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ABSTRACT
Many multiagent domains where cooperation among agents
is crucial to achieving a common goal can be modeled as
coalitional games. However, in many of these domains, agents
are unequal in their power to affect the outcome of the game.
Prior research on weighted voting games has explored power
indices, which reflect how much “real power” a voter has.
Although primarily used for voting games, these indices can
be applied to any simple coalitional game. Computing these
indices is known to be computationally hard in various do-
mains, so one must sometimes resort to approximate meth-
ods for calculating them.

We suggest and analyze randomized methods to approxi-
mate power indices such as the Banzhaf power index and the
Shapley-Shubik power index. Our approximation algorithms
do not depend on a specific representation of the game, so
they can be used in any simple coalitional game. Our meth-
ods are based on testing the game’s value for several sample
coalitions. We also show that no approximation algorithm
can do much better for general coalitional games, by pro-
viding lower bounds for both deterministic and randomized
algorithms for calculating power indices.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial In-
telligence—Multiagent Systems;
F.2 [Theory of Computation]: Analysis of Algorithms
and Problem Complexity;
G.3 [Mathematics of Computing]: Probability and Statis-
tics—Probabilistic algorithms
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1. INTRODUCTION
Cooperation is critical to many types of interaction among

self-interested agents. In many domains, agents require one
another in order to achieve their goals. When the outcomes,
achieved by a coalition of agents, can be described in terms
of success or failure, we can model the system as a simple
coalitional game.

One example of such a domain is the case of coalitions
among voting agents. When voting on a candidate under
a certain protocol, agents may work together so that a cer-
tain candidate will be chosen. A well-known game-theoretic
model of cooperation in voting domains is that of weighted
voting games. Each of the players in such a game has a
weight, and a coalition of players wins the game if the sum
of the weights of its participants exceeds a certain quota.

One question that arises is that of measuring the power
different agents possess in cooperative settings. In some
domains, agents are unequal in their power to affect the
outcome of the game, and the weight of a player in a vot-
ing game does not necessarily reflect the actual power that
player has over the decisions of a larger group.

A common interpretation of the power an agent possesses
is that of its a priori probability of having a significant role
in the game. A power index measures the ability a certain
agent has to affect the result of the game; thus, power indices
reflect how much “real power” an agent has. Two prominent
power indices are the Shapley-Shubik power index [23] and
the Banzhaf power index [2]. Although power indices have
mainly been considered in the context of weighted voting
systems, it is possible to apply them to any simple coalitional
game.

Power indices have several uses. The most prominent of
these is measuring political power in decision making bod-
ies. As discussed in Section 3, power index-based analysis
has been applied to several political bodies. Another ap-



plication of power indices is cost sharing schemes and cost
allocation [26]. Due to their applicability to such real-world
problems, calculating power indices is an important prob-
lem. Unfortunately, these indices are generally hard to com-
pute, even in restricted domains.

We suggest and analyze approximation algorithms for cal-
culating power indices of a given agent, for any simple coali-
tional game. We consider a query regarding the value of
any coalition to be the basic operation. Our method ran-
domly samples coalitions, and tests whether the given agent
is critical in the sample. We use the samples to estimate
the Banzhaf power index, or more precisely, to build a con-
fidence interval for it. Our procedure returns an interval
[l, r], so that the correct Banzhaf index lies inside the inter-
val with high probability 1− δ.

The required number of samples (and thus the running
time of the algorithm) depends on two parameters: the de-
sired accuracy of the procedure, as defined by the width of
the interval, and the desired confidence level, or the proba-
bility that the correct value actually lies outside the interval,
namely δ. In fact, we later show it is easy to trade off one
parameter for the other, and provide the equations linking
these parameters.

Although we handle the Banzhaf power index, we show
that slight changes in the algorithm allow it to approximate
the Shapley-Shubik index as well. We show that no other
algorithm can obtain much better results for simple coali-
tional games, by providing lower bounds for both determin-
istic and randomized algorithms for calculating the Banzhaf
power index. We first provide a lower bound on the num-
ber of queries required for a deterministic algorithm with
a given accuracy. We then use the Minimax principle of
Yao [25] to show that no randomized algorithm can achieve
superpolynomial approximation.

1.1 Structure of the Paper
The paper proceeds as follows. In Sections 2.1 and 2.2

we give some background concerning coalitional games and
power indices. In Section 3 we discuss some related work
regarding power indices and the computational complexity
of calculating power indices, as well as approximate meth-
ods for calculating these indices. In Section 4 we discuss our
method of approximating power indices using a sampling
technique. Section 5 shows that the results achieved by the
sampling technique are in a sense the best possible, since
no deterministic algorithm can achieve comparable accuracy
with a polynomial number of queries, and since no random-
ized algorithm can achieve superpolynomial accuracy. We
conclude in Section 6.

2. MODEL AND DEFINITIONS
We now give several definitions regarding coalitional games

and power indices, required for the rest of this paper.

2.1 Coalitional Games
A coalitional game is composed of a set of n agents, I, and

a function mapping any subset (coalition) of the agents to a
real value v : 2I → R. In a simple coalitional game, v only
gets values of 0 or 1 (v : 2I → {0, 1}). We say a coalition
C ⊂ I wins if v(C) = 1, and say it loses if v(C) = 0.

An agent i is critical in a winning coalition C (sometimes
also called a“swinger”or“pivot”) if the agent’s removal from
that coalition would make it a losing coalition.

A critical agent has a strong influence on the result of
the game, so this property is related to various measures of
power. Two approaches to measuring the power of individ-
ual agents in simple coalitional games are the Banzhaf index
and the Shapley-Shubik index.

2.2 The Banzhaf Index and the Shapley-Shubik
Index

The Banzhaf index depends on the number of coalitions
in which an agent is critical, out of all the possible coali-
tions that contain the agent. The Banzhaf index is given by
β(v) = (β1(v), . . . , βn(v)) where

βi(v) =
1

2n−1

X
S⊂I|i∈S

[v(S)− v(S \ {i})]

The Shapley-Shubik power index is simply the applica-
tion of the Shapley value for simple coalitional games. De-
note by π a permutation (reordering) of the agents, so π :
{1, ..., n} → {1, ..., n} and π is reversible, and by Π the set of
all possible such permutations. Denote by Sπ(i) the prede-
cessors of i in π, so Sπ(i) = {j|π(j) < π(i)}. The Shapley-
Shubik index is given by sh(v) = (sh1(v), ..., shn(v)) where

shi(v) =
1

n!

X
π∈Π

[v(Sπ(i) ∪ {i})− v(Sπ(i))]

The definition of the Banzhaf index reflects the assump-
tion that each coalition has an equal probability of occur-
ring, while the Shapley-Shubik index reflects the assumption
that any ordering of the agents entering the coalition has an
equal probability of occurring.

3. RELATED WORK
The Banzhaf index emerged directly from the study of vot-

ing in decision-making bodies. A first version of the Banzhaf
power index was introduced in [2]. This version is called the
normalized Banzhaf index. It measures the proportion of
coalitions in which a player is a swinger, out of all winning
coalitions, and normalizes the indices of all the agents, so
they sum up to 1. The normalized Banzhaf index is defined
as:

eβi =
βi(v)P
k∈I βk

The normalized Banzhaf index was analyzed in [8], where
it was shown that this normalization lacks certain desirable
properties, and the more natural Banzhaf index was intro-
duced.

A similar power index, the Shapley-Shubik power index,
originated in work on game theory. In his seminal paper,
Shapley [22] considered coalitional games and the fair al-
location of the utility gained by the grand coalition. The
Shapley-Shubik index [23] is simply an application of the
Shapley value to simple coalitional games.

Both the Shapley-Shubik and the Banzhaf indices have
been widely studied. Straffin [24] has shown that each index
reflects certain conditions in a voting body, relating to how
a coalition is formed. [12] describes the axioms that charac-
terize both the Banzhaf and Shapley-Shubik power indices,
along with several others.

Various power indices, including the Banzhaf power index
and the Shapley-Shubik power index, have been surveyed



in [10, 3, 13, 6]. These indices were applied in an analy-
sis of the voting structures of several bodies, including the
European Union Council of Ministers and the IMF [16, 14].
[4] considers a power index-based analysis of the European
Union, and shows that such analysis is computationally dif-
ficult, as brute-force techniques for computing these indices
are not always tractable. Another application of power in-
dices is cost sharing schemes: the Shapley value is well
known for its use in establishing the fair sharing of costs [26].

The naive implementation of calculating the Banzhaf in-
dex is exponential, since the number of possible coalitions is
exponential in the number of agents. The situation is even
worse for the Shapley-Shubik power index. For n agents,
there are n! permutations to consider. Using Stirling’s ap-
proximation, this means there are about O(2n logn) permu-
tations to check. Calculating power indices in time polyno-
mial in the number of agents can only be achieved in very
specific and restricted domains.

[7] shows that computing the Shapley-Shubik index in
weighted majority games is #P-complete. In a similar re-
sult, [20] show that calculating both the Banzhaf and Shapley-
Shubik indices in weighted voting games is NP-complete.

[1] has considered the problem of calculating the Banzhaf
power index in network flow games. This is a game theo-
retic model of a network reliability problem. In this game,
each agent controls an edge in a network flow graph, and a
coalition of agents wins if it manages to allow a certain flow
between a source vertex and a target vertex. [1] has shown
that in this specific domain, calculating the Banzhaf power
index is #P-complete, but gave a polynomial algorithm for
a certain restricted case, of connectivity games in bounded
layer graphs.

The example above shows that restricting the domain may
allow one to find ways of overcoming the computational dif-
ficulty of calculating power indices in the general case. How-
ever, the hardness results for various general domains indi-
cate that in order to calculate power indices one must either
restrict the domain, or approximate the power index.

One approach, using generating functions, has been sug-
gested in [18] and analyzed in [5]. That method trades time
complexity for storage space. Owen [21] describes meth-
ods for computing the power indices exactly, based on the
multilinear extension (MLE) of a game. These have similar
complexity issues as direct enumeration, but serve as a basis
for approximation techniques presented in [15], which allows
trading off time and approximation quality.

A Monte-Carlo approach to approximating the Shapley
value has been suggested in [17]. That paper only consid-
ered the Shapley-Shubik power index, and not the Banzhaf
index, and did not provide a complete confidence interval
statistical analysis.1 We apply a similar approach to approx-
imating both indices, and provide a more rigorous statistical
analysis. We do this by investigating the required number of
samples for building a confidence interval with a given confi-
dence level and accuracy. We also complement these results
by providing lower bounds on the number of required sam-
ples, for both deterministic and randomized algorithms for
calculating power indices.

The performance of an approximation method should be
evaluated in terms of two criteria: its time complexity and its
quality (the accuracy of the procedure, and the confidence

1We use Hoeffding’s inequality [11], which was introduced
in 1963, a few years after [17] was published.

it guarantees).
A randomized method for calculating the Shapley-Shubik

power index of weighted voting games has been suggested
in [9]. Although that work provided an analysis of the sta-
tistical error in such a procedure, it only considered the
Shapley-Shubik power index in weighted voting games, and
the evaluation of the approximation error was carried out
empirically.

[19] contained a survey of algorithms for calculating the
power indices of weighted majority games. It discussed a
Monte-Carlo approach for calculating the Banzhaf power in-
dex, but only showed how to calculate the maximum likeli-
hood estimator. [19] did not show how to build a confidence
interval for a given confidence level. It focused on weighted
voting games, in which comparing the power of two agents
is simple: in weighted voting games a player with a higher
weight cannot have a smaller power index than a player with
a smaller weight. Our work also considers general simple
games where such a simple way of comparing power indices
does not exist, and shows how to rank agents according to
their power indices in such domains.

To our knowledge, no work has considered lower bounds
for power index approximation algorithms. In this paper,
we provide such bounds, showing that our randomized ap-
proach outperforms any deterministic algorithm in terms of
accuracy (given a certain number of samples), and that no
randomized algorithm can achieve significantly better results
than those achieved by our algorithms. These lower bounds
hold for general coalitional games, where the structure of
the coalitional function is unrestricted. For restricted do-
mains, it may be possible to provide better deterministic
algorithms, or better randomized algorithms.

4. APPROXIMATING POWER INDICES BY
SAMPLING

We suggest a method for approximating the power indices
of a certain agent in a simple game. The basic operation our
algorithms use is a query regarding the value of a coalition.
Calculating βi, the Banzhaf index for agent i, is performed
by randomly sampling coalitions containing player i, and
estimating βi by the proportion of the sampled coalitions
where agent i is critical. When sampling coalitions, each
sample has a probability of βi of being a coalition where
agent i is critical, so we can approximate βi by taking into
consideration several such samples.

The number of samples determines the accuracy of this
procedure: for a given ε > 0, the probability δ of missing
the correct value βi by more than ε depends on the number of
samples used. The algorithm we propose determines the re-
quired sample size according to the required confidence level
(δ, the probability of error) and approximation accuracy (ε,
the maximal allowed distance from the correct value).

4.1 Randomly Sampling Coalitions
The suggested approximation algorithm relies on a sam-

pling procedure. The Banzhaf sampling procedure returns a
random coalition C which contains player i. This can easily
be done by randomizing a bit using the uniform distribution
over {0, 1} for each of the other agents, and always setting
the bit for agent i to 1.

Once the random sample is returned, we simply check if
agent i is critical in that sample. Agent i is critical in the



returned coalition C if:

v(C)− v(C \ {i}) = 1

We denote this as Critical(i, C).
It is easy to see from the definition of the Banzhaf in-

dex that the probability that agent i is critical in a random
coalition that contains it is exactly its Banzhaf power index,
so:

PrC|i∈C(Critical(i, C)) = βi

Let Cj be a random coalition containing agent i, as defined
previously. Let Xj be the random variable which is 1 if agent
i is critical in Cj , and 0 otherwise.

4.2 Estimating the Power Index
When attempting to estimate the power index of an agent

i, we can randomly sample coalitions in the way described
above. For each such sample we can check if agent i is critical
in that coalition. Given k such sample coalitions, we can get
an estimator for βi.

Lemma 1. Let C1, . . . , Ck be a set of k randomly sam-
pled coalitions, and X1, . . . , Xk be the series of k Bernoulli
trials, as defined above. Let X be the number of successes
in this series of Bernoulli trials, X =

Pk
j=1 Xj. Then the

maximum likelihood estimator for βi is:

β̂i =
X

k

This estimator is unbiased.

Proof. As discussed in Section 4.1, each such Xj is a
single Bernoulli trial, and Pr(Xj = 1) = βi and Pr(Xj =
0) = 1−βi. X1, . . . , Xk is a series of k such Bernoulli trials.
X is the number of successes in this series of Bernoulli tri-
als, X =

Pk
j=1 Xj , and thus has the binomial distribution

X ∼ B(k, βi). Since the Xj ’s are independent but identical
Bernoulli trials, the maximum likelihood estimator for βi is
β̂i = X

k
. This estimator is known to be unbiased for the

binomial distribution.

4.3 A Confidence Interval for the Power In-
dex

The estimator β̂i by itself does not provide a bound on the
probability that this value is approximately correct. Given
a sample X1, . . . , Xk of k such Bernoulli trials, we are in-
terested in getting a value that is probably approximately
correct (PAC).

If for some ε > 0, we consider values that are within a
distance of ε from the correct value, βi, accurate enough, and
are willing to accept a certain low probability δ of having
our estimator β̂i miss βi by more than ε, we can formulate
the problem as building a confidence interval for βi, with an
accuracy of ε and with confidence level of 1−δ. The interval
we build is:

[β̂i − ε, β̂i + ε]

The interval is centered at β̂, has a width of 2 · ε > 0, and
contains the true βi with a probability of at least 1− δ.

We obtain an equation relating the required number of
samples k, the confidence level δ, and the accuracy ε (width
of the interval), by using Hoeffding’s inequality [11].

Theorem 1 (Hoeffding’s inequality). Let X1, . . . , Xn
be independent random variables, where all Xi are bounded
so that Xi ∈ [ai, bi], and let X =

Pn
i=1 Xi. Then the follow-

ing inequality holds.

Pr(|X − E[X]| ≥ nε) ≤ 2 exp

„
− 2n2 ε2Pn

i=1(bi − ai)2

«
We now use Hoeffding’s inequality to build a confidence

interval for the power index. Let C1, . . . , Ck be a set of k ran-
domly sampled coalitions, and X1, . . . , Xk be the series k of
Bernoulli trials, as defined above. Again, let X =

Pk
j=1 Xj ,

and take β̂i = X
k

as an estimator for βi. All Xi are either 0
or 1 (and are thus bounded between these values), and

E[X] = k · βi
Thus, the following holds:

Pr(|X − kβi| ≥ kε) ≤ 2e−2 k ε2

Therefore the following also holds:

Pr(|β̂i − βi| ≥ ε) ≤ 2e−2 k ε2

We now calculate the required number of samples in order
to make sure that this probability is below some required
confidence level δ.2

Our method generates a ‘conservative confidence interval’.
Intervals based on Hoeffding’s bound are sometimes referred
to as ‘conservative confidence intervals’, since they are based
on exact bounds rather than on approximated bounds, such
as the normal approximation for the binomial distribution.

An approach based on the normal approximation for the
binomial distribution could be taken here to obtain slightly
smaller confidence intervals. However, such a procedure
only holds the required confidence level approximately. This
slight error in the confidence level accumulates when repeat-
ing the process, and is thus inappropriate for the ranking
procedure presented later in this paper.3

We now show how to build the conservative confidence
interval, using the Hoeffding inequality.

Theorem 2 (Power Confidence Interval). For any
required accuracy ε > 0 and required confidence level 1−δ, we
can construct a conservative confidence interval with width
2ε of the form:

[β̂i − ε, β̂i + ε]

This interval holds the correct Banzhaf index βi with prob-
ability 1− δ. The required number of samples for this is

k =
ln 2

δ

2 ε2

Similarly, given k samples and a required confidence of
1− δ, the following is a conservative confidence interval for
βi, with the required confidence level of 1− δ:"

β̂i −
r

1

2k
ln

2

δ
, β̂i +

r
1

2k
ln

2

δ

#
2Such methods are widely used for the analysis of random-
ized algorithms in various areas. For example, PAC learning
algorithms are typically based on such techniques.
3Also, it is harder to analyze the asymptotic behavior of
the running time of our procedure when using the normal
approximation, since it has no direct formula.



Proof. We use the Hoeffding inequality to make sure the
error does not exceed our target confidence level δ, and get:

Pr(|β̂i − βi| ≥ ε) ≤ 2 e−2 k ε2 ≤ δ

We now extract the required ε and k:

−2 k ε2 ≤ ln
δ

2

This can be restated as:

ε2 ≥ −
ln δ

2

2 k

Finally we get the desired equations, connecting the accu-
racy, the confidence, and the number of samples:

ε ≥
r

1

2k
ln

2

δ

k ≥
ln 2

δ

2 ε2

We now present an algorithm for building a confidence
interval for the power index in simple coalitional games. The
algorithm gets the required confidence level δ and interval
width w, and returns the desired confidence interval.

Algorithm 1. ConfidenceBanzhaf(δ, w):

1. X = 0, k = 0, ε = w
2

.

2. Loop until k ≥ ln 2
δ

2 ε2
.

(a) Randomly choose a coalition C such that C con-
tains agent i

(b) k = k + 1

(c) If i is critical in C then X = X + 1

(d) β̂i = X
k

3. Calculate the confidence interval ConfInterval using
Theorem 2.

4. Return ConfInterval.

In certain cases, we may want to compute the power in-
dices of several or even all the agents in a certain game. For
example, when ranking agents according to their power in-
dex, we need accurate estimates of the power index of all
the ranked agents.

Consider a series of m runs of an algorithm for approxi-
mating power indices, each of a different agent. Such a se-
ries returns m intervals ci = [li, ri], where each such interval
contains βi with probability 1− δ′.

In order to rank the agents according to their power in-
dices, we can sort the agents according to the intervals’ cen-
ters. If no two intervals ci 6= cj intersect, and if each of them
does contain the actual power index of that agent i so that
βi ∈ ci, this results in the correct ranking.

Lemma 2. Let c1, . . . , cm be a series of m pairwise non-
intersecting confidence intervals for βi’s, each with confi-
dence level of δ′ as defined above. The probability of having
at least one interval that misses a power index is bounded
from above by m · δ′.

Proof. Each such interval misses its power index with
probability of at most δ′, so for all i we have:

P (βi /∈ ci) ≤ δ′

We use the union bound to bound the probability of hav-
ing at least one interval that misses a power index:

P (∃i|βi /∈ ci) ≤
mX
i=1

P (βi /∈ ci) ≤ m · δ′

Thus, if the intervals do not intersect, we have a wrong
ranking with probability of at most β < m · δ′.

Given a target confidence level δ for the ranking proce-
dure, we can now take δ′ = δ

m
as the target confidence level

for the single confidence interval. In this case, the error
probability would be:

β < m · δ′ = δ

Thus, we achieve the desired confidence level for the ranking.
When approximating the power indices of all the agents,

we can use the following corollary.

Corollary 1. When approximating the power index for
all the agents in the game, β = (β1, . . . , βn), with a requested
probability δ of not missing any of the values by more than ε,
we can approximate each value using Algorithm 1 with confi-
dence level of δ

n
, the same ε, and with a total of O( 1

ε2
n ln n

δ
)

samples.

Proof. We simply apply Lemma 2 for the case where
m = n, the number of all the agents.

We now consider how to adapt the above procedure for
the Shapley-Shubik index as well.

4.4 Adaptations for the Shapley-Shubik Power
Index

The Shapley-Shubik power index can be approximated in
a very similar way to that described above for the Banzhaf
power index. Both indices measure the probability of an
agent being critical, under different coalition formation sce-
narios. Our algorithm is based on randomly sampling coali-
tions, and it is possible to change the way these coalitions are
sampled so that the result approximates the Shapley-Shubik
power index, rather than the Banzhaf power index.

Rather than randomly choosing coalitions, we can ran-
domly choose permutations. The Shapley-Shubik sampling
procedure simply returns a random permutation of the agents.
There are many known techniques to produce a random per-
mutation, whose running time is linear in the size of the
returned permutation.

Similarly to the algorithm for the Banzhaf index, once
the random sample is returned, we simply check if agent i
is critical in that sample. Agent i is critical in the returned
permutation π if:

v(Sπ(i) ∪ {i})− v(Sπ(i)) = 1

We denote this as Critical(i, π).
After taking several such samples, we estimate shi(v) by

the proportion of the sampled permutations where agent i is
pivotal. It is easy to see from the definition of the Shapley-
Shubik index that the probability that agent i is critical in



a random permutation is exactly its Shapley-Shubik power
index, so:

Prπ∈Π(Critical(i, π)) = shi(v)

We now define the random variable Xj by letting πj be a
random permutation, and Xj being 1 if i is critical in πj and
being 0 if it is not. We can then continue the process exactly
as in Section 4.2, and get a procedure for the Shapley-Shubik
power index.

The Shapley-Shubik power index is really the application
of the Shapley value in a simple coalitional game. It is possi-
ble to adapt the procedure for the Shapley value as well, by
defining a random variable Xj which is aj ’s marginal addi-
tion to a random permutation, and taking proper bounds for
the Hoeffding inequality. However, in this case, the bound
would depend on the minimal and maximal such marginal
contributions to any coalition.4

5. LOWER BOUNDS FOR CALCULATING
AND APPROXIMATING POWER INDICES

From Theorem 2 we see that we can build a confidence
interval for the power index, with accuracy of ε = 1/p(n),
where p(n) is a polynomial, and with confidence of 1− δ, by
taking enough samples. The number of required samples is

O(p(n)ln(1/δ))

The number of samples is thus polynomial even if δ is expo-
nentially small.

A natural question now is whether we can have a deter-
ministic algorithm that can achieve comparable accuracy
with a polynomial number of queries. Another question
is whether there is some other randomized algorithm that
achieves superpolynomial accuracy, e.g., 1

q(n)
, where q(n) =

Ω(2n) or even q(n) = 2n
ε

, for ε > 0.
In the rest of this section, we give negative answers to the

above questions.
Our results hold for algorithms that have access to a game

oracle that returns the game’s value for a given coalition.
Such an oracle can only answer queries of the form: return
the value v(S) of the coalition S. The results do not hold
for special restricted cases, where there is a succinct repre-
sentation of the game.

5.1 Lower Bounds for Deterministic Approx-
imation Algorithms

We show that for deterministic algorithms we need an ex-
ponential number of queries to achieve polynomial accuracy,
in contrast to the randomized case. In fact, this still holds
even if we relax the accuracy to linear or even sublinear.

Theorem 3. There is a constant c > 0 such that any de-
terministic algorithm that computes the Banzhaf index with
accuracy better than c/

√
n requires Ω(2n/

√
n) samples.

Proof. Consider a deterministic algorithm A that al-
ways uses less than the stated number of queries. We will
use a certain family of instances to derive a contradiction.

4For the Shapley value, an agent’s marginal contribution
to any coalition is bounded by 0 and the maximal possible
value of a coalition. Thus, applying Hoeffding’s inequality
(Theorem 1) requires a different number of samples, and
although the algorithm remains very similar, this can have
a large effect on the running time.

Our instances have n + 1 players, where n is an even
number, and we are interested in computing the index of
the (n + 1)-st player. We let I0 denote an instance where
βn+1 = 0.

We also define the following family of instances F : con-
sider a coalition S of {1, . . . , n}. An instance I belongs to
F if for |S| < n/2, v(S) = 0 and v(S ∪ {n + 1}) = 0. For
coalitions with |S| = n/2, v(S) = 0 and for exactly half of
them, adding n+ 1 makes it a winning coalition and for the
rest not. For |S| > n/2, the values are determined by mono-
tonicity, i.e., the value is 1 only if S contains some winning
coalition of lower cardinality, otherwise it is 0.

Hence we see that for I ∈ F , the agent n+ 1 is critical in
exactly

`
n
n/2

´
/2 coalitions. Thus:

βn+1 =

`
n
n/2

´
2 · 2n

By using Stirling’s approximation, we can see that for large
enough n:  

n

n/2

!
= Ω(2n/

√
n)

This implies that for all I ∈ F we have:

βn+1 = Ω(
1√
n

)

Consider now the algorithm A. If it achieves an accu-
racy better than βn+1, then it should be able to distinguish
between the instance I0 and any instance I ∈ F .

However there will always be an instance of F that will
make A fail, if A asks less than

`
n
n/2

´
/2 queries. To see

this, look at the queries asked by A (whether adaptive or
not). We can always answer zero to all queries for coalitions
of the form S ∪ {n + 1}, with |S| = n/2. This can still
correspond to a member, I∗, of F , but the algorithm has no
way of deducing that βn+1 6= 0 and hence cannot distinguish
between I0 and I∗ (the answers to queries with |S| < n/2
or |S| > n/2 cannot give any additional information on the
index either).

5.2 Lower Bounds for Randomized Approxi-
mation Algorithms

We now consider the existence of randomized algorithms

that can achieve superpolynomial approximation, e.g., 1/2
√
n,

or even better O(1/2n). Below, we answer this question neg-
atively as well for functions that grow faster than polynomi-
als.

This essentially implies that our algorithm of Section 4.3
is the best we can hope for in polynomial time.

Theorem 4. Let δ be a constant less than 1/2 and let
q(n) be any superpolynomial function with q(n) < 2n, i.e.,
q(n) = ω(p(n)) for any polynomial p(n). Then for any
ε > 0, no polynomial time randomized algorithm can build
a confidence interval with accuracy better than 1/q(n) and
confidence level of at least 1− δ.

Proof. We use the standard Minimax principle of Yao [25]:
to show a lower bound on a randomized algorithm, it suf-
fices to define a distribution on some family of instances
and show a lower bound for a deterministic algorithm on
this distribution.



Fix ε > 0. The distribution is as follows. As in The-
orem 3, we have n + 1 players, with n even. Out of all
coalitions S of {1, . . . , n} with |S| = n/2, we pick uniformly
at random 2n/q(n) of them and we make n + 1 critical in
the corresponding coalitions S ∪ {n+ 1}.

This defines a distribution on a family of instances F ′. We
will have this distribution on F ′ with probability 1/2. With
the remaining 1/2 probability, we will have the instance I0.
For I ∈ F ′ the Banzhaf index is exactly:

βn+1 =
2n

q(n)2n
=

1

q(n)

Consider any deterministic algorithm that asks at most
p(n) queries for some polynomial p(n). If it achieves ac-
curacy better than 1/q(n), it should be able to output a
nonzero value for I ∈ F ′ with a constant probability. For
this it needs to identify at least one coalition where n+ 1 is
critical.

However, no matter what the queries of the algorithm are,
since the critical coalitions were chosen uniformly at random,
each query succeeds with probability at most:

2n

q(n)
`
n
n/2

´
Thus, for large enough n, the overall probability of success
is at most:

1

2
+

1

2

p(n)2n

q(n)
`
n
n/2

´ ≤ 1

2
+O

„
p(n)
√
n

q(n)

«
< 1− δ

As an example, we see from the proof above that if we

need accuracy better than, say, 1/2
√
n, any algorithm would

require exponentially many queries. Or more generally:

Corollary 2. Any randomized algorithm that succeeds
with probability higher than 1/2 needs an exponential number

of queries to achieve accuracy better than 1/2n
ε

for any ε >
0.

The results given in this section are lower bounds on the
required amount of information to achieve a desired approx-
imation (specifically, the required number of coalition value
queries), and are independent of common complexity theory
assumptions, i.e., they hold even if P = NP.

6. CONCLUSIONS AND FUTURE RESEARCH
We have suggested algorithms for approximately calcu-

lating power indices, in any simple coalitional game. The
method is suited for both the Banzhaf power index and
for the Shapley-Shubik power index. We also believe the
method is quite general and can be adapted for other power
indices as well.

Our method is probably approximately correct: our pro-
cedure returns a confidence interval that contains the ac-
tual value with high probability. The running time of our
method depends on both the accuracy (the desired width
of the interval), and the confidence level (the maximal al-
lowed probability of having the true power index outside the
interval), and is polynomial in both.

The approximation algorithm we suggested is a random-
ized algorithm. Although the algorithm is simple, we showed

that it performs very well in terms of running time, accu-
racy, and confidence. We also showed that no determinis-
tic algorithm can achieve comparable accuracy to our algo-
rithm with a polynomial number of queries, and that no ran-
domized algorithm can achieve superpolynomial accuracy.
Therefore, our algorithm is close to optimal in this sense.
The lower bounds given in this paper are bounds on the re-
quired amount of information, and are thus independent of
complexity theory assumptions.

There are several directions for future work. First, we
note that for restricted domains, it might be possible to ex-
actly calculate power indices, or find ways to obtain bet-
ter approximations. For example, it may be possible to
achieve good deterministic algorithms and approximation
algorithms with better quality for calculating power indices
in restricted weighted voting games or restricted network
reliability domains. Second, although our approximation
method can be used for both the Banzhaf index and the
Shapley-Shubik index, it would be interesting to see if there
are domains where one index can be polynomially computed,
while the other is hard to compute.
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