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Efficient Routing of Subspace Skyline Queries
over Highly Distributed Data

Akrivi Vlachou, Christos Doulkeridis, Yannis Kotidis, and Michalis Vazirgiannis

Abstract—Data generation increases at highly dynamic rates, making its storage, processing and update costs at one central location
excessive. The P2P paradigm emerges as a powerful model for organizing and searching large data repositories distributed over
independent sources. Advanced query operators, such as skyline queries, are necessary in order to help users handle the huge
amount of available data. A skyline query retrieves the set of non-dominated data points in a multi-dimensional dataset. Skyline query
processing in P2P networks poses inherent challenges and demands non-traditional techniques, due to the distribution of content and
the lack of global knowledge. Relying on a super-peer architecture, we propose a threshold-based algorithm, called SKYPEER and
its variants, for efficient computation of skyline points in arbitrary subspaces, while reducing both computational time and volume of
transmitted data. Furthermore, we address the problem of routing skyline queries over the super-peer network and we propose an
efficient routing mechanism, namely SKYPEER+ , which further improves the performance by reducing the number of contacted super-
peers. Finally, we provide an extensive experimental evaluation showing that our approach performs efficiently and provides a viable
solution when a large degree of distribution is required.

Index Terms—skyline queries, peer-to-peer systems, routing indexes.

✦

1 INTRODUCTION

Skyline queries help users make intelligent decisions
over complex data, where different and often conflicting
criteria are considered. Such queries return a set of
interesting data points – from the user’s perspective
– that are not dominated by any other point on all
dimensions [1]. Skyline queries have been studied in
centralized systems [1], but also in distributed environ-
ments such as web information systems [2] and peer-
to-peer (P2P) networks [3], [4], [5], [6], [7], [8]. The P2P
paradigm emerges as a powerful model for organizing
and searching large data repositories distributed over
independent sources [9], [10]. As an example consider a
global-scale web-based hotel reservation system, consist-
ing of a large set of independent servers geographically
dispersed around the world. Servers accept subscriptions
by travel agencies in order to provide booking services
over the universal hotel database, without requiring
from each travel agency to register with each server.
The challenge is to enable users to pose queries that
capture the individual user’s interests and preferences
over this network of servers, and retrieve those results
that match a possibly different (each time) set of user-
defined criteria.

In this work we explore how subspace skyline queries
can be computed efficiently over a distributed and large-
scale web information system modeled as a P2P net-
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work. Our approach relies on a super-peer architecture,
where each peer holds only a portion of the entire
dataset, hence horizontal data distribution is assumed.
There exist several approaches for distributed skyline
computation. Nevertheless, [5], [6] and [7] assume a
constrained horizontal partitioning (as also mentioned
in [8]) in which a structured P2P overlay network de-
termines for each data point a server that must store
it. These techniques have an expected advantage in
query processing performance due to the data relocation
when peer data enters the network. In this work, we
make no specific assumptions and our techniques work
with arbitrary horizontal partitioning of the data. In [8]
and [3] the authors also employ an arbitrary horizontal
partitioning, but these approaches assume the absence
of an overlay network. Furthermore, in our approach we
assume a super-peer architecture that reduces the degree
of decentralization compared to other P2P networks [5],
but facilitates efficient query processing as also demon-
strated in our experimental evaluation.

In previous work [4], SKYPEER, a distributed frame-
work for subspace skyline processing was proposed.
SKYPEER propagates the subspace skyline query to all
super-peers and gathers the local skyline results sets
using an efficient scheme based on threshold usage and
intermediate result merging. Contacting all super-peers
during query processing is practically unavoidable in the
case of uniform data distribution among the super-peers,
where all super-peers may store part of the skyline result
set. But in many real-life applications, data is clustered
and then it is imperative to avoid contacting all super-
peers. In this paper, we address the problem of routing
the skyline queries over a super-peer network, aiming
to reduce the number of contacted super-peers. Each
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super-peer clusters its local data, in order to provide a
summary description and to make its contents search-
able by other super-peers. The cluster descriptions are
published to the other super-peers and routing indexes
are built. Therefore, we propose an appropriate indexing
and routing mechanism for subspace skyline queries
over a super-peer network. The main contributions of
our work are:

• We explore the implications of processing and rout-
ing subspace skyline queries in large scale P2P
networks.

• We present SKYPEER which utilizes a thresholding
scheme in order to facilitate pruning of dominated
data across the peers. We explore different strategies
for (i) threshold propagation and (ii) result merging
over the P2P network.

• We introduce SKYPEER+, an efficient routing algo-
rithm, which improves performance in the case of
clustered distributions of data among super-peers.
By using the routing indexes, SKYPEER+ further im-
proves the thresholding scheme and reduces drasti-
cally the transferred data.

• We present a set of novel techniques for efficient
management of cluster information. We propose the
iSUBSKY mapping for local indexing of clusters,
threshold refinement for individual clusters and
cluster-driven query routing.

• We provide an extensive experimental evaluation of
our algorithms and show their comparative bene-
fits over a baseline skyline computation algorithm
adapted to work in P2P networks. In addition, we
provide an experimental comparison with existing
algorithms SSP [5] and FDS [8] for various setups.

The rest of this paper is organized as follows: Section 2
provides an overview of related work. In Section 3, we
present the necessary definitions and we introduce the
extended skyline. In Section 4, we give an overview
of the P2P system model and sketch our approach. In
Section 5, we describe the pre-processing phase. Then, in
Section 6, we present the basic SKYPEER algorithm and
in Section 7 we introduce the efficient routing algorithm
SKYPEER+. In Section 8, we provide a comparative
performance analysis and we discuss issues related to
maintenance. Our experimental results are presented in
Section 9. Finally, in Section 10 we conclude the paper.

2 RELATED WORK

Computing skylines was first investigated in computa-
tional geometry [11]. Börzsönyi et al. [1] first investi-
gate the skyline computation problem in the context of
databases. Thereafter, several techniques are proposed in
the relevant research literature for the efficient skyline
computation in a centralized setting [12], [13], [14], [15],
[16]. Motivated by the different preferences of users,
recent papers focus on algorithms to support subspace
skyline retrieval. Pei et al. [17] and Yuan et al. [18]
independently propose the SKYCUBE, which consists

of the skylines in all possible subspaces. In [19], [20]
SUBSKY algorithm is presented, which transforms the
multi-dimensional data to one-dimensional values, and
then indexes the dataset with a B-Tree. Similar, in [16]
the idea of limiting the amount of data to be read by
exploiting the value of a monotone function was studied.
However, [16] does not study subspace skyline queries.

The skyline operator has been also studied in de-
centralized and distributed environments. In [2] an
algorithm for distributed Web-accessible sources was
proposed. Unfortunately, their assumptions are hardly
applicable to large-scale P2P systems. [21] focuses on
P2P skyline computation, while providing probabilistic
guarantees for the result’s correctness. In comparison,
our algorithms provably return exact answers to arbitrary
subspace skyline computations. In [22], Huang et al.
assume a setting with mobile devices communicating
via an ad hoc network, and study skyline queries that
involve spatial constraints. The problem of paralleliz-
ing progressive constrained skyline queries [14] in a
shared-nothing architecture is addressed in [6]. Although
non-constrained skyline queries could probably be sup-
ported, this approach suffers from poor load balancing
and additional mechanisms, such as replication, need to
be used.

An approach for P2P skyline query processing using
a tree-structured overlay is presented in [5] and later
extended in [23]. In this approach, due to the employed
space partitioning scheme, the problem of load balancing
is quite important. In [7], an approach for P2P skyline
retrieval is described that uses Chord as the underlying
infrastructure and minimizes the bandwidth consump-
tion as well as the number of visited nodes. In [24],
an approach for continuous subspace skylines in a dis-
tributed setting that is based on bitmap representation is
presented. In recent work [3], the PaDSkyline algorithm
is proposed for constrained skyline query processing in
distributed environments. However, in contrast to our
approach, the authors do not address the issue of com-
munication among sites (peers), as they assume that no
overlay exists. In [8], the FDS algorithm is also proposed
for skyline query processing in distributed environments
where no overlay exists. The aim is to minimize the
number of transferred objects, however this may result in
several round-trips until the correct result is computed,
thereby incurring a high total response time.

Routing indices for efficient search in P2P systems
have been previously proposed in the research litera-
ture [25], [26]. In this paper, we capitalize on such tech-
niques, in order to build an efficient routing mechanism
at super-peer level.

3 PRELIMINARIES AND DEFINITIONS

We assume a P2P network of Np peers, where some peers
have special roles, due to enhanced features, such as
availability, storage capability and bandwidth capacity.
These peers are called super-peers SPi (i = 1..Nsp), and
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Fig. 1. Skyline example.

they constitute only a small fraction of the peers in the
network, i.e. Nsp << Np. Peers that join the network
directly connect to one of the super-peers. Each super-
peer maintains links to simple peers, based on the value
of its degree parameter DEGp. In addition, a super-peer
is connected to a limited set of at most DEGsp other
super-peers (DEGsp < DEGp).

Each peer Pi holds ni d-dimensional points, denoted
as a set Si (i = 1..Np). Obviously the size of the complete

set of points is n =
∑Np

i=1 ni and the dataset S is the
union of all peers’ datasets Si: S = ∪Si. Given a space
D defined by a set of d dimensions {d1, d2, .., dd} and
a dataset S on D, a point p ∈ S can be represented as
p = {p[1], p[2], ..., p[d]}where p[i], is a value on dimension
di.

Definition 3.1: Skyline: A point p ∈ S is said to dom-
inate another point q ∈ S, denoted as p ≺ q, if (1) on
every dimension di ∈ D, p[i] ≤ q[i]; and (2) on at least
one dimension dj ∈ D, p[j] < q[j]. The skyline is a set of
points SKY ⊆ S which are not dominated by any other
point. The points in SKY are called skyline points.

Without loss of generality, we assume that skylines
are computed with respect to min conditions on all
dimensions and that all values are non-negative. The
notion of skyline can be extended to subspaces. Each
non-empty subset U of D (U ⊆ D) is referred to as a
subspace of D. The data space D is also referred to as
full space of the dataset S.

Definition 3.2: Subspace Skyline: A point p ∈ S is said
to dominate another point q ∈ S on subspace U ⊆ D,
denoted as p ≺U q, if (1) on every dimension di ∈ U ,
p[i] ≤ q[i]; and (2) on at least one dimension dj ∈ U ,
p[j] < q[j]. The skyline of a subspace U ⊆ D is a set of
points SKYU ⊆ S which are not dominated by any other
point on subspace U . The points in SKYU are called
skyline points on subspace U .

Consider for example the dataset depicted in Figure 1.
The skyline points are SKY = {a, i, k}, while for the
(non-empty) subspace U = {y} the skyline points on
U are SKYU = {k, d}. Notice that the point d is a
skyline point on the subspace {y} but it is dominated
by the point k in the space {x, y}. As shown in [18],
[4], the skyline set of the full space does not contain all
the skyline points for any subspace. A skyline point q
in SKYU is either a skyline point in SKYV (assuming

U ⊂ V ) or there is another data point p, such that
p[i] = q[i] (∀di ∈ U ), that dominates q on the dimension
set V −U . Thus, a super-set of the union of all subspace
skylines is the skyline set of the full space enriched with
all points p for which there exists a point q ∈ SKYD such
that q[i] = p[i] for at least one dimension di. Consider for
example Figure 1 where e and k have the same x-value
but k is a subspace skyline point in contrast to point e
which is not a skyline point in any subspace.

To reduce the computation overhead we define a sub-
set of the aforementioned super-set that is able to answer
any subspace skyline query. Therefore, we adjust the
dominance definition to compute all necessary values
co-instantaneously during the skyline calculation. We
define [4] the extended-skyline (ext-skyline) based on the
extended domination (ext-domination) definition.

Definition 3.3: Extended Skyline: For any dimension
set U , where U ⊆ D, p ext-dominates q if on each
dimension di ∈ U , p[i] < q[i]. The ext-skyline (ext-SKYU )
is set of all points that are not ext-dominated by any
other.

The following lemmas show that ext-SKYD is suffi-
cient to answer any subspace skyline query correctly.

Lemma 3.4: Every point that belongs to the skyline of
U belongs also to the ext-skyline of U , i.e. SKYU ⊆ ext-
SKYU .

Lemma 3.5: Every point that belongs to the skyline of
a subspace V ⊆ U belongs to the ext-skyline of U , i.e.
SKYV ⊆ ext-SKYU , V ⊆ U .

For example, in Figure 1, points b, m and d belong to
the ext-skyline, which is not the case with point e, since
e is globally dominated by i, which in turn does not
have any value equal to the attribute values of e. Notice
that neither e nor m belong to any subspace skyline, in
contrast to b and d.

4 SYSTEM OVERVIEW

In the following, we first describe a baseline approach,
henceforth referred to as naive. Then we describe our
thresholding approach, which is more efficient than the
naive approach. Finally, we outline an extension of our
algorithm with enhanced routing capabilities and partic-
ularly suitable for clustered data distributions.

4.1 A Baseline Algorithm

In a pre-processing phase (Section 5.2), each peer Pi

computes the local ext-skyline of its dataset Si. Each
super-peer SPi, collects the ext-skylines of its associated
peers and merges them by discarding all ext-dominated
points. Thereafter, given a subspace skyline query, each
super-peer is able to answer the query based on its peers’
data without actually contacting any peer. The querying
peer Pinit is usually a simple peer that submits a query
to the system. However, in the rest of this paper, we
use Pinit to refer to the super-peer responsible for the
simple peer. In order to answer a subspace skyline query
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over the entire super-peer network, the initiator super-
peer Pinit has to contact all other super-peers through
the neighboring super-peers. More detailed, each super-
peer that receives a subspace skyline query, individually
processes the request based on the locally stored ext-
skylines and routes the results back to the query initiator
through its neighbors. The query initiator collects the
results from all super-peers and merges them by dis-
carding dominated points. This approach is referred to
as naive. In what follows, we describe our approach,
which aims at improving the performance of the naive
approach, by drastically reducing communication costs
and the overall processing time.

4.2 Threshold Usage for Skyline Queries

Subspace skyline points computed at any super-peer
may dominate – and thus prune – points of the current
super-peer. Therefore, in our algorithm a threshold value
is defined based on already computed subspace skyline
points, and the threshold is attached to the query before
it is propagated in the network. The threshold can
be updated at any super-peer in the network during
query processing. In our work, we explore different
strategies for threshold propagation and result merging
through the P2P network (Section 6). In order to support
threshold-based query processing, data is transformed
into one dimensional values in a pre-processing phase
(Section 5).

4.3 Routing of Skyline Queries

Contacting all super-peers during query processing is
acceptable for the case of uniform data distribution
among super-peers, since all super-peers probably store
some skyline points and have to be contacted, in order
to retrieve the exact skyline result set. But in the case
of clustered data distribution, it is desirable to avoid
contacting super-peers that do not contribute to the
result set.

Instead of flooding the network, we propose a routing
mechanism to contact only those super-peers that may
contribute to the overall subspace skyline result set,
while reducing the number of contacted super-peers and
transferred data. More detailed, in the pre-processing
phase, each super-peer SPA additionally applies a clus-
tering algorithm on its ext-skyline points. The cluster
descriptions are broadcast over the super-peer network.
Each super-peer collects the cluster information of all
super-peers and builds routing indexes based on them
(Section 7.3). During query processing the routing in-
dexes are used to define which super-peers may con-
tribute to the overall subspace skyline set (Section 7.4),
thus avoiding flooding.

5 MAPPING AND PRE-PROCESSING

At super-peer level there exists a pre-processing phase
that allows subsequent query processing over the entire

Algorithm 1 Subspace skyline computation

1: Input: U : query dimensions
L: sorted list of data points

2: SKYU ← {∅}
3: threshold← MAX INT
4: p← L.pop()
5: while (f(p) < threshold) do
6: if ( 6 ∃q ∈ SKYU : q ≺U p) then
7: SKYU ← SKYU − {q}, p ≺U q
8: SKYU ← SKYU ∪ {p}
9: threshold← minpi∈SKYU

(distU (pi))
10: end if
11: p← L.pop()
12: end while
13: return SKYU
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Fig. 2. Mapping example.

network of peers. In order to enable the threshold-
based skyline computation, the multi-dimensional data
is transformed into one-dimensional values. This map-
ping is the topic of the next subsection. Thereafter, we
discuss the pre-processing phase in detail.

5.1 Mapping

Recall that each peer maintains a portion of the dataset.
A query refers to a non-empty subset U of D. Inspired
by [19], [16], each d-dimensional point p is transformed
to a one-dimensional value f(p) based on the formula:

f(p) =
d

min
i=1

(p[i]) (1)

Let distU (p) denote the L∞-distance of point p from
the origin based on the dimension set U , i.e. distU (p) =
maxi∈U (p[i]).

Observation 5.1: Let psky be a skyline point in a sub-
space U . A point p for which the following inequality
holds can not be a skyline point in subspace U .

f(p) > distU (psky) (2)

Algorithm 1 uses the proposed mapping for efficient
local subspace skyline computation at a peer. Data points
are accessed in an ascending order of their f(p) values.
Note that the f(p) value is computed once on D in-
dependently from the queried subspace U . In contrast,
distU (p) refers to U and it is calculated during the
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Fig. 3. Peer pre-processing example.

skyline computation. The non-dominated points among
the data already examined are added into the cur-
rent subspace skyline set SKYU . The algorithm uses
as threshold the minimum value of the distU (p) of all
points in SKYU . Based on Observation 5.1, the algorithm
terminates when threshold is smaller than the f(p) value
of the next point p.

Figure 2 depicts a mapping example for a two-
dimensional dataset. For sake of simplicity, in our exam-
ples we assume that the query space and the data space
are identical. In Figure 2, the dashed lines correspond
to the points with f(p) values of 1, 2 and 3 respectively.
Actually, we examine the data space in a way that is
equivalent to the dashed line being shifted from the
origin towards the right corner of the data space. On the
other hand, the dotted line shows the points that cause
a threshold value (distU (psky)) of 3 and 4 respectively.
Notice that if there exists a point that sets the threshold
equal to 3 (lies on the corresponding dotted line), this
point dominates any point on the dashed line with
f(p) equal to 3 independently where the points are
exactly (Observation 5.1). Therefore, the threshold-based
algorithm manages to return the correct skyline set.

5.2 Pre-processing Phase

First, each peer Pi computes the local ext-skyline of its
dataset Si and sends it to the associated super-peer.
Then, the super-peer gathers the local ext-skylines of
the individual peers and merges them by pruning out
those points of a peer Pi that are ext-dominated by points
of another peer Pj , resulting in one set that constitutes
the ext-skyline of space D with respect to the dataset
on the super-peer and its associated peers. Based on
Lemma 3.4 the local ext-skyline is sufficient for a super-
peer to determine if any of its peers Pi contributes to the
results of any subspace skyline query.

We illustrate the details of peer pre-processing
by means of an example. In Figure 3, three peers
(PA, PB, PC ) are assigned to super-peer SPA and their
local datasets are shown. The dimensionality of the

dataset is 4. Each peer computes its local ext-skyline in
the original space. The points added to the result set
due to the ext-skyline definition are grey shaded. For
instance, four of the five points of PA are skyline points,
while A3 is included as an ext-skyline point.

6 THE BASIC SKYPEER ALGORITHM

Our algorithm utilizes a thresholding scheme, in order to
facilitate pruning of dominated data across the peers. A
querying super-peer hands on the query to its neighbor-
ing super-peers along the super-peer backbone, which in
turn forward the query to their adjacent super-peers. The
super-peers execute the query over locally stored ext-
skylines and retrieve local results, which are sent back
through the query routing path. In the sequel we present
all relevant steps in detail.

6.1 Threshold-based Skyline Processing

Let t be the threshold value at the end of the local
skyline computation (i.e. Algorithm 1) at the initiator.
Based on Observation 5.1, the threshold value indicates
that there is a local skyline point p that dominates
all points with f(p) values larger than t. At the end
of the local skyline computation, t corresponds to the
point with the minimum threshold value, i.e. the highest
pruning capability. Since data is horizontally partitioned
over the super-peers, the local skyline point p dominates
all points of any super-peer with f(p) larger than t.
Therefore, t is attached to the query and propagated to
the super-peers. The threshold value is used as an initial
threshold for the local subspace skyline computation to
further reduce the computation and communication cost.

An alternative threshold propagation strategy is to
compute and refine the threshold on each super-peer
that is processing the query, instead of forwarding Pinit’s
fixed threshold value. Intuitively, by progressively low-
ering the threshold value, the pruning capability of the
query increases at each forwarding step. However, this
approach requires that the query is propagated after the
super-peer has finished the local skyline computation.

6.2 Merging Phase

During query processing, the local subspace skyline sets
have to be merged into one overall result set. We explore
two different strategies for the merging phase.

The simplest strategy is that the initiator super-peer
Pinit collects the local subspace skyline result sets of all
super-peers through its neighbors and merges the local
result sets of the individual super-peers to one global
result set. Even though the use of the threshold reduces
the amount of data transmitted to the query initiator
Pinit, there is still a chance that a local result may
contain points that do not belong to the overall skyline.
Therefore, a second strategy for the merging phase, is to
merge progressively the local skyline sets during query
evaluation. Instead of forwarding all results back to Pinit,
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Fixed Threshold Fixed Merging (FTFM)
Fixed Threshold Progressive Merging (FTPM)
Refined Threshold Fixed Merging (RTFM)
Refined Threshold Progressive Merging (RTPM)

TABLE 1
Variants of the basic SKYPEER.

each super-peer merges the results of its neighbors, and
forwards the merged result back to Pinit. The benefit
is twofold. The transferred data is reduced and a time-
consuming centralized merging phase is avoided. On the
other hand, the computation cost for each super-peer
increases due to the additional merging phase. However,
we note that the input and therefore the cost of each
subsequent merging phase is much smaller.

6.3 SKYPEER

SKYPEER propagates the subspace skyline query to all
super-peers and gathers the local subspace skyline re-
sults sets using an efficient thresholding scheme. There-
after, these local subspace skyline results have to be
merged into a global result set, for example by the
initiator super-peer. In Table 1, we present our variants of
the basic SKYPEER based on two different optimization
criteria for distributed subspace skyline computation:

1) Threshold propagation: (i) Fixed Threshold: Pinit

calculates its threshold t for q(U, t) and forwards
the threshold value to all super-peers. (ii) Refined
Threshold: Pinit calculates and sends its threshold to
its neighboring super-peers, which do not forward
it immediately to other super-peers, but rather they
first compute the subspace skyline, calculate the
new threshold t′, and then forward q(U, t′).

2) Merging strategy: (i) Fixed Merging at Pinit: In this
approach, all super-peers forward their computed
subspace skyline back to Pinit, and Pinit is respon-
sible for merging the results and computing the
resulting subspace skyline for q(U). (ii) Progressive
Merging: Each super-peer merges the results it re-
ceives with its locally computed subspace skyline,
before sending the results back to the super-peer
from which it originally received the query.

We now introduce the SKYPEER algorithm (see Algo-
rithm 2). A subspace skyline query q(U) is posed by the
initiator super-peer Pinit. The initiator super-peer first
computes the skyline on its local ext-skyline resulting
in a threshold value t, which based on Observation 5.1
can be used to prune out points that can not belong
to the result of the skyline query. The threshold value
is attached to the query q(U) that becomes q(U, t) be-
fore it is forwarded to Pinit’s neighbors at super-peer
level. Each super-peer SPi receiving the query, forwards
it to its neighboring super-peers and executes a local
threshold-based subspace skyline computation on its local
ext-skyline points. If the RT*M variants are employed,

Algorithm 2 SKYPEER on super-peer SPi

1: Input: mode (FTFM, FTPM, RTFM, RTPM)
Query (q(U, t))
Querying super-peer (SPq)

2: LN ← list of all neighbors except SPq

3: if (mode ∈ {RTFM,RTPM}) or (SPi = Pinit) then
4: SKYU0

← compute local skyline
5: t← refineThreshold(t)
6: end if
7: for ni ∈ LN do
8: send(ni, q(U, t))
9: end for

10: if mode ∈ {FTFM,FTPM} then
11: SKYU0

← compute local skyline
12: end if
13: for j = 1 to |LN | − 1 do
14: receive SKYUj

15: if mode ∈ {FTPM,RTPM} then
16: SKYU0

←mergeResults(SKYUj
, SKYU0

)
17: else
18: send(SPq, SKYUj

)
19: end if
20: end for
21: send(SPq, SKYU0

)

then before forwarding the query, SPi computes the
skyline on its local ext-skyline which results in a refined
threshold value t′ (or in worst case t′ = t) that is attached
to the query before it is sent to the neighboring super-
peers. The results are routed back to Pinit. If one of the
*TPM variants is employed, SPi first merges the results it
receives, before forwarding them to the super-peer from
which it received the query (querying super-peer).

7 THE SKYPEER+ ALGORITHM

In this Section, we describe SKYPEER+, an algorithm
for the case of non-uniform data distribution on peers,
that aims at efficient and deliberate routing of skyline
queries. In order to achieve this goal, a mechanism for
pruning super-peers that can not contribute to the result
is necessary. In our approach, super-peers exchange com-
pact data descriptions, thereby enabling pruning of dom-
inated super-peers at query time. The exchanged data
descriptions enable the construction of routing indexes
for intentional query forwarding to specific super-peers.

Each super-peer clusters the extended skyline points
using a standard clustering algorithm. During the pre-
processing phase, each super-peer publishes only the
cluster descriptions Ci to all other super-peers, as a
summarization of its data, while the extended skyline is
stored by the super-peer itself. The remaining challenge
is to answer skyline queries over the entire super-peer
network. Instead of flooding queries at super-peer level,
we build routing indexes based on the cluster descrip-
tions that enable selective query routing only to super-
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peers that may actually be responsible for peers with
relevant results.

In Section 7.1 we introduce the one-dimensional map-
ping used by SKYPEER+, while in Section 7.2, we dis-
cuss how local query processing is performed on a super-
peer. In Section 7.3 we describe the construction of the
routing indexes. Then, in Section 7.4, we present the
cluster dominance relationships and we introduce the
skyline routing algorithm.

7.1 Mapping and Representation

Recall that each super-peer stores the extended skylines
of its associated peers, henceforth also called data points
of the super-peer.

For non-uniform datasets, we follow the same intu-
ition of [19] where the dataset is partitioned in NC

clusters. Each super-peer first clusters the extended
skyline points using a standard clustering algorithm
(like K-Means) or using a application specific clustering
method [19]. Thus, each data object is assigned to the
nearest cluster based on the distance to the cluster’s
centroid. The super-peer determines for each cluster
Ci the minimum bounding rectangle (MBR), which is
represented by two reference points li and ui. Point
li is defined as li[j] = min∀p∈Ci

(p[j]) and dominates
all points in Ci, while point ui is defined as ui[j] =
max∀p∈Ci

(p[j]) and is dominated by all points in Ci. For
each data point p ∈ Ci, a one-dimensional mapping is
applied according to the distance of p to li:

f(p, Ci) =
d

min
j=1

(p[j]− li[j]) (3)

The one-dimensional mapping combined with the
clustering information allows us to determine which
data points can not belong to the subspace skyline set
and can therefore safely be pruned. Let distU (p, Ci)
denote the L∞-distance of point p that belongs to the
cluster Ci from the lower corner li of the MBRi based
on the dimension set U , i.e.

distU (p, Ci) = max
j∈U

(p[j]− li[j]). (4)

Observation 7.1: Let psky be a skyline point in a sub-
space U . A point p ∈ Ci for which the following
inequality holds can not be a skyline point in subspace
U .

f(p, Ci) > distU (psky , Ci) (5)

Based on Observation 7.1, already examined points de-
fine a threshold t(Ci) for each cluster Ci, which indicates
the region within the cluster that is pruned. Notice that
even a point p that does not belong to cluster Ci can
dominate points that belong to Ci, as long as p dominates
ui, and thus p can refine the threshold t(Ci).

Consider for example Figure 4. Point p for which
f(p, C1) = 1 sets the threshold t(C1) based on Equation 4
equal to 2. Therefore the pruned area of the cluster C1

is the dark area within C1. The dominance area of p
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Fig. 4. Threshold example.

partially covers cluster C2, since p dominates u2 and the
threshold value t(C2) may be refined by p. Hence, the
threshold t(C2) is set to 3, i.e. distU (p, C2), indicating that
point p prunes the dashed area in cluster C2. In this way,
we can prune points in cluster C2 using the threshold,
before we even examine any point of cluster C2.

7.2 Indexing and Local Query Processing

In the following, we describe the indexing method,
namely iSUBSKY (Section 7.2.1), that is employed by
the super-peer to index its data, in order to answer
efficiently subspace skyline queries (Section 7.2.2) during
local query processing. The iSUBSKY method indexes
the extended skyline points at each super-peer, since
these points are sufficient for a super-peer to answer a
subspace skyline query locally. During subspace skyline
query processing, iSUBSKY enables early pruning of
clusters that do not contribute to the final result set,
which reduces the processing cost significantly.

7.2.1 Indexing

Our approach uses a thresholding scheme (Observa-
tion 7.1) that relies on a one-dimensional mapping, in
order to efficiently prune points and clusters that do
not belong to the result set. The one-dimensional values
f(p, Ci) refer to the full space (original data space) and
do not depend on the queried subspace, therefore they
can be computed in a pre-processing phase and stored on
disk. To maintain efficiently the one-dimensional values,
the values have to be stored to a one-dimensional index,
such as B+-tree. In addition, we need a representation of
the values where each cluster corresponds to a separate
interval in the B+-tree.

Inspired by [27], [9], [19], we propose iSUBSKY, which
is an indexing method suitable for subspace skyline
query processing. Given a set of NC clusters and a
constant c, each data object p that belongs to a cluster Ci

is assigned a one-dimensional iSUBSKY value according
to its f(p, Ci) value:

iSUBSKY (p) = i ∗ c + f(p, Ci) (6)

Using a sufficiently high c value, all objects in the i-th
cluster Ci are mapped to the interval [i∗c, i∗c+f(ui, Ci)],
which is non-overlapping with other cluster intervals.
Figure 5 depicts an example of the iSUBSKY mapping.
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Fig. 5. Example of iSUBSKY.

Notice that points are mapped into one-dimensional
values, whereas clusters correspond to intervals. The
actual data points can now be efficiently stored in a B+-
tree using the iSUBSKY values as keys. Additionally, the
clusters Ci = {li, ui} are kept in a main memory list C.
In this way, we can process a subspace skyline query by
examining only some specific intervals of the B+-tree, as
described in the following paragraphs.

7.2.2 Subspace Skyline Query Processing
During local query processing on a super-peer, the
cluster information is accessed from the main memory
list C and the points that belong to each cluster are
retrieved using the index. For each cluster Ci accessed
at query time, we have to examine at most the interval
[i ∗ c, i ∗ c + f(ui, Ci)]. Similar to Algorithm 1, the points
for each cluster Ci are examined in an ascending order
of f(p, Ci) values. We also keep a threshold value t(Ci)
for each cluster Ci. Notice that most probably we do not
have to retrieve all data points in the searched interval,
as the processing may stop earlier based on the threshold
condition (Observation 7.1).

Algorithm 3 describes the pseudocode in detail. For a
subspace skyline query q(U), the cluster descriptions Ci

are kept in a main memory list C of clusters sorted in
ascending order based on the values minj∈U (li[j]) (Line
3). In each iteration, we examine the next cluster Cm

(Line 7) and we retrieve the point p that belongs to Cm

with the minimum iSUBSKY (f(p, Cm)) value (Lines 9-
10). We repeatedly retrieve the next point based on the
iSUBSKY value, until the threshold condition holds (Line
11), since we can safely ignore the remaining points.
Each time a new point p is retrieved, we examine if
this point is dominated by any point in SKYU or by
any cluster Ci ∈ C (Line 12)1. If this is not the case, we
remove all points q retrieved so far that are dominated by
p (Line 13), as well as all clusters Ci that are dominated
by p (Line 14). Then, p is added to SKYU as a candidate
skyline (Line 15). We also refine the current threshold
(Lines 16-18) of all clusters Ci for which p dominates
ui. The threshold t(Ci) is set as the minimum value

1. A cluster Ci(li, ui) dominates a point p in U , if ui ≺U p.

Algorithm 3 Super-peer subspace skyline computation

1: Input: U : query dimensions
C: list of clusters {Ci}

2: Output: SKYU

3: Sort C in ascending order according to the value
minj∈U (li[j]) for each Ci

4: SKYU ← {∅}
5: t(Ci)← MAX INT , ∀ Ci ∈ C
6: while (C 6= {∅}) do
7: Cm ← C.pop()
8: C ← C − {Ci}, Cm ≺U Ci

9: cursor ← search([m ∗ c, m ∗ c + f(um, Cm)])
10: p← cursor.pop()
11: while (f(p, Cm) < t(Cm)) and (p 6= null) do
12: if ( 6 ∃q ∈ SKYU : q ≺U p) and

( 6 ∃Ci ∈ C : Ci ≺U p) then
13: SKYU ← SKYU − {q}, p ≺U q
14: C ← C − {Ci}, p ≺U Ci

15: SKYU ← SKYU ∪ {p}
16: for (∀Ci ∈ C : p ≺U ui ) do
17: t← maxj∈U (p[j]− li[j])
18: t(Ci)← min(t(Ci), t)
19: end for
20: end if
21: p← cursor.pop()
22: end while
23: end while
24: return SKYU

of the previous threshold t(Ci) and the new distance
distU (p, Ci). In the next iteration, if f(p, Cm) > t(Cm)
we discard Cm without retrieving the remaining points
of the cluster from the B+-tree (Line 11). Our algorithm
returns the subspace skyline set SKYU (Line 24), after
examining all clusters that are not dominated by any
skyline point retrieved so far.

Instead of iSUBSKY, the method proposed in [19]
could be used that stores tuples of cluster identifiers and
f(p) values in a B+-tree. This method applies a heuristic
to decide which cluster to examine in each step and
to reduce the threshold of all clusters, while exploring
all clusters in parallel by using multiple iterators. Our
proposed method, examines the clusters in a serialized
way, so that the threshold is reduced only by already
examined clusters. The main advantage of iSUBSKY
is that it allows us to discard entire clusters without
accessing any of their data points.

7.3 Routing Indexes Construction

During the pre-processing phase (Section 5), each super-
peer additionally broadcasts its cluster descriptions
Ci(li, ui) to the network, in order to build routing in-
dexes at super-peer level. Notice that this is a tolerable
cost, since it is a one-time cost (when no updates occur)
and it does not saturate the network.



JOURNAL OF IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL., NO., MAY 2008 9

1


1


2
 3
 4
 5
 6
 7
 8
 9
 10


2


3

4


5


6


7


8


9


10


11


iSUBSKY


RC
1


C
1
l
1


u
1


C
2

l
2


u
2


rl
1


ru
1


RC
2
C
3
l
3


u
3


C
4
l
4


u
4


rl
2


ru
2


f(rl
1
,RC
1
)
 f(l
1
,RC
1
)
 f(l
2
,RC
1
)


Fig. 6. Routing indexes construction.

After the exchange, each super-peer holds a list of
clusters received through each neighbor. In order to
efficiently maintain and process the collected cluster in-
formation, we use the iSUBSKY method for indexing the
cluster information. Each super-peer applies a clustering
algorithm2 on all received clusters, resulting in NRC

routing clusters RCi(rli, rui), which are represented as
MBRs defined by the left lower corner rli and the
right upper corner rui of the MBR. Figure 6 depicts
an example where two routing clusters RC1, RC2 are
created that summarize four clusters C1-C4. The routing
clusters RCi are kept in main memory. For each cluster
Cj that belongs to a routing cluster RCi, we index its
lower corner (lj) using the iSUBSKY value f(lj , RCi),
and we store for each cluster a triple {f(lj, RCi), lj, uj}.
The triples are stored in a B+-tree using the iSUBSKY
values as keys. By accessing the clusters Cj in ascending
order of the f(lj, RCi) value and setting the threshold
based on the maximum distance to the upper corner uj ,
it is easy to extend Algorithm 3 for subspace skyline
computation, where instead of data points, the domi-
nance relationships between MBRs are considered. In the
next section, we will further discuss, how efficient query
routing can be established, while computing additionally
a threshold for each non-dominated cluster. Using the
routing clusters, a super-peer can determine to which
neighbors a query q(U) should be forwarded, and thus
prune network paths represented by dominated clusters.

Query routing through a super-peer network that
contains cycles leads to redundant messages. Therefore,
to improve the performance of our routing indexes, each
super-peer keeps a list Li for each super-peer SPi, which
contains super-peer identifiers. A super-peer identifier
SPi ∈ Ls at super-peer SPj can be interpreted as:
clusters of SPs are reached by SPi through a path that
contains SPj . Thus, SPj forwards queries that refer to
clusters of SPs, only if the query initiator belongs to Ls.

2. Merging bounding boxes of two clusters into a new cluster is
a well-studied problem from multidimensional indexing methods.
Optimization of the clustering algorithm is out of the scope of this
paper, therefore in our experiments we apply k-Means on the MBRs
centers.

SP
S


SP
A


SP
B
SP
r


{C
S
}

SP
S


SP
A


SP
B
SP
r


L
S
 = {SP
r
,
SP
B
}


L
S
 = {
SP
A
}


Fig. 7. Cycles example.

During the construction of routing indexes, each
super-peer SPr that receives the clusters {CS} of another
super-peer SPs for the first time sends back a verifica-
tion message to SPs through the path. The verification
message contains the identifiers of the SPs and SPr

super-peers. Each time an intermediate super-peer SPi

in the path receives a verification message, it adds SPr

to the corresponding list Ls and propagates the message
back to SPs. For example consider Figure 7 (left). The
figure depicts (part of) a super-peer network and let us
assume when SPs propagates its clusters, the clusters
are sent to SPr through SPB . After SPr receives the
cluster descriptions from SPs, it sends back to SPB a
verification message, informing SPB that the clusters of
SPs are searchable from SPr through SPB .

This extra information is useful during query routing,
as it avoids redundant forwarding of queries in the net-
work and can be efficiently managed using centralized
techniques, like hash tables. The larger the number and
the size of cycles, the higher the gain of saved messages.
If super-peer SPi receives a query for SPs’s clusters, the
query is forwarded only if the querying super-peer be-
longs to the list Ls, otherwise the query is not forwarded
further. For example, consider a subspace skyline query
(Figure 7 right) at SPr that has to retrieve data from
super-peer SPA and SPs. Then, SPr propagates the
query to SPA in order to retrieve the necessary data
points, and also to SPB in order to retrieve the points
from SPs. Super-peer SPA based on its routing informa-
tion would also forward the query to SPB in order to
retrieve points from SPs. As depicted in Figure 7, the list
Ls of SPA does not contain SPr, therefore SPA knows
that SPr has contacted SPs through another path.

The advantage of using this technique is more efficient
query routing, avoiding duplicate messages when the
super-peer topology contains cycles. The disadvantage
is the maintenance cost, imposed in the case of super-
peer failures, for updating the extra (routing) informa-
tion. In our setup, super-peer failures are infrequent, as
super-peers are mainly stable, therefore our technique is
acceptable and provides important gains in performance.

7.4 Query Routing based on Clusters

The aim of the routing indices is to identify a set of
clusters (and the corresponding super-peers) that may
enclose points that belong to the subspace skyline result
set. Super-peers are only aware of the cluster descrip-
tions of other super-peers. Therefore, it is necessary
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Fig. 8. Clusters domination examples.

Algorithm 4 Threshold update (Cn,{Ci})

1: Input: Cn: cluster
C: list of clusters {Ci}

2: Output: updated thresholds
3: for (∀Ci ∈ SKYU : Cn �U Ci) do
4: t← maxj∈U (un[j]− li[j])
5: ti ← min(ti, t)
6: end for
7: for (∀Ci ∈ SKYU : Ci �U Cn) do
8: t← maxj∈U (ui[j]− ln[j])
9: tn ← min(tn, t)

10: end for

to process this information at each super-peer and to
retrieve the clusters that may contain non-dominated
points. In the following, we propose an algorithm (Sec-
tion 7.4.2) that takes as input the cluster information
(instead of points), prunes clusters that can not provide
any results and returns only those clusters that may
contain non-dominated points. By knowing only the
cluster information, it is feasible to prune parts of other
clusters by setting a threshold. Therefore, we assume that
a threshold t(Ci) is attached to each cluster Ci. In the
following, we first discuss (Section 7.4.1) the different
cluster relationships and the conditions that may lead to
updating a cluster’s threshold.

7.4.1 Cluster Dominance Relationships
Based on the employed cluster representations, we
can straightforwardly derive dominance relationships
between clusters. Given two clusters C1(l1, u1) and
C2(l2, u2) we define the following dominance relation-
ships (also depicted in Figure 8).

Definition 7.2: Cluster C1 dominates C2 in U , denoted
as C1 ≺U C2, if u1 dominates l2.

If C1 dominates C2, this means that there exists at least
one point in C1 that dominates all possible points in C2.
Cluster C2 can not contribute to the subspace skyline
result and can be safely pruned during query processing.

Definition 7.3: Clusters C1 and C2 are incomparable in
U , denoted as C1 ≺≻U C2, if l1 does not dominate u2

and l2 does not dominate u1.
In this case, no point of C1 can be dominated nor

dominate any point of C2, thus both clusters have to
be examined during query processing.

Definition 7.4: Cluster C1 partially dominates C2 in U ,
denoted as C1 �U C2, if l1 dominates u2 but u1 does not
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Fig. 9. Clusters of super-peers SP1 and SP2.

dominate l2.
Therefore if C1 partially dominates C2 some points

of C1 may dominate some points of C2. In this case,
we have to examine both clusters in order to retrieve
the entire subspace skyline set. However, we can set the
threshold of C2 corresponding to the intersection of the
pruning area of C1 with C2.

Observation 7.5: Given two clusters C1, C2 where
C1 �U C2, if u1 ≺U u2 then the threshold t(C2) can be
set as distU (u1, C2).

In the case where C1 partially dominates C2 in U ,
we can adjust the threshold of C2, if u1 dominates
u2. Algorithm 4 describes the procedure of updating
the thresholds. Each time a threshold is updated, we
keep the minimum value of the current threshold and
the previously defined threshold by another dominance
relationship.

The dominance relationships between clusters are es-
sential for our routing algorithm for either pruning entire
clusters or restricting the number of points in a cluster
that should be accessed, as will be shown shortly.

7.4.2 Super-Peer Query Routing

During query processing, each super-peer that receives
a subspace skyline query: 1) uses the query routing
algorithm (Algorithm 5) to identify local and non-local
candidate clusters, 2) propagates the query to the neigh-
boring super-peers responsible for the non-local clusters,
and 3) processes the query locally for the local candidate
clusters using Algorithm 3. In the following we describe
the query routing process in detail.

First, let us consider a simple example depicted in
Figure 9. Both super-peers SP1 and SP2 eventually
store the cluster descriptions of all four clusters. For
better readability, we depict only the clusters and not
the routing clusters. Let us assume that SP1 and SP2

store incomparable clusters (namely C1 and C4), but also
some dominated or partially dominated clusters by other
super-peers. If SP1 receives a 2-d skyline query, SP1 con-
cludes based on the routing clusters that the query has to
be propagated to SP2, because of the clusters C2 and C4.
Also SP1 starts a local skyline search only for the cluster
C1, while cluster C3 is discarded since it is dominated
by cluster C4 of SP2. When super-peer SP2 receives the
query, it first examines the routing information, and sets
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Algorithm 5 Super-peer query routing

1: Input: U : query dimensions
RC: list of routing clusters RCi

2: Output: CSKY : list of non-dominated clusters
3: Sort RC in ascending order according to the value

minj∈U (rli[j]) for each RCi

4: CSKY ← {∅}
5: t(RCi)← MAX INT , ∀RCi ∈ RC
6: while (RC 6= {∅}) do
7: RCm ← RC.pop()
8: RC ← RC − {RCi}, RCm ≺U RCi

9: cursor ← search([m ∗ c, m ∗ c + f(rum, RCm)])
10: Cn ← cursor.pop()
11: while (f(ln, RCm) < t(RCm)) and (Cn 6=null) do
12: if ( 6 ∃Ci ∈ CSKY : Ci ≺U Cn) and

( 6 ∃RCi ∈ RC : RCi ≺U Cn) then
13: CSKY ← CSKY − {Ci}, Cn ≺U Ci

14: RC ← RC − {RCi}, Cn ≺U RCi

15: updateThreshold(Cn, CSKY )
16: CSKY ← CSKY ∪ Cn

17: updateThreshold(Cn, RC)
18: end if
19: Cn ← cursor.pop()
20: end while
21: end while
22: return CSKY

a threshold for cluster C2. The threshold is set based on
cluster C1 of SP1 and corresponds to the pruning area
of point u1. Thereafter, a skyline search on the clusters
C2 and C4 is processed. Notice that the threshold for
cluster C2 can not be refined based on cluster C4, even
though C2 is partially dominated by C4, since point u4

does not dominate point u2. In this way, each super-peer
selectively processes only those clusters, that can affect
the result set, using appropriate threshold values.

Algorithm 5 describes the proposed routing algo-
rithm. As in iSUBSKY method, the routing clusters
RCi = [rli, rui] are examined in ascending order of the
minj∈U (rli[j]) values (Lines 3-7). During processing the
clusters (Line 13) and routing clusters (Line 14) that
are dominated by the currently examined cluster Cn

are discarded. For clusters and routing clusters that are
partially dominated by or partially dominate Cn, we
compute new threshold values (Line 15 and 17 respec-
tively). At the end of Algorithm 5, CSKY contains all
non-dominated clusters that should be processed.

A cluster Ci ∈ CSKY may be a local cluster and then
we add Ci to the list C (C = C ∪ Ci) with clusters that
should be processed locally and set the initial threshold
of Ci based on Algorithm 4. Otherwise, the subspace
skyline query has to be posed to the corresponding
super-peer SP (Ci), therefore we add SP (Ci) to the list
SP (SP = SP ∪ SP (Ci)) of super-peers that should be
contacted. Then the super-peer propagates the query to
all SPi ∈ SP and processes the query locally on the list

C by using Algorithm 3.
Notice that in contrast to SKYPEER, we do not need

to propagate any threshold among super-peers during
query processing. Instead the threshold is refined at
each super-peer based on the routing information, i.e.
the cluster descriptions. Similar to SKYPEER, the in-
termediate results have to be merged as described in
Section 6.2, which leads to two different variations of
SKYPEER+. In the case of fixed merging at Pinit we
have the RFM (Routing-based Fixed Merging) variation,
while progressive merging leads to RPM (Routing-based
Progressive Merging) variation.

8 MAINTENANCE & COST ANALYSIS

In this Section, we present how maintenance is per-
formed with respect to data updates as well as peer
joins and failures. Then, we provide a comparative per-
formance analysis for SKYPEER with respect to other
existing approaches [5], [6].

8.1 Maintenance

In a dynamic P2P network, it is necessary to provide
support both for data changes and peer churn. The most
common maintenance operation are data insertions and
deletions (notice that a data update can be treated as a
deletion followed by an insertion). Data insertion at a
peer may change the peer’s extended skyline, therefore
this leads to an update to the responsible super-peer. In
some cases, the insertion causes also the super-peer’s
extended skyline to change. Data deletions at a peer
may change the peer’s extended skyline. In those cases,
the change needs to be sent to the super-peer, and the
super-peer needs to recompute its extended skyline by
requesting its peers to send their extended skyline sets.

In the case of SKYPEER, changes at super-peer level
do not need to be propagated further, whereas, in the
case of SKYPEER+, updates are propagated to the rest
of the super-peer network, only if they change the super-
peer’s MBRs. Therefore, assuming that the data distri-
bution does not change, only a small percentage of data
insertions and deletions actually cause communication
at super-peer level.

When a peer joins the P2P network by connecting
to a super-peer, its extended skyline is transferred to
the super-peer and then the same procedure as in data
insertions takes place. Peer failures are more compli-
cated, because they resemble data deletion, which means
that the responsible super-peer needs to recompute its
extended skyline.

8.2 Performance Analysis

In the following, we provide a performance analysis of
the SKYPEER framework and an analytical cost compar-
ison with other existing approaches [5], [6] for skyline
query processing in P2P networks. We emphasize that
the aim is not to present a direct comparison, which
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is not necessarily meaningful as they rely on different
underlying architectures and assumptions, but rather
to serve as a comparative performance analysis. Our
evaluation uses three important factors that comprise
the total cost, namely construction cost, search cost and
update cost.

SKYPEER takes advantage of the two-level archi-
tecture of the super-peer system. Therefore, SKYPEER
adopts a pre-computation phase at super-peer level,
which is similar to materializing results. Other competi-
tor approaches [5], [6] proposed for skyline computation
in peer-to-peer systems assume a structured P2P overlay,
with distinguishing feature that communication between
any two peers is O(logNP ).

In terms of construction cost, SKYPEER requires that
each peer sends its extended skyline points to the
corresponding super-peer. Therefore, the pre-processing
cost of SKYPEER in terms of network traffic, is O(|ext-
SKY (Si)|∗NP ), where |ext-SKY (Si)| represents the car-
dinality of the local extended skyline of a peer’s dataset
Si. On the other hand, structured P2P overlays require
for each peer’s data point to determine the appropriate
peer that indexes the point, which leads to a construction
cost of O(|Si| ∗NP ∗ logNP ). The cardinality of the local
extended skyline set (|ext-SKY (Si)|) is smaller than the
cardinality of the dataset (|Si|), therefore the construction
cost of SKYPEER is smaller and it incurs only on local
peer to super-peer links.

Regarding search, the authors of [5] report an average
number of steps equal to: O((1 + 2d(1 − 1

d
√

NP
))logNP )

for uniform query load. SKYPEER contacts all super-
peers during query processing leading to O(Nsp) steps
(worst-case scenario). Therefore, the SKYPEER search
cost depends on the number of super-peers (Nsp), while
the cost of [5] depends on the logarithm of the number
of peers (NP ) in the network. As also indicated by our
experiments, these numbers may differ in as much as 1-2
orders of magnitude.

Data insertions or updates have a cost of O(logNP ) in
structured P2P overlay networks, as in [5]. In SKYPEER,
super-peers are informed about data insertions, only if
the peer’s extended skyline is modified. In those cases,
the cost incurred is O(1) in terms of messages, since the
required communication is between a super-peer and its
peer.

SKYPEER Structured P2P

Construction O(|ext-SKY (Si)|NP ) O(|Si|NP logNP )

Search O(Nsp) O((1+2d(1- 1
d
√

NP

))logNP )

Updates O(1) O(logNP )

TABLE 2
Performance analysis.

Concluding, the suitability of each approach clearly
depends on the application scenario, as well as on the
requirements and characteristics of the P2P system. We

summarize the results of our analysis in Table 2.

9 EXPERIMENTAL EVALUATION

We evaluate the performance of our algorithms, imple-
mented in Java, using simulations that ran on 3GHz
Pentium IV PCs and locally stored data. In order to
be able to test the algorithms with realistic network
sizes, we ran multiple peer instances on the same ma-
chine and simulated the network interconnection. The
P2P network topology used in the experiments consists
of Nsp interconnected super-peers in a random graph
topology. We used the GT-ITM topology generator3 to
create well-connected random graphs of Nsp peers with
a user-specified average connectivity (DEGsp). In our
experiments we vary the network size (Np) from 4000
to 80000 peers, while the number of super-peers is
Nsp = 5%×Np (for Np ≥ 20000 we used Nsp = 1%×Np).

We used two different datasets: uniform and clustered.
The uniform dataset includes random points in a unit
space. For the clustered dataset, each super-peer picks
randomly a point and thereafter k = 5 cluster centroids
are generated that follow a Gaussian distribution on
each axis with variance 0.025, and a mean equal to the
corresponding coordinate of the random point. Then,
all associated peers obtain points, the coordinates of
which follow a Gaussian distribution on each axis with
variance 0.005 around the cluster centroids of the super-
peer. Given a query dimensionality, all subspaces have
uniform probability to be requested. We generate 100
queries, having a randomly selected super-peer initiator
for each query, and we present the average values of our
results.

9.1 Scalability Study for Uniform Data

In the first series of experiments we examine the pro-
posed method’s scaling features with regards to dataset
dimensionality. Unless mentioned explicitly, the default
values are: d = 8, k = 3, DEGsp = 4, Np = 4000, each
peer holds 250 uniformly distributed data points, thus
the cardinality of the dataset is n=1M data points.

Figure 10(a) depicts the performance of SKYPEER in
terms of computational time, neglecting network delays.
The refined threshold variants (RT*M) are more costly
than the fixed threshold variants (FT*M) respectively,
however they are still more efficient than the naive
one, because of threshold usage. Further, progressive
merging (*TPM) is faster than fixed merging (*TFM)
at the initiator, because the fixed merging at Pinit is
very costly due to the high number of elements, in
contrast to the total merging cost incurring at interme-
diate super-peers. The plot in Figure 10(b) illustrates
the total response time, which depends on the size of
transmitted data, taking into account the network delay.
We assume a modest 4KB/sec as the network transfer
bandwidth on each connection. The four variants of

3. Available at: http://www.cc.gatech.edu/projects/gtitm/
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Fig. 10. Comparison of SKYPEER variants for uniform data distribution.

SKYPEER constantly outperform the naive algorithm.
Progressive merging reduces communication costs, as
several candidate skyline points are pruned out earlier.
In Figure 10(c), the volume of the messages (in KB) is
presented for various dataset dimensionality values, and
for query dimensionality 2 and 3. Since the volume of
the messages exchanged to retrieve the skyline result
depends mainly on the merging strategy, we present
the results of FTFM and FTPM as representative ones.
Obviously progressive merging reduces the volume of
transferred data.

In order to study SKYPEER’s behavior for larger
networks, we increased the network size from 4000 to
12000 peers. In Figure 10(d), we present a performance
comparison between SKYPEER and the naive algorithm
for different network sizes. The vertical axis represents
the relative performance of SKYPEER as compared to
the naive approach. It is clear that SKYPEER always
outperforms naive, and for large networks (12000 peers)
the FTPM variant is 17 times faster than naive. We also
study how different DEGsp values affect the perfor-
mance of SKYPEER. In Figure 10(e), we experiment with
a network of 4000 peers with DEGsp varying from 4 to
7. We conclude that even though the computational time
is not affected by DEGsp, the total time is reduced when
DEGsp increases. This is because higher DEGsp values,
result in smaller routing paths, hence smaller network
transfer costs. Finally, in Figure 10(f), we increased the
number of points per peer (n/Np) from 250 to 1000.
We notice that the progressive merging variants clearly
outperform the fixed merging ones, as the number of
points per peer increases.

9.2 Scalability Study for Clustered Data

In the next experiments, we evaluate the routing abil-
ity of SKYPEER+ using a clustered dataset distributed

over Np = 4000 peers. Each peer holds 250 points. In
Figure 11(a) we depict the response time for the best
variants, namely refine threshold (RT*M) and routing-
based (R*M). We notice that the response time for the
progressive merging methods is slightly higher in the
case of RTPM than for RPM. However, the fixed merging
approach RFM performs much better than RTFM. This
is mainly caused by the very small number of objects
that are transferred (Figure 11(b)). For the routing-based
approach, the threshold is refined for each super-peer
based on the routing indexes that summarize the infor-
mation available on the whole network. In Figure 11(b)
we notice that the number of transferred objects are very
low, especially in the case of RFM that has only few
more objects more than RPM but much less (order of
magnitude) than the other fixed merging approaches.
On the other hand, as depicted in Figure 11(c), the fixed
threshold variants need less computational time than the
refined variants and even less than the routing variants.
This additional cost is caused by the processing cost
induced by the routing indexes, however it is negligi-
ble compared to the total response time. Notice that
the merging phase does not influence significantly the
computational time, since the merging time is low.

Figure 11(d) depicts: 1) the percentage of super-peers
that store at least one point that belongs to the overall
subspace skyline set, 2) the percentage of super-peers
that are contacted when the subspace skyline query is
routed, and 3) the percentage of the contacted super-
peers that could not have been avoided to be queried,
either because they store some subspace skyline points
or because they have to propagate the query to some
super-peer that stores some skyline points. Notice that
we contact approximate 40% of the super-peers and 55%
of them return some skyline points. In Figure 11(e),
we vary the query dimensionality from 2 to 4 and
we measure the response time for all variations. For
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Fig. 11. Comparison of SKYPEER+ with SKYPEER variants for clustered data distribution.
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Fig. 12. Comparison of SKYPEER with other algorithms (FDS [8], SSP [5]) and experiment with real data.

any query dimensionality, SKYPEER+ performs better
than the SKYPEER variants, and the gain increases with
the query dimensionality. Analogously to Figure 11(d),
Figure 11(f) shows for varying query dimensionality that
the success ratio increases up to 70%, while the queried
super-peers are less than 50%.

9.3 Comparison to Existing Algorithms

In the following, we provide a comparative study against
two approaches (FDS algorithm [8] and SSP [5]) for dis-
tributed skyline computation, even though they assume
different distributed architectures. First, we compare
SKYPEER against FDS4, which assumes a set of servers
and the absence of a network overlay. In our scenario,

4. Notice that the algorithm mentioned as ALS in [8] is the baseline
variant of SKYPEER.

each server is a super-peer and even if SKYPEER as-
sumes an overlay network, for the FDS approach we
assume that each server communicates directly with
any other server. We emphasize that this experimental
setup favors FDS, as any two servers communicate with
minimum cost without the need for efficient query rout-
ing. The Figures 12(a), 12(b) and 12(c) show the num-
ber of search messages, their volume and the response
time respectively, for SKYPEER and FDS for increasing
dimensionality. We employ a network of 2000 peers
(with DEGp=10 in the case of SKYPEER), n=1M, we
use the uniform dataset and we evaluate full space sky-
line queries. Notice that SKYPEER requires fewer mes-
sages than FDS (Figure 12(a)), because FDS uses several
communication phases to compute the result. In terms
of transferred volume (Figure 12(b)), FDS is cheaper



JOURNAL OF IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL., NO., MAY 2008 15

than SKYPEER, since FDS is designed to minimize the
number of transferred objects. However, notice that the
*TPM variants of SKYPEER achieve comparable results
to FDS, due to the efficiency of in-network progressive
merging. Furthermore, the transferred volume of FDS
would increase rapidly, if FDS would follow the existing
paths for transferring data, instead of direct communica-
tion between super-peers. Moreover, in Figure 12(c), the
*TPM variants of SKYPEER outperform FDS in terms of
total response time, when the dimensionality increases.
This is because the total time includes the processing
costs, which in the case of FDS are much higher than
*TPM, especially for higher dimensions.

In the next experiment, we compare against the SSP [5]
algorithm, that relies on a structured P2P overlay net-
work. Structured P2P overlays relocate data on the peers,
which is beneficial for query processing. On the other
hand, super-peer networks gain in query processing per-
formance due to degree of centralization introduced by
the super-peers. In Figures 12(d) and 12(e), we compare
our approach with SSP [5] by varying the degree of
centralization of SKYPEER. We use a network of 2K
peers, n=1.6M and a 2-dimensional uniform dataset.
We gradually increase the number of super-peers (Nsp)
employed by SKYPEER. In Figure 12(d), the number of
search messages required by SSP is constant as it does
not depend on Nsp. However, depending to the num-
ber of super-peers employed, SKYPEER performs better
or worse than SSP. For small numbers of super-peers,
SKYPEER needs fewer messages than SSP, but when
the number of super-peers increases, the performance
of SKYPEER degrades. Nevertheless, when studying the
transferred volume (Figure 12(e)), the *TPM variants
of SKYPEER are always better than SSP. Again, this
is because the in-network progressive merging discards
several results before they reach the querying peer.

In summary, the conclusions of the comparative study
are:

• SKYPEER is more efficient than FDS in terms of
number of required messages. Furthermore, scales
better than FDS with dimensionality. FDS transfers
marginally fewer data, however the *TPM variants
of SKYPEER have similar performance.

• The *TPM variants of SKYPEER achieve smaller
total response time than FDS and this gain increases
as dimensionality increases.

• Compared to SSP, SKYPEER requires fewer mes-
sages for query processing, when the number of
super-peers is smaller than 9% of the number of
peers. Moreover, the *TPM variants of SKYPEER
induce smaller volume of transferred objects, for all
tested setups.

9.4 Experimental Evaluation with Real Data

We also evaluate SKYPEER+ using real-life data. We
crawled data (from www.zillow.com) containing infor-
mation about real estate all over the United States. We

obtained a 6-dimensional dataset containing 1M entries.
The dataset contains 6 attributes namely number of
bathrooms, number of bedrooms, living area, price, year
built and lot area. We distributed the dataset randomly
to 4000 peers and we use 200 super-peers. Figure 12(f)
depicts the results for varying query dimensionality k.
The success ratio increases up to 46.5% and the queried
super-peers are less than 50%. These results verify the
performance of SKYPEER+ also for real-life data.

10 CONCLUSIONS

In this paper, we addressed the problem of efficient sky-
line query routing over a P2P network. We presented a
threshold-based algorithm, called SKYPEER, which for-
wards the skyline query requests among peers, in such
a way that the amount of data to be transferred is sig-
nificantly reduced. Thereafter, we proposed SKYPEER+,
an advanced routing algorithm, which improves per-
formance in the case of clustered data distribution at
super-peers. SKYPEER+ employs an appropriate index-
ing technique, in order to maintain routing information
at super-peer level. Finally, in our experimental evalua-
tion, we demonstrate the efficiency of our approach both
in terms of computational and communication costs.
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