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Abstract. Due to their numerous benefits, relational systems play a major role
in storing XML documents. XML also benefits relational systems by providing
a means to publish legacy relational data. Consequently, a large volume of XML
data is stored in and produced from relations. However, relational systems are
not well-tuned to produce XML data efficiently. This is mainly due to the flat
nature of relational data as opposed to the tree structure of XML documents.
In this paper, we argue that relational query optimizers need to incorporate new
optimization techniques that are better suited for XML. In particular, we explore
new optimization techniques that enable computation sharing between queries
that construct sibling elements in the XML tree. Such queries often have large
common join expressions that can be shared through appropriate rewritings. We
show experimentally that these rewritings are fundamental when building XML
documents from relations.

1 Introduction

Relational systems are good for XML and XML is good for relations. On the one hand,
there are mature relational systems that can be used to store the ever growing number
of XML documents that are being created. On the other hand, XML is a great inter-
face to publish and exchange legacy relational data. Consequently, most XML data
today comes from and ends up in relations. Unfortunately, XML and relational data
differ in their very nature. One is tree-structured, the other is flat and often normalized.
Consequently, the performance of relational engines varies considerably when produc-
ing XML documents from relations. In research, several efforts explored how to build
XML documents from relations efficiently [2, 4, 5, 7, 9]. In particular, the authors in [7]
argue for extending relational engines to benefit XML queries. In this work, we explore
complementaryoptimizationtechniques that are fundamental to handle XML queries
efficiently in a relational engine.

Due to the flat nature of relational data, as opposed to the nested structure of XML,
generating an XML document from relations often involves evaluating multiple SQL
queries (possibly as many as the number of nodes in the DTD). These queries often
contain common sub-expressions in order to build the tree structure. Thus, query per-
formance can vary considerably, necessitating a cost-based optimization of the plan for
building XML documents. In [9], the authors explore rewriting-based optimizations be-
tween a query for a parent node and the queries for its children nodes in a middle-ware
environment. We argue that sharing computation between queries for sibling nodes, not
just between parent and children queries, is key to efficiently building XML documents



from relational data, both in a middle-ware environment (as in [9]) and for the query
optimizer of a relational system.

Consider a publishing example where we want to build XML documents from a
TPC-H database [16]. These documents conform to a DTD withCustomer as a
root element and its two sub-elementsSuppName (for suppliers) andPartName
(for parts). In order to identify the suppliers of a given customer, the TPC-H table,
CUSTOMER, is joined withORDERSandLINEITEM . This join expression needs to be
joined with theSUPPLIERtable to compute supplier names (i.e., elementSuppName).
This same join expression (betweenCUSTOMER, ORDERSandLINEITEM ) needs to
be joined with thePARTtable to evaluate the set of part names associated with each cus-
tomer (i.e.,PartName ). Obviously, the sibling queries at the two elementsSuppName
and PartName share a large common join expression and could be merged into a
single query (using an outer union) where this common join expression is factored
out, enabling the relational engine to evaluate it only once. In [9], every such query
merge has to go through a parent/child merge. For example, the two sibling queries at
SuppNameandPartName can be merged only if they are also joined with the query
at Customer , resulting in a single query that is used to evaluate the whole document.
If Customer is a “fat” node (containing multiple attributes such asName, Zip and
Phone ), the entire customer information will be replicated with eachSuppNameand
eachPartName (because of outer-joins) which may result in higher communication
costs (in a middle-ware environment) and computation costs (both in a middle-ware
environment, and in a relational optimizer). Being able to merge sibling queries inde-
pendently from their parent query and factor out common sub-expressions in merged
queries is a key rewriting that we will explore when building XML documents from
relations.

Our contributions are as follows:

– We show that sharing computation between sibling queries is a fundamental opti-
mization for efficient building of XML documents from flat relational data.

– We describe several query rewritings that exploit shared computation between queries
used to build an XML document.

– We design an optimization algorithm that applies our rewritings to find the best set
of SQL queries that optimizes processing time and achieves a good compromise
between processing and communication times in a middle-ware environment.

– We run experiments that compare multiple strategies of sharing common computa-
tion between sibling queries and identify their considerable performance benefits.

Section 2 describes our motivating examples and gives a formal definition of our
problem. Rewriting techniques are presented in Section 3. Section 4 contains the opti-
mization algorithm and a study of the search space. Experimental results are presented
in Section 5. Related work is discussed in Section 6. Section 7 concludes.

2 Motivation and Problem Definition

2.1 Publishing Legacy Data in XML

We consider a simplified version of the relational schema of the TPC-H benchmark [16].
This schema describes parts ordered by customers and provided by suppliers.
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Fig. 1. Publishing Legacy Data: Example DTD

CUSTOMER[CCUSTKEY,CNAME,CPHONE,CACCTBAL,C NATIONKEY]
NATION[N NATIONKEY,N NAME,NREGIONKEY]
REGION[R REGIONKEY,RNAME,RCOMMENT]
PART[P PARTKEY,P NAME]
SUPPLIER[S SUPPKEY,SNAME,SNATIONKEY]
ORDERS[OORDERKEY,OCUSTKEY]
LINEITEM[L ORDERKEY,LPARTKEY,L SUPPKEY]

We want to build XML documents that conform to the DTD given in Fig. 1. To
keep the exposition simple, we represent this DTD as a tree. Edges labeled with a ‘*’
are used for repeated sub-elements. We are interested only in publishing information
about customers whose account balance is lower than$5000 (predicatep). PartName
contains the names of the parts ordered by a customer.SuppNamecontains the names
of their suppliers.

It has been shown previously in [5] that it is possible to write a single SQL query
(containing outer-joins and possibly outer-unions) to build an XML document for a re-
lational database regardless of the underlying relational schema. It has also been shown
in [9] that a set of SQL queries that are equivalent to the single query can be generated.
In order to better explain performance issues, we examine the case where an SQL query
is generated for each element in the DTD as follows (whereC = ¾p (CUSTOMER),
J1 = C 1NATIONKEY NATION 1REGIONKEY REGIONandJ2 = C 1CUSTKEY ORDERS
1ORDERKEY LINEITEM ):

QCustomer = …C CUSTKEY(C)
QName = …C CUSTKEY;C NAME(C)
QPhone = …C CUSTKEY;C PHONE(C)
QAcctBal = …C CUSTKEY;C ACCTBAL(C)
QRegion = …C CUSTKEY;R REGIONKEY(J1)
QRegName = …C CUSTKEY;R REGIONKEY;R NAME(J1)
QRegCom = …C CUSTKEY;R REGIONKEY;R COMMENT(J1)
QPartName = …C CUSTKEY;P NAME(J2 1PARTKEY PART)



QSuppName = …C CUSTKEY;S NAME(J2 1SUPPKEY SUPPLIER)

Several sibling queries share common expressions. The simplest example is the
case ofQName, QPhone andQAcctBal that are all projections on the same (subset of the)
CUSTOMERtable. This is due to the fact that some fields in this table are used to gener-
ate sub-elements. Thus, these sibling queries could be merged into a single queryQC .
The merged query could further be merged with the parent query,QCustomer, resulting
in “fat” customer nodes as follows:

QC = …C CUSTKEY;C NAME;C PHONE;C ACCTBAL(C)

The second example involvesQRegName andQRegCom that share a common join ex-
pressionJ1. This is due to the fact that nations and regions are normalized into tables
and that recovering them requires performing joins with these intermediate tables. By
mergingQRegName andQRegCom into a single query, the common expression is evaluated
only once:

QRegNameCom = …C CUSTKEY;R REGIONKEY;R NAME;R COMMENT(J1)

Furthermore,QRegNameCom could be merged withQC resulting in:

…C CUSTKEY;C NAME;C PHONE;C ACCTBAL;R REGIONKEY;R NAME;R COMMENT(J1)

The last and most interesting example is the case of the two sibling queriesQPartName

andQSuppName that share a common join expressionJ2. In order to share this join ex-
pression, the two queries could be merged. However, due to the fact that a customer
has multiple parts and suppliers, mergingQPartName andQSuppName might result in repli-
cation. Replication might slow down query processing as well as communication time.
There are two ways to avoid replication in this case. Either the relational optimizer is
able to optimize outer unions and the queries are rewritten using an outer-union where
the common sub-expression is factored out. Or, the relational engine is forced to com-
puteJ2, materialize it and then use it to evaluate the two queries. The queryQPartSupp

that results from the outer union is given by:

(…C CUSTKEY;P NAME;NULL(J2 1PARTKEY PART)) [ (…C CUSTKEY;NULL;S NAME(J2 1SUPPKEY SUPPLIER))

Because of the presence/absence of some indices, it might not always be the case
that the merged query,QPartSupp is cheaper than the sum ofQPartName andQSuppName.
The relational optimizer could choose different plans to evaluate the common join ex-
pression in the two queries resulting in a better evaluation time than the merged query.

Finally, using an outer-join, it is possible to rewrite all of the nine queries above
into a single query. That outer-join guarantees that all customers satisfying predicatep
will be selected (even if they have never ordered any part). However, if all queries are
merged, each customer tuple (along with its required fields) will be replicated as many
times as the number of parts and suppliers for this customer. This replication is due to
merging queries with their parent query and impacts computation time as well as query
result size. Therefore, depending on the amount of replication generated by merging
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Fig. 2. Shredded XML: Example DTD

sibling queries with their parent query, it might be desirable to optimize queries at
siblingsseparatelyfrom their parent query.

A key observation is that shared computation between sibling queries, when build-
ing XML data from relations, is often higher than shared computation between parent
and children queries making sibling merges more appropriate than merging with the
parent query. This is particularly true in two cases: (i) if the relational schema is highly
normalized and thus, several joins involving intermediate relations are needed to com-
pute sub-elements, and (ii) if the DTD contains repeated sub-elements that might create
replication (of the parent node) when children and parent queries are merged together.

2.2 Building XML Documents from Shredded XML

There have been many efforts to explore different shredding schemas for XML into
relations [1]. Most of them rely on using key/foreign key relationships to capture doc-
ument structure and thus, generate sibling queries with common sub-expressions when
building XML documents.

Fig. 2 contains the DTD of a document that has been shredded and stored in a
relational database. The example contains information on shows such as their title and
year as well as the reviews written by a reviewer who has a name and an address. We
first consider the relational schemaSchema1 given below:

SHOW[SHOWID,TITLE,YEAR]
REVIEW[REVIEWID,COMMENT,SHOWID]
REVIEWER[REVIEWERID,NAME,ADDRESSID,REVIEW ID]
ADDRESS[ADDRESSID,ADDRESS]

In order to compute theNameandAddress of each reviewer in a review associated
with a show, the following two queries are needed (whereJ = REVIEW 1REVIEW ID

REVIEWER):

QName = …SHOW ID;REVIEW ID;REVIEWER ID;NAME(J)
QAddress = …SHOW ID;REVIEW ID;REVIEWER ID;ADDRESS(J 1ADDRESS ID ADDRESS)



These queries share a common sub-expressionJ . If the address of a reviewer was
inlined inside a review in the relational schema, no redundant computation would have
occurred. This is illustrated inSchema2 as follows:

SHOW[SHOWID,TITLE,YEAR]
REVIEW[REVIEWID,COMMENT,NAME,ADDRESS,SHOWID]

In this case,QName andQAddress correspond to simple projections on theREVIEW
table and could be easily merged into a single query.

Even when a query workload is used for XML storage in relations, as in [3], our
optimization techniques for SQL “publishing” queries are still useful for two reasons.
First, an improved optimizer can provide more accurate cost estimates for the queries in
the workload, for making cost-based shredding decisions. Second, queries that are not
in the initial query workload would still need to be optimized in an ad-hoc fashion.

2.3 Problem Definition

We are interested in building XML documents from a relational store efficiently. Fol-
lowing the approaches used in [4, 9], the structure of the resulting XML documents
is abstracted as a DTD-like labeled tree structure, with element tags serving as node
labels, and edge labels indicating the multiplicity of a child element under a parent el-
ement; it is important to note that multiple nodes in this DTD-like structure may have
the same element tag, due to element sharing, or due to data recursion.

SQL queries are associated with nodes in this DTD-like structure, and together de-
termine the structure and content of the resulting XML documents that are built from
the relational store; the examples in Section 2.1 are illustrative. The set of SQL queries
generated for a given XML document might be small. However, the amount of data that
these queries manipulate can be large and thus, optimization is necessary. If we denote
by S the set of all SQL queries necessary to build a document conforming to a given
DTD, then the problem is formulated as follows:

find the set of SQL queriesS such that§s2S(wp ⁄ proc(s) + wc ⁄ comm(s))
is minimized

whereproc (resp.comm) is a function that computes the cost of processing (resp.
communicating the result of) a SQL query andwp, wc are weights chosen appropriately.
In a centralized environment, communication cost might not be relevant in which case,
it could be removed from the cost model.

3 Queries and Rewriting Rules

We explore several possible rewritings that share common computation between queries
and use the relational optimizer as an oracle to optimize and estimate the cost of indi-
vidual SQL queries. This technique can be used both by a middle-ware environment (as
in [9]) and to extend a relational optimizer to be able to perform the optimizations we
are considering.



3.1 Query Definition

In order to better explain the rewriting rules we are using, we first define the query
expressions used to build a single XML document. Sorting is omitted in our queries
since it does not affect our rewritings.

Definition 1 [Atomic Node] An atomic node is a node in the DTD which has a unique
instance for each distinct instance of its parent node.

By convention, the root of the XML document is an atomic node. Examples of atomic
nodes areRegNameandName(in theDTDof Fig. 1). Each customer has a single value
for these nodes. Thus, given a node in the tree, there exists a functional dependency be-
tween each instance of that node and each corresponding instance of its atomic children
nodes.

Definition 2 [Multiple Node] A multiple node corresponds to a node in the DTD which
may have multiple instances for each distinct instance of its parent node.

An example of a multiple node is thePartName node.
In order to compute instances of an XML node, a unique SQL query is associated

with that node. The evaluation of that query results in a set of tuples each of which is
used to create an instance. There is a one-to-one correspondence between the tuples
that are in the result of a SQL query at a node and the instances of that node. This
semantics is similar to that of the Skolem functions used in [9]. Therefore, a key (that
might be composed of attributes coming from different relations) is associated with
each node in the XML document and is in the set of projected attributes at that node.
Each distinct value of the key determines a distinct instance of the node to which that
key is associated.

In an XML document, parent/child relationships correspond to key/foreign key joins
between parent queries and children queries. Thus, in order to build the XML document
tree structure, the query used at a node must always include the query at its parent node.
Therefore, queries at nodes are defined as follows.

Definition 3 [Queries] Given queryQp = …pexpp at nodep (p is the key at nodep)
and queryQc at nodec, if c is a child ofp, thenQc is defined by one of:

– Qc = …p;cexpp. Qc is a simple projection on the expression used to evaluate the
parent nodep.

– Qc = …p;c(expp 1 expc). Qc is a projection on a join expression containing the
parent node expression.

If the relational schema is highly normalized, a join expression is often necessary in
computing the instances of XML nodes. In the case of a multiple node, this join is used
to build a one-to-many relationship from flat relational data. If the relational schema
contains an un-normalized relation, simple projections often suffice to compute node
values.

In the definition given above,expc can be any expression that might include an ar-
bitrary number of joins. It is necessary that the key valuep used to compute the parent



nodep, is a subset of the keys of its children nodes. An example is the query used to
evaluate atomic nodes such asName. In this query, the customer identifierCUSTKEY
is also projected out and determines the customer to which each name instance is as-
sociated. The query used to evaluate the nodeRegNameis an example of the presence
of a join expression in the child query. In fact, in this particular case, even if a join
expression is used, it is guaranteed that there is a unique region name per customer. The
expression at the nodePartName is an example of a query used to compute a multiple
node.

Given two queries corresponding to the parent and child elements or to two sibling
elements, we rewrite them in two steps. First, these queries aremergedresulting in a
single SQL query. Second,common sub-expression eliminationis applied to the merged
query if it contains redundant expressions. We now define query merging and common
sub-expression elimination in our context.

3.2 Query Merging

Definition 4 [Parent/child Merging] Given a nodep and its queryQp and a nodec,
which is a child ofp and its queryQc, mergingQp andQc results in a queryQ defined
as follows:

1. If Qp = …pexpp andQc = …p;cexpp, thenQ = …p;cexpp.
2. If Qp = …pexpp andQc = …p;c(expp 1 expc), thenQ = (…pexpp) 1 (…p;c(expp 1

expc)).

An example of the first merge is the case of merging theCustomer query with the
query at its child nodeName. An example of the second one is the case of merging the
Customer query with its child nodePartName .

Definition 5 [Sibling Merging] Given two sibling nodesc1 andc2 sharing a common
parentp, merging their queriesQc1 andQc2 results in a queryQ defined as follows:

1. If c1 andc2 are both atomic nodes such thatQc1 = …p;c1exp andQc2 = …p;c2exp,
thenQ = …p;c1;c2exp.

2. If one ofc1 or c2 is a multiple node, thenQ = Qc1 [Qc2 where[ is an outer-union.

An example of the first kind of sibling merge is the case of nodesRegNameand
RegCom. In this case, the expression that merges queries at those nodes has a sim-
ple union of the projection lists of the two initial queries. The second sibling merge
case is more general. An example of that is the query that results from merging the
queries at nodesPartName andSuppName(see Section 2).

3.3 Exploiting Common Sub-Expressions

Since each query must contain its parent query, thelargest expressiona parent query
shares with its children queries is itself. Thus, given two sibling queries, thesmallest ex-
pressionthese queries have in common is their parent query. Sibling queries could have
more in common, though. The query obtained from either the parent/child or sibling
query merging will often contain redundant expressions.



The first case of parent/child merging (in Definition 4) and the first case of sibling
merging (in Definition 5) rewrite the two input queries in a way that factors out the
common expression between the two queries. The two remaining cases, in the same
definitions, are the cases that will be discussed in this section.

Definition 6 [Parent/child Sharing] The merged query isQ = (…pexpp) 1 (…p;c(expp 1
expc)), where(…pexpp) is the parent expression, which can be factored out as follows:
Q = …p;c(expp 1 expc).

One might think that it is always a good idea to factor out the common parent
expression after a parent/child merge. Our experiments, in Section 5, show that this
choice might not always be the best depending on the presence of selection predicates
in the expressions.

Definition 7 [Sibling Sharing] Given two sibling queriesQc1
andQc2

, wherec2 is a
multiple node, depending onc1 being atomic or multiple, the merged queryQ is defined
by:

1. Q = (…p;c1expp) [ (…p;c2(expp 1 expc2)).
2. Q = (…p;c1(expp 1 expc1)) [ (…p;c2(expp 1 expc2)).

The query in the second sibling sharing case is the one that deserves most attention.
Let us consider the example of mergingPartName andSuppName (in the DTDof
Fig. 1) and write the corresponding queries in SQL.

Below, we give three versions of the query that mergesQPartName andQSuppName.
Q, MaxQandMinQ are three equivalent queries where common sub-expressions are
treated differently.

Q
select Q.ckey, Q.sname, Q.pname
from
((select distinct 1 as L, C_CUSTKEY as ckey, S_SUPPKEY as skey, S_NAME as sname,

NULL as pkey, NULL as pname
from CUSTOMER,SUPPLIER,LINEITEM,ORDERS
where S_SUPPKEY=L_SUPPKEY and L_ORDERKEY=O_ORDERKEY
and C_CUSTKEY = O_CUSTKEY and C_ACCTBAL < 5000 )

UNION ALL
(select distinct 2 as L, C_CUSTKEY as ckey,

NULL as skey, NULL as sname,
P_PARTKEY as pkey, P_NAME as pname

from CUSTOMER,PART,LINEITEM,ORDERS
where P_PARTKEY=L_PARTKEY and L_ORDERKEY=O_ORDERKEY
and C_CUSTKEY = O_CUSTKEY and C_ACCTBAL < 5000)

) Q
order by Q.ckey,L;

Q is the “naive” query whereQPartName andQSuppName are merged using an outer-
union. No common expression elimination is applied to it. Dummy fieldL is introduced
to separate parts and suppliers for each customer (for the purpose of building the final
XML document).

MaxQ
select distinct C_CUSTKEY as ckey, Q.sname,Q.pname
from ORDERS, CUSTOMER, LINEITEM



((select 1 as L, S_SUPPKEY as skey,
S_NAME as sname, NULL as pkey, NULL as pname

from SUPPLIER)
UNION ALL

(select 2 as L, NULL as skey, NULL as sname,
P_PARTKEY as pkey, P_NAME as pname

from PART)
) Q
where C_ACCTBAL < 5000 and C_CUSTKEY = O_CUSTKEY
and L_ORDERKEY = O_ORDERKEY and (Q.skey = L_SUPPKEY or Q.pkey = L_PARTKEY)
order by C_CUSTKEY,L;

MaxQis a rewriting ofQwhere the common join betweenORDERS, CUSTOMER
and LINEITEM is factored out. This join is thelargest shared expressionbetween
the two siblings. The disjunctive condition(Q.skey = L SUPPKEY or Q.pkey =

L PARTKEY), results from the fact that the common join expression needs to be joined
with suppliers usingQ.skey = L SUPPKEYand with parts usingQ.pkey = L PARTKEY.
The outer-union operation now computes all suppliers and parts.1

MinQ
select distinct C_CUSTKEY as ckey, Q.sname, Q.pname
from ORDERS, CUSTOMER,
((select 1 as L, L_ORDERKEY, S_NAME as sname, NULL as pname

from SUPPLIER,LINEITEM
where S_SUPPKEY=L_SUPPKEY)
UNION ALL

(select 2 as L, L_ORDERKEY, NULL as sname, P_NAME as pname
from PART, LINEITEM
where P_PARTKEY=L_PARTKEY)

) Q
where C_ACCTBAL< 5000
and C_CUSTKEY = O_CUSTKEY and Q.L_ORDERKEY = O_ORDERKEY
order by C_CUSTKEY,Q.L;

MinQ is a variant ofMaxQwhere the main goal is to avoid disjunctive join condi-
tions and cope with current day relational optimizers which are unable to deal with dis-
junctive predicates efficiently. However, sinceMinQ replicates a portion of the common
join condition (in the example, the one with theLINEITEM table), it might not always
perform better thanMaxQ. Therefore, we explore both rewritings:complete common
sub-expression eliminationwhich results in unions and may introduce disjunctive con-
ditions andpartial common sub-expression eliminationwhich results in unions and has
only conjunctive predicates.

4 Optimization

We designed two greedy algorithms:OptimizeSiblings() andOptimizeAll() .
OptimizeSiblings() explores merges and computation sharing between sibling
queries only whileOptimizeAll() interleaves merging of sibling queries and merg-
ing of parent/child queries.

1 This may not be the case if additional predicates on parts and/or suppliers are used.



Algorithm 1 compute benefit() Algorithm
Require: x, y

1: #define cost(q) (wp*proc(q)+w c*comm(q))
2: c beforemerge = cost(x)+ cost(y)
3: c after merge = min(cost(Q(x,y)), cost(MaxQ(x,y)), cost(MinQ(x,y)))fpick best sibling

mergeg
4: benefit(x,y) = cbeforemerge¡ c after merge

Algorithm 2 OptimizeSiblings() Algorithm
Require: T ree

1: while not empty(slist) do
2: pick (x,y): max(benefit(x,y)) in slist fPick most beneficial siblings to mergeg
3: stop if benefit(x,y)<0
4: sibling mergerewrite(x,y)freplace x, y with merged queryg
5: children(x)+=children(y)fy-subtree is attached to xg
6: remove(y,*) from slist
7: remove(*,y) from slist
8: computebenefit(x,*) in slist
9: computebenefit(*,x) in slist

10: end while

4.1 Sibling Optimization

OptimizeSiblings() , given in Algorithm 2, explores the benefits of sibling merg-
ing for each pair of sibling nodes. The benefit of merging two sibling queries can be
either positive or negative. It is computed as the difference between the processing and
communication costs of the two queries at nodesx andy and the rewritten query (where
both queries are merged) (see Algorithm 1).

Candidate pairs are stored in a lists list . At each step in the optimization algo-
rithm, the sibling pair that offers the best benefit (say(x,y) ) is selected to be rewritten.
The query at nodex now contains the merged expression betweenx andy . The query
at nodey no longer exists. Thus, all pairs of the form(y,*) and(*,y) are removed
from the candidate sibling mergess list . This includes(x,y) , which is no longer
a candidate pair. Finally, since the query expression at nodex has been modified, the
algorithm recomputes the benefit of all candidate sibling merges that involve nodex
(i.e., (x,*) and(*,x) ).

Once two sibling queries are merged,OptimizeSiblings() rewrites them to
eliminate common computation. The algorithm chooses the best ofQ, MaxQandMinQ
usingcompute benefits() .

If two sibling queries are merged, their children queries become siblings and could
be considered for additional sibling merges. However, the potential for these new sib-
ling queries to share large common sub-expressions reduces. In addition, considering
these queries for sibling merging would increase the search space size. Therefore, as a
heuristic, the only candidate sibling pairs(x,y) we consider are the ones wherex and
y are siblings in the initial set of queries.



Algorithm 3 OptimizeAll() Algorithm
Require: Tree
1: while not empty(list=union(slist,pc list)) do
2: pick (x,y): max(benefit(x,y)) in list
3: stop if benefit(x,y)<0
4: if (x,y) in s list then
5: sibling mergerewrite(x,y)
6: else
7: pc mergerewrite(x,y)
8: end if
9: children(x)+=children(y)

10: remove (y,*) and (*,y) from slist
11: computebenefit(x,*) in slist
12: computebenefit(*,x) in slist
13: remove(parent(y),y) from pclist
14: computebenefit(parent(x),x) in pclist
15: computebenefit(x,*) in pclist
16: end while

4.2 Combined Optimization

OptimizeAll() is given in Algorithm 3. Once a parent/child or a sibling merge has
been performed, the difference betweenOptimizeAll() andOptimizeSiblings()
is the impact onpc list , the candidate parent/child merges list. Since nodey does not
exist anymore,(parent(y),y) needs to be removed frompc list . In addition,
since the query at nodex now contains the merged query, the benefits of(parent(x),x)
and of(x,*) are recomputed. In order to remain within good complexity bounds, the
same assumption as forOptimizeSiblings() is made on sibling merges. In addi-
tion, this assumption is also made for parent/child merges. When a parent/child merge
(x,y) is performed, the subtree rooted aty becomes directly related tox . In this case,
we do not consider the new children ofx as candidate merges.

4.3 Cost Analysis

Given jSj queries, the maximal initial size ofpc list is jSj-1=O(jSj) and the max-
imal initial size ofs list is §q2S(f(q)(f(q) ¡ 1)=2) = O(jSj2), wheref(q) is the
fanout of queryq (number of children queries) in the XML tree. The initialization of
the two lists needsO(jSj2) time and space. At each step where a pair(x; y) is selected,
we remove at least one element frompc list . For each nodeq whose children are
in s list there can be at mostf(q) sibling merges each taking at mostO(f(q)) time.
Therefore, the number of iterations is linear in the number of queries and each takes lin-
ear time. Thus, the number of steps required is linear in the number of queries:O(jSj)
where the initial number of elements ins list is at mostO(jSj2).



5 Experiments

Due to space constraints, we only present a short set of experiments that evaluate
sibling rewritings against the rewriting techniques of [9] and [15]. These experiments
were carried on a 500Mhz Pentium III PC with 256MB of main memory and refer to
an instance of the TPC-R [16] dataset using scaling factor 0.2. We used a commercial
RDBMS for storing the data. All tables have indices on primary and foreign keys.

5.1 Data

Our documents conform to a simpler version of theDTDin Fig. 1 with only theCustomer ,
PartName andSuppNamenodes. There are three basic queries corresponding to the
nodes of this DTD. QueryQ1 instantiates theCustomer node,Q2 the PartName
node andQ3 theSuppNamenode.

We used the fieldC CUSTKEYof theCUSTOMERtable to control the size of the doc-
uments we build. For the case denoted as “Small-Doc”, we instantiated the document
for customers withC CUSTKEYless than 5000 (i.e., 5000 tuples). The document denot-
ed as “Large-Doc” is generated with no restrictions onC CUSTKEY. TheCustomer
node for both documents is “fat”, i.e. all fields from tableCUSTOMERare published
as attributes ofCustomer . Table 1 summarizes the execution times of all possible
parent-child/sibling merges as well as the queries corresponding to each node in the
DTD. Qij denotes the merged result of queriesQi andQj. For exampleQ12 is the
result of a parent/child merge ofQ1andQ2, while Q23 stands for the sibling merge of
Q2andQ3. The second and third rows of the table are the modified queries (MaxQfor
complete subexpression elimination andMinQ for partial subexpression elimination).
Note that common subexpression elimination is not defined for all queries (e.g.Q1).

5.2 Results

Looking at the execution times for the Small-Doc case, a first observation is that ex-
tensive common subexpression elimination in some cases results in substantially worse
performance. The reason for this effect is twofold. The first is that common subexpres-
sion elimination might generate disjunctive predicates that are hard to optimize (see
queryMaxQin Section 3.3). The second reason is that often common expressions are
helpful for preserving selections. For instance, bothQ12 and Q13 make use of the
selection onC CUSTKEYthrough the repeated join with theCUSTOMERtable. Par-
tial common expression elimination (MinQ23 andMinQ123 in this example) is better
than complete subexpression elimination but (in the case ofQ123) no better than no
common subexpression elimination. In comparison with the complete common subex-
pression elimination rewriting, the partial one maintains the join of tablePART(resp.
SUPPLIER) with tableLINEITEM in the rewriting forQ2 (resp.Q3) in Q23 (same
for Q123). This is necessary to avoid generating a disjunctive predicate (seeMinQ in
Section 3.3).

In the Large-Doc case, common expression elimination pays off in all cases com-
pared to executingQ1, Q2 and Q3 independently. This is because the common ex-
pression in each merged case is expensive and should be evaluated a minimal number



Q1 Q2 Q3 Q12 Q13 Q23 Q123

Small-Doc
Q 2.91 154.46 200.30 242.86 316.29 568.88 849.07
MaxQ - - - 1034.701332.63 473.483338.18
MinQ - - - - - 349.113136.87

Large-Doc
Q 11.511193.031439.831396.971695.973626.645897.71
MaxQ - - - 1352.121650.232366.285794.31
MinQ - - - - - 2175.905586.54

Table 1.Execution Times (secs)

of times. Furthermore, partial elimination of the common subexpression benefits both
queriesQ23 andQ123 as in the previous case.

Looking at the complete times for producing the pieces of the document in the
relational engine for all meaningful combinations of the aforementioned queries: [Q1,
Q2 andQ3], [Q12 (parent/child merge) andQ3], [Q2 andQ13 (parent/child merge)],
[Q1andQ23 (sibling merge)], [Q123 (single query)], planQ1+Q23 is marginally faster
than planQ1+Q2+Q3 in the Small-Doc case, while it is about 18% faster in the Large-
Doc case.

6 Related Work

Since we are optimizing common sub-expressions among multiple queries, our work
share similarities with multi-query optimization (see, e.g., [13]). It is well known that
multi query optimization is exponential [13]. Our work benefits from application-dependent
information (building XML trees) to optimize sibling queries instead of attempting to
optimize an arbitrary subset of queries. This reduces the complexity of the optimization.

In [7], the authors extend relational query engines with a new operator that processes
sets of tuples. They define new rewriting rules that involve that operator and show how
to integrate that operator in a relational optimizer. This work motivates the necessity to
extend relational optimizers. In our work, we do not introduce a new operator, rather,
we explore new rewriting rules.

In [9], the authors focus on merging parent and children queries. The rewritings we
propose are more general than the ones in [9] and explore an additional dimension that
has been proven to result in better efficiency. In [15], the authors provide an extension to
SQL to express XML views of relations and carry an experimental study of publishing
relational data in XML. This work has not adopted an optimization approach to this
problem.

Finally, in [4], the authors present ROLEX, a system that extends the capabilities
of relational engines to deliver efficiently navigable XML views of relational data via a
virtual DOM interface. DOM operations are translated into an execution plan in order
to explore lazy materialization. The query optimizer uses a characterization of the navi-
gation behavior of an application to minimize the expected cost of that navigation. This
work could benefit from our new optimizations if they are integrated into a relational
system.



7 Conclusion

We discussed the problem of efficiently building XML documents from relations and
showed that exploring common computation between sibling queries is a fundamental
algebraic rewriting when optimizing SQL queries used to build XML documents. In
particular, we showed that in the case where an element has both unique and repeated
children, sibling merging combined with partial common sub-expression elimination,
enables computation sharing without replicating data. This strategy can be used both
inside and outside a relational engine.
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