended for multiple group-
by computations, like the case of the data cube. Using the authors’ notation there are four possible

optimizations that can be incorporated in the computation of the aggregate views:

1. smallest-parent: this optimization implies that a view should be computed from the small-
est previously computed view. For example view (partkey) can be computed from any of
(partkey, custkey), (partkey, suppkey) and (partkey, custkey, suppkey). If we have an esti-

mate for the sizes of these views, we can pick the smallest one for computing (partkey).

2. cache-results: this optimization favors in-memory results of a previous computation to derive

partkey, suppkey, custkey
partkey, custkey

partkey, suppkey suppkey, custkey

Figure 2: The Data Cube Lattice for three Dimensions

other views and thus reduce disk I/0.

. amortize-scans: when data has to be read from disk, the cost of I/O should be amortized
by computing as many views as possible. For instance if view (partkey, suppkey) was previ-

ously stored on disk, we may compute all of (partkey), (suppkey), (none) in one scan over

(partkey, suppkey).

. share sorts and partitions: this optimizations are specific to the algorithm used for comput-
ing the views. When sort-based algorithms are employed we can share the cost of sorting
among multiple views, or in some cases exploit partially matching sort orders. For example
if the records of view (partkey, suppkey) are sorted on low-partkey, low-suppkey, i.e. first on
partkey and then on suppkey for tuples with the same part identifier, we can then compute
view (partkey) with no additional sorts in the following manner: we first project out the
suppkey column. This will give as a sorted list (with duplicates) of partkey values along
with partially aggregated measures. We then simply merge these sub-aggregates for every
distinct partkey value. Partially matching sort orders are also useful. If for example view
(partkey, suppkey, custkey) is sorted on attribute order, we can compute (partkey, custkey)
by partitioning on the first attribute and independently sorting on custkey. Similar opti-
mizations can be performed when the aggregates are computed using hash-based algorithms

by sharing the partitioning cost among multiple views.

10

For datasets that are much larger than the available main memory these optimizations are
often contradictory. For instance we might decide to sort a memory resident view instead of using
one that has a desirable sort order but is stored on disk. Comparing the sort based techniques
against hash-based computations of the aggregates the author of [AAD'96] conclude that sorting
works better for sparse datasets, while hashing methods gain from decreasing levels of sparseness.
In practice performance strongly depends on the amount of memory that is available to hold
intermediate results and auxiliary data structures (e.g hash tables) and the distribution of values
of the dataset. Real-world data however, for many application domains, are often very large and
sparse. Ross and Srivastava in [RS97] argue that none of the previous algorithms is very efficient
for sparse datasets, especially when the base relation is much larger than main memory. For
these cases, they propose an algorithm that follows a divide-and-conquer strategy to split the
problem into several simpler computations of sub-cubes that are then computed by multiple in-
memory sorts. Other techniques for computing multiple aggregate views in parallel can be found
at [BR99, LRS99, MK99].

These algorithms work well for Relational OLAP (ROLAP) systems that store their data in
conventional relational tables. For Multidimensional OLAP (MOLAP) systems, that store their
data in sparse multidimensional arrays rather than in tables, Zhao et al [ZDN97] proposed a
different array-based algorithm. For the synthetic and rather dense datasets that they used for
their experiments the authors showed that the MOLAP approach can be significantly faster that
the ROLAP table-based algorithms. The benefit comes from the fact that the array representation
allows direct access to individual cells. However, multidimensional arrays have limitations when

dealing with sparse high dimensional datasets.

4.1 Estimating the Size of the Views

An unexpected behavior of multidimensional aggregations is that the amount of possible results
is many times larger than the detailed data. Figure 3 shows an input record of the fact table of
Figure 1 in the three dimensional space defined by the keys: partkey, suppkey, custkey. Each

possible aggregation across these dimensions can be seen as a projection of this point in the sub-

11

(partkey ,suppkey)
(suppkey) |,

(custkey ,suppkey)
y-supp y‘ (partkey ,custkey ,suppkey)

(partkey)
Yy »

(custkey) \

¥
/ (partkey ,custkey)

Figure 3: Multi-dimensional Projections of an Input Cell

space of the participating dimensions. For example all group by (partkey, custkey) aggregates will
be projected in the corresponding 2-dimensional plane in this space. Some of these projections will
be overlapped with projections of other input points, however each input record may introduce as
many as seven new aggregates in the worst case. Subsequently, data in each of these sub-spaces
will be much denser and voluminous than the input data, which is expected to be fairly sparse for
many real datasets [Col96].

Before getting to compute all or some of the views of the data cube, we need an estimate of
the disk space required accommodating the derived aggregates. This information comes handy for
tuning the algorithms used to compute the aggregates to decide on hashing values, sizes of disk
runs for sorting e.t.c. The size of the views depends on the number of dimensions involved and
the distribution of values along their domains. For simplicity we make the assumption that all
dimensions have the same domain size D. For a view with ¢ dimensions the maximum number
of ways that values from these dimensions can be combined and return an aggregate is D?, which
is the volume of an i-dimensional array of length D per side. Since each input record generates
at most one new entry in this array, the size of the view is also bounded by the size of the fact
table F, denoted as |F|. Therefore, a crude upper-bound for the size of the view is min(D?, |F|).

Figure 4 plots the size of the views for an eight dimensional uniform dataset where D is 50 and

12

\ View size \ View size

AN Upper Bound AN Upper Bound
1000000 — 1000000 —

[%2] [%2]

o] /// T /

g 750000 y S 750000 J

o / o

S 500000 S 500000 [

o) @

3 / 3 /

€ 250000 £ 250000

3 3

z / = /

0 T T 0 T T T
1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8
Number of dimensions Number of dimensions
Figure 4: View Sizes for Uniform Distribution Figure 5: View Sizes for 80-20 Self-similar
Distribution

the fact table contains 1 million records. The dotted line represents the previous upper bound.
In real-datasets the result is strongly affected by any skewness observed. In Figure 5 we depict
another dataset, in which the values along each dimension are following an independent 80-20 self-
similar distribution [GSET94]: 20% of each dimension’s domain was present in 80% of the input
records. The resulting views are now much smaller that the previous uniform case, as aggregates
fall into existing computed cells.

For estimating the size of the views we can take a random sample of the dataset, compute the
views on that and linearly scale up the estimate to the whole dataset. Unfortunately this estimate
is very crude as scaling produces a biased estimator for the size of the views. Another problem
with sampling is that even if a small fraction of the base data is accessed, it is still relatively
expensive, as every sampled tuple may require one page access, depending on the strategy used.
Shukla, Deshpande et al in [SDNR96] propose another strategy for estimating the size of the
views using a probabilistic counting algorithm [FM85] that counts the number of distinct elements
observed in a multi-set. The algorithm makes a single pass over the fact table F' and produces
an estimate using a fixed amount of memory. It maintains a bit vector B[0...L — 1], where L
is a parameter, depending on the available memory. It also requires a hashing function h() that
uniformly distributes the input values from F into range [0...2% — 1]. For each tuple z read from

F', we set bit Bl[i], where i is the position of the least significant bit in the binary representation of

13

Max

Space restriction

Maintenance—time
restriction

Min

(0] Number of views 2"

[note: original graph at http://www.olapreport.com
Figure 6: View Selection Tradeoffs

h(z). For a perfectly uniform hashing function A(), B[i] is set with probability 57r. Therefore, we
can use the position of the leftmost zero bit in B to estimate the number of distinct elements in
the input. This estimate is typically within a factor of 2 from the actual value, however precision

can be improved using multiple hashing functions and bitmaps.

5 View Selection for Data Warehouses

For n dimensions there are 2" different views that we can materialize and use for future queries.
Even for a small number of dimensions the possible number of views will typically allow just a
small fraction of them to be materialized. Picking the right subset of them is a non-trivial task
because of the dependencies among the views that are depicted in the lattice of Figure 2. Based
on the < partial order, a materialized view may be used to answer queries on other views too.
Thus, that we may decide to materialize an infrequently used view if it allows us to answer queries
on many other views with acceptable overhead. Furthermore, we may also include a view that is

of no interest at query time but allows fast updates on other views as discussed in section 8.

14

View selection is usually modeled as the problem of finding those views that minimize query
response time under some resource constraint. The resource can be the available disk space, or the
time that we can spend on maintaining the views when the underlying data gets refreshed, or both.
Extensive materialization will lead to diminishing query response gains and unacceptable disk-
space and maintenance-time overhead. Figure 6 shows query response, disk space and maintenance
cost as more views get materialized. The graphs imply that there is an optimum amount of
views that deliver query response that is fairly close to what we could have achieved with a
full materialization, but with much smaller resource consumption. It is interesting that adding
extra views, will in some cases deliver worst query performance than a more conservative partial
materialization [olab]. The reason is that as database size increases a smaller subset of the views
will remain in memory buffers. In such cases it might be prudent to maintain fewer views and do
aggregations on the fly, when required.

Karloff and Mihail in [KM99] show that no polynomial time, in the number of views approx-
imation (with respect to query response time), algorithm exists for the view selection problem
unless P # NP. This means that every polynomial-time algorithm will output solutions with
query response arbitrary worst compared to the optimal selection. Thus, most studies focus on
special cases of practical significance based on heuristics that guide the selection process.

Roussopoulos in [Rou82] first explored the problem of selecting a set of materialized views
(with no aggregations) for answering queries under the presence of updates and a global space
constraint. Haranarayan, Rajaraman and Ullman in [HRU96] model the view selection problem
using the lattice framework. They use the benefit that we gain by materializing a view as a
heuristic for choosing among the candidate views. Intuitively the benefit of a view depicts how
materializing the view improves the cost of evaluating other non-materialized views including itself.
More formally if V is a set of views that are already materialized, then the benefit B(v, V) of adding
a new view v in V is defined as follows: for each view u < v let Cy(u) be the cost of computing u
from V and C,(u) the cost of computing u from v, after v is materialized. Then the benefit of v

with respect to V is given from the formula:

15

B(v,V) = > (Cy(u) — Cy(u))

wu=v A Cy(u)<Cy(u)

Set V initially contains the top view from the lattice as there is no other view that can be
used to answer queries to that view. Then, a greedy algorithm adds more views to V until a
disk space constraint is fulfilled. The benefit metric can be easily modified to take into account
possible knowledge of the query pattern on the views: we simply multiply the costs C,, () with
the expected frequency rate of queries on that view.

The greedy algorithm picks a set of views V with at least 63% the benefit of an optimal solution.
More formally if Bgreedy is the benefit of k views chosen by the greedy algorithm and By is the
benefit of an optimal set of k views then Bgyeedy/Bopt > 1 — % Notice that only the benefit of the
solution is bound to be relatively close to that of the optimal selection and there is no guarantee on
the query response times for the chosen views. A drawback of this algorithm is that it is, in most
cases, impractically slow. Fach greedy step is quadratic to the number of views and this yields an
0(2%%) worst case running cost. Shukla, Deshpande and Naughton recently showed [SDN98] that
a simple algorithm that picks views according to their size achieves the same benefit bound, for
many practical cases.

A follow-up research [GHRU97] investigates the combined view and index selection problem
under a given space constraint. For materialized views that are very large, having them pre-
computed and stored in summary tables is wasteful, unless we index them in order to support
fast access to individual records. The authors present a family of algorithms of increasing time
complexity that consider also indices (B-trees) for the selected views.

Smith et al in [SLCJ98] propose a method of decomposing the views into a hierarchy of view ele-
ments that correspond to partial and residual aggregations. Their algorithm picks a non-redundant
set of such elements and minimizes query response time. If extra space is available a second al-
gorithm releases the non-redundancy requirement and focuses on selecting a set of elements that
minimizes query processing for a target storage bound. The main drawback of this approach is
the extremely high complexity of the decomposition step, which makes the algorithms impractical

even for a limited number of dimensions/views.

16

Selecting a view set to materialize and possibly some indices on them, is just the tip of the
iceberg. Clearly, query performance is improved as more views are materialized. With the cost
of disks constantly dropping, disk storage constraint is no longer the limiting factor in the view
selection but the time to refresh the materialized views during updates. More materialization
implies a larger maintenance window. This update window is the major data warehouse parameter,
constraining over-materialization, as seen in Figure 6. The work we discussed so far ignores the
maintenance cost of the views. Gupta in [Gup97] provides a theoretical-framework for the general
view selection problem and presents polynomial-time algorithms for some special cases, which
lower-bound the benefit of the optimal solution. In particular, he considers the case where both
query response time and the maintenance cost is to be minimized for a bounded space. This
framework is extended in [Gup99] to address the problem of selecting views to materialize under
the constraint of a given amount of total maintenance time. Baralis, Paraboschi and Teniente
in [BPT97] and Yang, Karlapalem and Li in [YKL97] present various algorithms for minimizing
the response time and the maintenance overhead without any resource constraint. Labio, Quass
and Adelberg in [LQA97] use an A* search, similar to that of [Rou82] to pick the best set of views
when only the maintenance cost is to be minimized. Finally, Theodoratos and Sellis in [TS97]
define the Data Warehouse configuration problem as a state-space optimization problem where the
maintenance cost of the views needs to be minimized, while all the queries can be answered by the
selected views. They propose a genetic algorithm that gradually refines a sub-optimal selection by

making local configuration changes.

6 Dynamic Caching of Views

The idea behind view selection is that a fairly small number of views may provide substantial
performance boost for many complex analytical queries. In many cases however users submit their
queries interactively, i.e they do not have a predetermined set of queries in mind, but rather they
are making up their queries on the way based on the feedback they get from the system. This type
of analysis often results in querying the data in surprising ways that are not best supported from

the materialized views selected by the previous algorithms. In addition decision support queries

17

typically return relatively small results containing few interesting aggregates. Query: “find the
total sales for the last 5 years in all stores in NJ” is a fine example of that. Processing this query
requires scanning and aggregating lots of detailed records, while the result is just a single value.

Furthermore, as users query patterns and data trends change overtime and as the data ware-
house is evolving with respect to new business requirements that continuously emerge, even the
most fine-tuned selection of views that we might have obtained at some point, will very quickly
become outdated. This means that the selected set of views should be monitored and re-calibrated
if query performance is not satisfactory. This task for a complex data warehouse where many users
with different profiles submit their queries is rather complicated and time consuming. In addition,
the maintenance window, the disk space restrictions and other important operational parameters
of the system may also change. For example, an unexpected large volume of daily updates will
throw the selected set of views as not update-able unless some of these views are discarded.

An observation from Figure 6 is that the selection process is guided with respect to two con-
strains: the available disk space to store the aggregates and the required maintenance window
when the views get refreshed. When optimizing for both space and maintenance-time it is likely
that the selection will fully utilize only one of them. In Figure 6 the maintenance-time constrain
is stricter and does not allow us to add extra views, even-though we can afford the disk space.
At query time this extra space is waisted even-though it could be used to temporary stage other
aggregates.

To summarize our discussion the following postulates are made:

e ad-hoc analysis is in many cases unpredictable. It might be hard to find a set of views that

fits all users.
e query results are often relatively small, as they contain aggregated data

e data is relatively static with only infrequent updates that are happening in predetermined

intervals

e a static selection of views can not fully utilize the disk-space and maintenance-time restric-

tions of the system

18

These observations suggest that a query result caching architecture is particularly well suited
for a data warehouse environment. The cache manager utilizes a dedicated disk space for storing
computed aggregates that are further engaged for answering new queries. The problem differs

from traditional caching in the following aspects:

e cached aggregates have different sizes and computation costs. An aggregate query may yield
a result as big as the top view of the lattice and as small as a single aggregate. Furthermore,
it is far more expensive to recompute results of a high level of aggregation since they require
scanning and processing lots of detailed records. This implies that LRU or LFU replacement

policies are probably not well suited for managing the cache.

e cached results are often not independent. We have already discussed dependencies of mate-
rialized aggregates in the lattice framework of Figure 2. Drill-down and roll-up queries that
are common in OLAP analysis tend to fill the cache with results of different aggregation
levels. An effective caching architecture should understand and exploit the dependencies
among the aggregates. For instance a more detailed cached result may be used to answer a

coarser aggregate query in the future.

e cached results get dirty when the underlying data is modified. Traditional caching typically
invalidates dirty objects when data changes at the sources. However, this practice is not
efficient for disk resident materialized aggregates with potentially large re-computation over-
head. Assuming updates are happening in a periodic fashion we need algorithms that will
efficiently maintain the cache with respect to the changes and the dependencies among the
cached results. If the whole cache can not be updated within the allowed maintenance period

we would have to choose among the cached results and discard some of the aggregates.

e testing whether the cache content can be used to answer a query can be hard as discussed
in the next section. Thus, we need practical implementations that will restrict the form of

queries admitted in the cache to allow for fast look-ups at query time.

A framework for caching and reusing results in relational database systems has been presented

in [Sel88]. The WATCHMAN cache manager, introduced in [SSV96] uses replacement and admis-

19

sion techniques tuned for analytical workload and is used in the dynamic caching system of [SSV99].
The cache manager dynamically maintains the content of the cache by deciding whether a newly
computed query result should be admitted and if so which already cached result should be evicted
to free some space. The admission and replacement algorithms are based on a profit metric, which
considers for each result the average rate of reference, its size and its re-computation cost. [KR99]
extends this metric to take into account the content of the cache and the maintenance cost of the
result when the base data is updated. The intuition is that if two results are cached as views v
and u and both have fairly large re-computation costs but v < u then v should probably get a
smaller profit score, since it can always be re-computed from the cache using u without accessing
the detailed records. Similarly, we might want to credit u with higher profit value based on the
number of cached results that can be recomputed from u or be maintained from u in the hybrid
maintenance scheme discussed in section 8.

Testing whether a cached result of an arbitrary aggregation query can be used to process a new
query is NP-hard [YL95] in general. To overcome this difficulty dynamic caching systems restrict
the form of queries that are maintained in the cache. [KR99] brakes an incoming query into a
set of multidimensional query fragments. These are SPJ-queries where each selection predicate is
of the form attribute = literal. The cache manager uses a network of multi-dimensional indices
organized in a lattice topology for locating cached results that can answer a new query. [SSV99]

uses a broader class of canonical queries. These are aggregation queries of the form:

select selection_list, aggr_list
from table_list

where join_condition

and select_condition

group by groupby_list

The join_condition is a list of equality predicates among attributes of the fact and the dimen-
sion tables connected by AND. Predicates in select_condition involve only single attributes and

literals connected with one of the <, >, <, >, =, #, between operators. Such a query is transform

20

into queries ¢; and g2 where ¢; contains no selection clause and g2 returns the same result as ¢
when evaluated over the result set of g1. ¢1 is called the base query and if no joins are present it
corresponds to one of the nodes of the data cube lattice.l.

[DRSN98] introduces a different caching architecture where data are organized in the form of
chunks. These chunks corresponds to partitions created when a uniform multidimensional grid is
imposed on-top of the dataset. Answering a query translates into finding the appropriate chunks
that contain the requires aggregates. Two potential drawbacks of this approach is that chunking
might not work well on skewed datasets and also that it requires the data warehouse tables to be

stored using a specialized chunked file organization [SS94).

7 Answering Queries Using Views

In many cases, queries on the data warehouse can be answered using the materialized aggregate
views without accessing the detailed records. Given a query ¢ and a view v, checking if all records
of ¢ are stored in v (along with possible uninteresting tuples) is reduced to the query containment
problem and is well known to be NP-hard [AD98, KV98, KMT98]. For the special case of SPJ-
views there are algorithms [LY85, YL87, CKPS95, LMSS95, SDJL96] that can be used to optimize
the execution of user queries against the views.

The data cube views have a very restricted form that makes the problem somehow easier,
since they contain no joins and selections but only groupings over dimension’s keys. The most
common way to use such a view is to roll up by grouping on additional columns and add possibly
some selection filters. Even in this case we should make sure that the aggregate functions used
in the view can be safelly rolled up for answering the query. For example a view that computes
both count() and avg() can be rolled up for computing sum() for a query but for other statistical
functions rolling up the aggregates may not be possible.

In the general case the views that have been materialized in the data warehouse may contain

selections and joins between the fact and some of the dimension tables. For example assume that

the lattice notation is extended when joins are allowed between the fact and the dimension tables as described

in [HRU96]

21

our star schema of Figure 1 has been extended to include the time dimension and a materialized

view v stores the total sales by quarter for each part:

V: create view v as

select part.partkey, time.quarter, time.year, sum(sales) as total_sales
from F, part, time
where F.partkey = part.partkey and F.timekey = time.timekey

group by part.partkey, time.quarter, time.year

Assume now a query ¢ that requests the total sales per part for a specific category of parts

(e.g. “auto-parts”) for the year 2000:

q: select part.partkey, sum(sales) as total_sales
from F, part, time
where F.partkey = part.partkey and F.timekey = time.timekey
and part.category = ‘‘auto-parts’’ and time.year=2000

group by part.partkey
in the presence of v the query can be rewritten as following:

q(v): select v.partkey,sum(v.total sales) as total sales
from v, part,
where v.partkey = part.partkey
and v.year = 2000
and part.category = ‘‘auto-parts’’

group by v.partkey

In this rewriting we avoid joining with the fact and the time tables since the view contains the
necessary information to roll up from quarters to years, however we still have to do a join with the
dimension table for parts to get the category attribute. Such a join is called a joinback [BDD*98]

and is made possible because we know that the partkey attribute in the view is a primary key

22

on that table and thus no information is lost when using the view. We would like to point out
here that any rewriting functionality should be integrated within the query optimizer that knows
about integrity constrains, value distributions and possible indexes on the views and the tables.
For example it might be faster to query the fact table through an appropriate index than rewriting
a query to use a large unindexed materialized view.

The hierarchical and functional relationships of attributes stored in the dimension tables should
be taken into account when doing roll ups or joinbacks. For the previous example we used the fact
that partkey is the primary key for the part dimension to infer the missing category attribute from
the part table. Functional dependency information is also necessary when rolling up aggregates.
For example if city uniquely identifies a state in the customer table it is valid to roll up sum of sales
by city to sum of sales by state. Sometimes domain knowledge is necessary to correctly interpret
the results. For example if we do not sell to all cities in NJ, then the previous aggregates will refer
to a subset of cities in the NJ. Similarly if a part belongs to multiple categories (this requires some
modifications in our schema) then rolling up the sum of sales per category to compute the overall

sales gives an incorrect result.

8 Updating the Views

As changes are made to the base tables of the data warehouse, the materialized aggregate views
must also be updated to reflect the new state of the detailed records. The data warehouse tables
are themselves views of multiple external data sources that periodically ship their updates to the
repository. Changes are not made immediately but are deferred and applied in large batches during
a down-time period. This not only allows the data warehouse to provide a consistent snapshot
during analysis but makes maintenance more efficient using bulk load and update techniques. In
the database literature there is an abundance of work related to view maintenance?. Frequently,
only a small part of the view changes in response to changes in the base relations, or similarly

few of the changes affect the view. In such cases it might be faster to compute only the changes

Zrefer to [GM95] for a survey

23

partkey | suppkey | custkey | amount
partkey | total_sales | max_sale
102 7
100 28 4
100 2
101 11 5
103 1
102 5 5
102 e e 3
103 17 8
106 9
104 22 8
102 5
Figure 7: Materialized View v on partkey Flgure 8: F+I insertion in the fact table

in the view to update its materialization. This is called incremental view maintenance and uses
a delta paradigm to represent changes of the base relations that are then used to update the
view(s). This implies that we have access to the set of changes that have happened to the base
data. Unfortunately this is not always the case, especially for views over distributed data sources
that often don’t use relational databases. Furthermore, even if the data sources are willing to
report changes, querying them during maintenance may be prohibitively expensive [QGMW96].
For our discussion, we assume that all aggregate views are updated with respect to changes
in the fact table, after the fact table itself has been updated. Different policies are implemented,
depending on the types of updates and the properties of the aggregate functions that are computed
by the views. One can always recompute the aggregate views from scratch, using techniques
described in section 4, every time the fact and/or the dimension tables are modified. This approach
ultimately leads to unacceptable performance as the size of the data warehouse increases over time.
Recently we have seen incremental update algorithms [GMS93, GL95, JMS95, Qua96, MQM97,
RKR97, KR98] that handle views with aggregations. These algorithms avoid full re-computation
of the views by using appropriate maintenance expressions in response to changes in the dataset.
Often such changes involve only insertions, however the update process should be able to handle
both insertions and deletions. The delta paradigm divides these changes into two sets F* and
F~. Set FT contains all new tuples inserted in the fact table, while F~ all deleted records.
Updates (modifications) are expressed in this framework as a deletion followed by an insertion.

For a materialized view v our goal is to create an expression that will correctly reflect changes F'*

24

partkey | total_sales | max_sale
partkey | total_sales | max_sale 100 30 4
100 2 2 101 11 5
102 15 7 102 20 7
103 1 1 103 18 8
106 9 9 104 22 8
Figure 9: Summary delta table delta; 106 i i

Figure 10: Updated View

and F'~ to v. This may or may not be possible depending on the aggregate functions that are
computed by the view and the type of changes that we want to apply. All distributive functions
like count(), sum(), maz() can be refreshed incrementally when only insertions are allowed. For

example assume that the following view is materialized in the data warehouse:

v: create view v as
select partkey,sum(amount) as total_sales, max(amount) as max_sale
from F

group by partkey

The view computes the maximum and total sales per part from the transactions stored in the
fact table F. Figures 7,8 provide a snapshot for this view along with a set of insertions F that
we want to apply. Both sum() and maz() allow further aggregation based on the new data. Based

on this property we can create a summary delta table [MQM97, RKR97] for this view as follows:

delta;: create view delta; as
select partkey,sum(amount) as total sales, max(amount) as max sale
from F*

group by partkey

delta; is shown in Figure 9 and applies the definition of the view on the new records only. We
can now merge the old snapshot of the view with the newly computed aggregates in the following

way:

25

1. if for a record in delta; there is no a record in v with the same partkey value we copy the

record to the view. This is the case for the new entry with partkey=106.

2. if there is already an entry in v, for the sum() function we add the two aggregates and update

the value stored in v, while for the maz() function we keep the maximum of the two.

Figure 10 shows the refreshed view after changes in F'™ have been applied. In order to imple-
ment the merge procedure we can open a cursor in delta; and check each record against the view.
For this process to work efficiently there should be an index on the primary key partkey of the
view. However, for large batches of insertions checking the index over and over again will yield a
substantial overhead. If on the other hand group bys are computed using a sort-based algorithm
we could take advantage of matching sort orders (like the case of Figures 7,9) and simply merge
the aggregates by sequentially scanning the records of both tables [RKR97].

In the presence of multiple views we can use optimizations similar to those employed for
computing the views at the fist place. For example we can compute delta; from the summary-delta
table delta;l of another view u if v < u and the delta table of u is smaller that F*. Alternatively,
if u has already been updated, we can re-compute view v from u and avoid the overhead of
materializing its summary-delta table. This implies a hybrid maintenance scheme, in which some
of the views are updated incrementally from the deltas, others are recomputed from F and others
are re-computed from other views. The decision is based on a cost-based optimization that takes
into account the time that we can spend in maintaining the views, the disk space available for
temporal results and the data structures that we use for storing and indexing the views and the
fact table. [KR99] describes such a hybrid update algorithm.

Table 8 summarizes the alternative ways that view v can be maintained with respect to changes
in F*. We would like to stretch out that incremental updates are not a panacea for the view
maintenance problem. Complex maintenance expressions over unindexed data/deltas may result
to thrashing and void any benefits from incremental computations of the aggregate functions as
shown in [KR98].

Incremental and hybrid update algorithms can be used for algebraic functions too, however

their efficiency is questionable if the function requires significant state information to describe a

26

policy description

re-computation | recompute from F

incremental incrementally from delta;

hybrid update u : v < u, recompute v from u

Table 1: Update policies for aggregate views

sub-aggregate. For example avg() can be maintained using partial sum() and count() information,
but for mazN() the implementation will be very inefficient.

If we try to extend the delta-paradigm for deletions we will find that the results do not hold
for all distributive functions. For instance if '~ contains just a single record with partkey=104
and amount==8 this tells us that the entry with the maximum sales for this part is deleted from
the fact table. However, we have no way of knowing what the new maximum sale for this part is
without looking back at the fact table. For the sum() function the situation is slightly better. Each
deleted record can be expressed as an insertion where the value of the measure is negated. This
yields correct output from the merging step if we remove from v records whose sum() aggregate
is zero, as they correspond to entries that contained some value but their individual records are
now deleted from F'. Thus, we can treat zero as a special value that indicates when all tuples in
a group have been deleted. One however should restrain from using such deductions because they
are highly application depended and can lead to unpredictable results. In order to consistently
maintain the sum() aggregate in the presence of deletions we can include a count() function in the
view definition. When count() becomes zero, we can safely deduct that the record can be removed
from the view.

The authors of [MQM97] define a function as self-maintenable if its new value can be computed
solely from the old value and the changes to the base records with respect to new updates. Func-
tions can be self-maintenable with respect to insertions F'T, deletions F~ or both. All distributive
functions are by definition self-maintenable with respect to insertions and all self-maintenable

functions must be distributive. Adding extra information can make a distributive function like

27

sum() self-maintenable with respect to deletions but this is not always the case. For instance
if count() > 0 we still need to look in F' to find the new value for maz() and min() after the

maximum or the minimum value is deleted.

9 Final Comments

Materialized views and their implications have been recently rediscovered for the content of OLAP
and data warehousing. A flurry of papers has been generated on how views can be used to
accelerate ad-hoc computations over massive datasets. Picking and materializing the right set of
views, with respect to the workload and the disk space and maintenance time constraints has also
received considerable attention. Recent approaches seem to agree that their use is best exemplified
in a dynamic environment, in which a materialized set of views is reconciled with each new query.
Substantial effort has also been given for optimizing their computation and maintenance tasks.
From the commercial side materialized views are eventually getting the attention they deserve
in products like Oracle 8.1, IBM DB2 [ZCL*™00] and HP Intelligent Warehouse. Materialized
views with their versatility and potential introduce new challenges with interesting research and
engineering questions. Taking a leap from the centralized data warehouse model and moving in
a distributed and possibly mobile world, we are faced with new challenges in view management.
Thus, the excitement about materialized views and their applications is expected to continue for

the foreseeable future.

References

[AAD*96] S. Agrawal, R. Agrawal, P.M. Deshpande, A. Gupta, J.F. Naughton, R. Ramakr-
ishnan, and S. Sarawagi. On the Computation of Multidimensional Aggregates. In
Proceedings of the 22nd VLDB conference, pages 506-521, Bombay, India, August
1996.

[AD9S] S. Abiteboul and O. M. Duschka. Complexity of Answering Queries Using Materi-
alized Views. In Proceedings of the Seventeenth ACM SIGACT-SIGMOD-SIGART

28

[BDD*98]

[BE97]

[BPTY7]

[BR9Y]

[CDY7]

[CKPS95]

[Col96]

[DRSNYS]

Symposium on Principles of Database Systems, pages 254-263, Seattle, Washington,
June 1998.

Randall G. Bello, Karl Dias, Alan Downing, James Feenan Jr., William D. Norcott,
Harry Sun, Andrew Witkowski, and Mohamed Ziauddin. Materialized Views in Or-
acle. In Proceedings of the 24rd International Conference on Very Large Data Bases,

pages 659-664, New York City, New York, August 1998.

R. Barquin and H. Edelstein, editors. Building, Using and Managing the Data Ware-
house. The Data Warehousing Institute Series. Prentice Hall PTR, 1997.

E. Baralis, S. Paraboschi, and E. Teniente. Materialized View Selection in a Multidi-
mensional Database. In Proceedings of the 23th International Conference on VLDB,

pages 156-165, Athens, Greece, August 1997.

Kevin S. Beyer and Raghu Ramakrishnan. Bottom-Up Computation of Sparse and
Iceberg CUBEs. In Proceedings ACM SIGMOD International Conference on Man-

agement of Data, pages 359-370, Philadephia, Pennsylvania, June 1999.

S. Chaudhuri and U. Dayal. An Overview of Data Warehousing and OLAP Technol-
ogy. SIGMOD Record, 26(1), September 1997.

S. Chaudhuri, R.i Krishnamurthy, S. Potamianos, and K. Shim. Optimizing Queries
with Materialized Views. In Proceedings of the Eleventh International Conference on

Data Engineering, pages 190-200, Taipei, Taiwan, March 1995.

G. Colliat. OLAP, Relational and Multidimensional Database Systems. SIGMOD
Record, 25(4):64-69, Sept 1996.

P.M. Deshpande, K. Ramasamy, A. Shukla, and J.F. Naughton. Caching Multidimen-
sional Queries Using Chunks. In Proceedings of the ACM SIGMOD, pages 259-270,
Seattle, Washington, June 1998.

29

[FMS85]

[GBLP96]

[GHRU97]

[GL95]

[GMY5]

[GMS93]

[Gra93]

[GSE+94]

[Gup97]

[Gup99]

P. Flajolet and G. N. Martin. Probabilistic Counting Algorithms for Database Ap-
plications. Journal of Computer and System Sciences, 31(2):182-209, 1985.

J. Gray, A. Bosworth, A. Layman, and H. Piramish. Data Cube: A Relational Aggre-
gation Operator Generalizing Group-By, Cross-Tab, and Sub-Totals. In Proceedings
of the 12th ICDE Conference, pages 152-159, New Orleans, February 1996. IEEE.

H. Gupta, V. Harinarayan, A. Rajaraman, and J. Ullman. Index Selection for OLAP.
In Proceedings of ICDE, pages 208-219, Burmingham, UK, April 1997.

T. Griffin and L. Libkin. Incremental Maintenance of Views with Duplicates. In
Proceedings of the ACM SIGMOD Conference, pages 328-339, San Jose, CA, May
1995.

A. Gupta and I. Singh Mumick. Maintenance of Materialized Views: Problems,
Techniques, and Applications. Data Engineering Bulletin, 18(2):3-18, 1995.

A. Gupta, I.S. Mumick, and V.S. Subrahmanian. Maintaining Views Incrementally.
In Proceedings of the ACM SIGMOD Conference, pages 157-166, Washington, D.C.,
May 1993.

G. Graefe. Query Evaluation Techniques for Large Databases. ACM Computing
Surveys, 25(2):73-170, 1993.

J. Gray, P. Sundaresan, S. Englert, K. Baclawski, and P. Weiberger. Quickly Gen-
erating Billion-Record Synthetic Databases. In Proc. of the ACM SIGMOD, pages
243-252, Minneapolis, May 1994.

H. Gupta. Selections of Views to Materialize in a Data Warehouse. In Proceedings of

ICDT, pages 98-112, Delphi, January 1997.

H. Gupta. Selection of Views to Materialize Under a Maintenance Cost Constraint.

In Proceedings of ICDT, Jerusalam, Israel, January 1999.

30

[HRU96]

[TMS95]

[Kim96]

[KM99)

[KMTY8]

[KR98]

[KR99]

[KV98]

V. Harinarayan, A. Rajaraman, and J. Ullman. Implementing Data Cubes Efficiently.
In Proceedings of ACM SIGMOD, pages 205-216, Montreal, Canada, June 1996.

H. Jagadish, I. Mumick, and A. Silberschatz. View Maintenance Issues in the Chron-
icle Data Model. In Proceedings of PODS, pages 113-124, San Jose, CA, 1995.

R. Kimball. The Data Warehouse Toolkit. John Wiley & Sons, 1996.

H. J. Karloff and M. Mihail. On the Complexity of the View-Selection Problem. In
Proceedings of the 18th ACM SIGACT-SIGMOD-SIGART Symposium on Principles
of Database Systems, pages 167-173, Philadelphia, Pennsylvania, May 1999.

P. G. Kolaitis, D. L. Martin, and M. N. Thakur. On the Complexity of the Con-
tainment Problem for Conjunctive Queries with Built-in Predicates. In Proceedings
of the Seventeenth ACM SIGACT-SIGMOD-SIGART Symposium on Principles of
Database Systems, pages 197-204, Seattle, Washington, June 1998.

Y. Kotidis and N. Roussopoulos. An Alternative Storage Organization for ROLAP
Aggregate Views Based on Cubetrees. In Proceedings of the ACM SIGMOD Inter-
national Conference on Management of Data, pages 249-258, Seattle, Washington,
June 1998.

Yannis Kotidis and Nick Roussopoulos. DynaMat: A Dynamic View Management
System for Data Warehouses. In Proceedings of the ACM SIGMOD International
Conference on Management of Data, pages 371-382, Philadelphia, Pennsylvania, June
1999.

P. G. Kolaitis and M. Y. Vardi. Conjunctive-Query Containment and Constraint
Satisfaction. In Proceedings of the Seventeenth ACM SIGACT-SIGMOD-SIGART
Symposium on Principles of Database Systems, pages 205-213, Seattle, Washington,
June 1998. ACM Press.

31

[LMSS95]

[LQA9T7]

[LRS99)

[LY85]

[MK99]

[MQM97]

[olaa]

[olab]

[QGMWY6]

A. Y. Levy, A. O. Mendelzon, Y. Sagiv, and D. Srivastava. Answering Queries Using
Views. In Proceedings of the Fourteenth ACM SIGACT-SIGMOD-SIGART Sympo-
sium on Principles of Database Systems, pages 95-104, San Jose, California, May
1995.

W. Labio, D. Quass, and B. Adelberg. Physical Database Design for Data Warehouses.
In Proceedings of ICDE, pages 277288, Birmingham, U.K., April 1997.

Jianzhong Li, Doron Rotem, and Jaideep Srivastava. Aggregation Algorithms for Very
Large Compressed Data Warehouses. In Proceedings of 25th International Conference

on Very Large Data Bases, pages 651-662, Edinburgh, Scotland, September 1999.

P.-A. Larson and H. Z. Yang. Computing Queries from Derived Relations. In Pro-
ceedings of the 11th VLDB Conference, pages 259-269, Stockholm, Sweden, 1985.

Seigo Muto and Masaru Kitsuregawa. A Dynamic Load Balancing Strategy for Par-
allel Datacube Computation. In DOLAP 99, pages 67-72, Kansas City, Missouri,
November 1999.

I. S. Mumick, D. Quass, and B. S. Mumick. Maintenance of Data Cubes and Summary
Tables in a Warehouse. In Proceedings of the ACM SIGMOD Conference, pages 100—
111, Tucson, Arizona, May 1997.

The OLAP Council.

http://www.olapcouncil.org.

The OLAP Report.

http://www.olapreport.com.

D. Quass, A. Gupta, I.S. Mumick, and J. Widom. Making Views Self-Maintainable
for Data Warehousing. In Proceedings of the Fourth International Conference on
Parallel and Distributed Information Systems, pages 158-169, Miami Beach, Florida,
December 1996.

32

[Qua96]

[RKR97]

[Rou82]

[RS97]

[SDJL.96]

[SDNY8]

[SDNRY6]

[Sel88]

[SLCJ98]

D. Quass. Maintenance Expressions for Views with Aggregation. In Proceedings of

VIEWS 96, pages 110-118, Montral, Canada, June 1996.

N. Roussopoulos, Y. Kotidis, and M. Roussopoulos. Cubetree: Organization of and
Bulk Incremental Updates on the Data Cube. In Proceedings of the ACM SIGMOD
International Conference on Management of Data, pages 89-99, Tucson, Arizona,

May 1997.

N. Roussopoulos. View Indexing in Relational Databases. ACM Transactions on

Database Systems, 7(2):258-290, June 1982.

K.A. Ross and D. Srivastava. Fast Computation of Sparse Datacubes. In Proceedings

of the 23th VLDB Conference, pages 116-125, Athens, Greece, Augoust 1997.

D. Srivastava, S. Dar, H.V. Jagadish, and A. Y. Levy. Answering Queries with Ag-
gregation Using Views. In Proceedings of the 22th International Conference on Very

Large Data Bases, pages 318-329, Mumbai (Bombay), India, September 1996.

A. Shukla, P.M. Deshpande, and J.F. Naughton. Materialized View Selection for
Multidimensional Datasets. In Proceedings of the 24th VLDB Conference, pages 488—
499, New York City, New York, August 1998.

A. Shukla, P.M. Deshpande, J.F. Naughton, and K. Ramasamy. Storage Estimation
for Multidimensional Aggregates in the Presense of Hierarchies. In Proc. of VLDB,
pages 522-531, Bombay, India, August 1996.

T. K. Sellis. Intelligent Caching and Indexing Techniques for Relational Database
Systems. Information Systems, 13(2):175-185, 1988.

J. R. Smith, C. Li, V. Castelli, and A. Jhingran. Dynamic Assembly of Views in Data
Cubes. In Proceedings of the Symposium on Principles of Database Systems (PODS),
pages 274-283, Seattle, Washington, June 1998.

33

[SS94]

[SSV96]

[SSV99]

[TS97]

[YKL97]

[YL87]

[YL95]

[ZCL*00]

S. Sarawagi and M. Stonebraker. Efficient Organization of Large Multidimensional

Arr ays. In Proceedings of ICDE, pages 328-336, Houston, Texas, 1994.

P. Scheuermann, J. Shim, and R. Vingralek. WATCHMAN: A Data Warehouse
Intelligent Cache Manager. In Proceedings of the 22th VLDB Conference, pages 51—
62, Bombay, India, September 1996.

Junho Shim, Peter Scheuermann, and Radek Vingralek. Dynamic Caching of Query
Results for Decision Support Systems. In SSDBM, pages 254-263, Cleaveland, Ohio,
July 1999.

D. Theodoratos and T. Sellis. Data Warehouse Configuration. In Proceedings of
the 23th International Conference on VLDB, pages 126-135, Athens, Greece, August
1997.

J. Yang, K. Karlapalem, and Q. Li. Algorithms for Materialized View Design in
Data Warehousing Environment. In Proceedings of the 23th VLDB Conference, pages
136-145, Athens, Greece, Augoust 1997.

H. Z. Yang and Per-Ake Larson. Query Transformation for PSJ-Queries. In Pro-
ceedings of 13th International Conference on Very Large Data Bases, pages 245—254,
Brighton, England, September 1987.

Weipeng P. Yan and Per-Ake Larson. Eager Aggregation and Lazy Aggregation.
In Proceedings of 21th International Conference on Very Large Data Bases, pages

345-357, Zurich, Switzerland, September 1995.

Markos Zaharioudakis, Roberta Cochrane, George Lapis, Hamid Pirahesh, and Mon-
ica Urata. Answering Complex SQL Queries Using Automatic Summary Tables. In
Proceedings of ACM SIGMOD International Conference on Management of Data,
pages 105-116, Dallas, Texas, May 2000.

34

[ZDN97] Y. Zhao, P.M. Deshpande, and J.F. Naughton. An Array-Based Algorithm for Simul-
taneous Multidimensional Aggregates. In Proceedings of the ACM SIGMOD Confer-
ence, pages 159-170, Tucson, Arizona, May 1997.

35

