Journal of Artificial Intelligence Research 39 (2010) 17262 Submitted 04/10; published 09/10

Cooperative Games with Overlapping Coalitions

Georgios Chalkiadakis GC2@ECS.SOTON.AC.UK
School of Electronics and Computer Science,
University of Southampton, SO17 1BJ, UK

Edith Elkind EELKIND@NTU.EDU.SG
School of Physical and Mathematical Sciences,
Nanyang Technological University, 637371, Singapore

Evangelos Markakis MARKAKIS @GMAIL .COM
Department of Infomatics,
Athens University of Economics and Business, GR10434¢c€ree

Maria Polukarov MP3@ECS.SOTON.AC.UK
Nicholas R. Jennings NRJI@ECS.SOTON.AC.UK
School of Electronics and Computer Science,

University of Southampton, SO17 1BJ, UK

Abstract

In the usual models of cooperative game theory, the outcdnaecoalition formation process is
either the grand coalition or a coalition structure thatsists of disjoint coalitions. However, in
many domains where coalitions are associated with taskagant may be involved in executing
more than one task, and thus may distribute his resources@saveral coalitions. To tackle such
scenarios, we introduce a model fmyoperative games with overlapping coalitierer overlap-
ping coalition formation (OCF) gamesMNe then explore the issue of stability in this setting. In
particular, we introduce a notion of the core, which gerieealthe corresponding notion in the
traditional (non-overlapping) scenario. Then, under sqoite general conditions, we characterize
the elements of the core, and show that any element of thentaxemizes the social welfare. We
also introduce a concept of balancedness for overlappialtitiomal games, and use it to charac-
terize coalition structures that can be extended to elesrafrthe core. Finally, we generalize the
notion of convexity to our setting, and show that under someinal assumptions convex games
have a non-empty core. Moreover, we introduce two alteraatotions of stability in OCF that
allow a wider range of deviations, and explore the relatigps among the corresponding defini-
tions of the core, as well as the classic (non-overlappiogg and the Aubin core. We illustrate the
general properties of the three cores, and also study themm drcomputational perspective, thus
obtaining additional insights into their fundamental sttue.

1. Introduction

Coalition formation widely studied in game theory and economics (Myerson, 1 3%s attracted
much attention in Al as means of forming teams of autonomeliisk agents that need to cooperate
to perform certain tasks (Sandholm & Lesser, 1997; ShehoKra&us, 1998; Sandholm, Larson,
Andersson, Shehory, & Tohme, 1999; Manisterski, Sarne, &uky 2008; Rahwan, Ramchurn,
Jennings, & Giovannucci, 2009). Traditionally, in the gatimeory literature it is assumed that the
outcome of the coalition formation process is eithergtand coalition(i.e., the set of all agents), or
acoalition structurethat consists of disjoint coalitions (i.@ partition of the set of agents). While
natural for some settings, in many scenarios of interestagsumption is not applicable.
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Specifically, it is often natural to associate coalitionghwasks to be performed by the agents. In
such situations, some agents may be involved in several,taskl therefore may need to distribute
their resources among the coalitions in which they pauigp Indeed, such “overlaps” may be
necessary to obtain a good outcome, and are natural in aopett interesting applications. As
a simple e-commerce example, consider online trading agepresenting individuals or virtual
enterprises, and facing the challenge of allocating theiness’ capital to a variety of projects
(i.e., coalitions) simultaneously. There are many othemgples of settings in which an agent (be
it a software entity or a human) splits his resources (sucprasessing power, time or money)
among several tasks. These tasks, in turn, may require tkieipation of more than one agent: a
computation may run on several servers, a software progeetlly involves more than one engineer,
and a start-up may rely on several investors. Thus, eachctasiisponds to a coalition of agents,
but agents’ contributions to those coalitions may be foaetl, and, moreover, agents can participate
in several tasks at once, resultingcimalition structures with overlapping coalition$ he formation
of overlapping coalitions is particularly prevalent in ®ms demanding multiagent or multirobot
coordination, computational grid networks, and sensowois—see, e.g., the work of Patel et
al. (2005), and Dang, Dash, Rogers, & Jennings (2006). & Hatvever, there has been essentially
no theoretical treatment of the topic, with just a few exu®y (which we discuss in Section 3).

Against this background, the goal of this paper is to intoedand study a model that explicitly
takesoverlapping coalition formation (OCHnto account. Our model is applicable in situations
where agents need to allocate different parts of their regsuto simultaneously serve different
tasks as members of different coalitions. Besides allovitmgoverlapping coalitions, it departs
from the conventional coalition formation framework in twoportant aspects. First, there is no
inherent superadditivity assumption in our work, and hetheegrand coalition does not always
emerge. Thus, our subsequent definition of the core incatgercoalition structures. Second, ex-
actly because we are interested in outcomes other than #imel goalition formation, we do not
use the standarlansferable utility (TU)Yramework, where agents can make arbitrary payments to
each other. Instead, following the seminal paper by Aumamthxreze (1974), we allow arbitrary
monetary transferwithin coalitions, but not cross-coalitional transfers. Thagis,agent not con-
tributing to a coalition should not expect to receive payafm it. Indeed, as argued by Aumann
and Dreze, the inability of some of the agents to work togedineg share payoffs may be one of the
primary reasons why the grand coalition does not form, andricplar coalition structure arises.
Finally, our model can take task (coalitional action) exemuexplicitly into account; this facilitates
possible extensions to tackle coalition formation undereutainty!

Apart from defining a model for overlapping coalition fornaat, the main contribution of this
work is exploring the stability concept of tlewre in the OCF setting. We suggest three different
notions of the core, depending on the nature of deviatiolmsvatl, since, as we shall see, the
range of permissible deviations in an overlapping settany lee much richer than in the traditional
non-overlapping one. More specifically, the definition @lslity depends on whether a deviator
who reduced his contribution to some—nbut not all—coaltsioexpects to get any payoff from the
coalitions that he did not abandon completely.

To provide more intuition, consider the example of two camgton companies, 1 and 2, who
are currently partners (not necessarily the only partnveosiking on construction projects A (“build-
ing a university campus”) and B (“building a hospital”). Asse that partner 1 has more stakes in

1. To simplify notation, we only show how to incorporate ¢oahal actions in the model in Section 10.
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project B, expecting to extract from it a great value, anddwasributed to itr5% of its available re-
sources, contributing the remaini2g% to A; while partner 2 contributes most of its resources (say
67%) to project A and the remaining fraction (s33%0) to B. Thus, they currently participate in two
overlapping coalitions, each one performing a differeskidNow, if partner 2 feels unhappy about
the current payoff division arrangement, it might consialeandoning project A (by cancelling the
project if it is the project leader, or by taking advantagesaie contractual exit clause) in order to
commit its resources to a more profitable to 2 project (sayHByvever, by doing so, it might hurt
project As chances of completion. Does this mean that 2ismas will trigger the spite of company
1, which might use available means to kick 2 out of project Bl Avhat if company 2 lowered
its degree of participation in A instead of withdrawing cdatply? How much of the profits from
completing A would 2 then be entitled to? The different answane can provide to these ques-
tions correspond to different notions of profitable dewas$i, and, therefore, to different notions of
core-stability. In particular, we demonstrate that theeaootions we put forward in this paper are
substantially different from each other with respect todbts of outcomes they characterize.

Our main technical results involve tlgecore the first core concept that we suggest. Among the
three concepts of the core introduced in this paper, theeisdhe closest to the standard definition
of the core in general non-transferable utility (NTU) gamés particular, we provide conditions
for the existence of the c-core as follows. Under quite ganassumptions, we first provide a
characterization for outcomes, i.e., pairs of the fgowerlapping coalition structure, imputation)
to be in the c-core. Our proof is based on a graph-theoregicnaent, which may be of independent
interest. As a corollary of this result, we show that any onte in the c-core maximizes the social
welfare. Second, we characterize coalition structures atmit payoff allocations such that the
resulting outcome is in the c-core. This is done by genenglithe Bondareva-Shapley theorem
to our setting (note that this theorem does not hold for emhitnon-transferable utility games).
Furthermore, we extend the notion of convexity in coaliibgames to overlapping coalitions, and
show that under mild assumptions any convex OCF game has-ampty c-core.

We then discuss the properties of all three versions of th&-©@e we suggest, and relate
them to each other and to the classic core. We also demanstost our model and core con-
cepts differ from fuzzy coalitional games (Aubin, 1981)otigh relevant to that model, our work
is fundamentally different. In addition, we initiate theidy of computational aspects of stability
in the overlapping setting. Note that the computationalyesig of coalitional games, even in non-
overlapping scenarios, is hindered by the fact that, in ggneoalitional games do not possess a
compact representation, as one may have to list the valuesof possible coalition. Thus, the ex-
isting work on algorithmic aspects of coalitional gamesus®d on game representations that are ei-
ther incomplete—such as, e.g., weighted voting gamesr{&|iKtoldberg, Goldberg, & Wooldridge,
2009), induced subgraph games (Deng & Papadimitriou, 1@84)etwork flow games (Bachrach
& Rosenschein, 2007)—or are only guaranteed to be sucanspkcific subclasses of games, such
as MC-nets (leong & Shoham, 2005) or coalitional skill garfigschrach & Rosenschein, 2008);
another approach is to show complexity bounds for all garapsesentable by polynomial-sized
circuits (Greco, Malizia, Palopoli, & Scarcello, 2009). i§lissue is even more severe in the OCF
setting, as now we have to specify the value of evmatial coalition. Therefore, in this paper,
we follow the first of these approaches, and introduce a fismaof threshold task gamehat is
capable of describing a large family of overlapping coatitformation settings in a succinct man-
ner. Within this formalism, we obtain both negative and pesiresults regarding the complexity of
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deciding the questions of membership and non-emptinessufd® CF-core concepts. We conclude
by describing some natural extensions of our model and stiggedirections for future work.

2. Preliminaries

In this section, we provide a brief overview of the basic @pts in cooperative game theory re-
garding non-overlapping coalition structures. To begwN' = {1,...,n} be a set of players (or
“agents”). A subseS C N is called acoalition. A coalition structure(CS) in non-overlapping
environments is a partition of the set of agents.

Under the assumption efansferable utility coalition formation can be abstracted into a fairly
simple model. This assumption postulates the existencddiViaible) commodity (e.g., “money”)
that can be freely transferred among players. The role oflitheacteristic functiorof acoalitional
game with transferable utility (TU-gamé& to specify a single number denoting the worth of a
coalition. Formally, a characteristic function: 2 — R defines thevaluev(S) of each coalition
S (von Neumann & Morgenstern, 1944). A transferable utiligngeG is completely specified by
the set of playersv and the characteristic functian we can therefore writé&/ = (IV, v).

While the characteristic function describes the payoftsilable to coalitions, it does not pre-
scribe a way of distributing these payoffs. This is captungthe notion of aiimputation defined as
follows. We say that aallocationis a vector of payoffs = (z1, ..., z,) assigning some payoff to
eachj € N. An allocationz is efficientwith respect to a coalition structur&s if 3 s z; = v(S5)
forall S € CS; anditis called aimputationif it is efficient and satisfiesdividual rationality, i.e.,
xzj >v({j}) for j =1,...,n. The set of all imputations of'S is denoted by (CS).

Now, when rational agents seek to maximize their individeeyoffs, thestability of the un-
derlying coalition structure becomes critical, as ageritghirbe tempted to abandon agreements in
pursuit of further gains for themselves. A structure is Igtamnly if the outcomes attained by the
coalitions and the payoff combinations agreed to by the tageatisfy both individual and group
rationality. Given this requirement, research in coatiiormation has developed several notions of
stability, among the strongest and the most well-studiegb dreing theore (Gillies, 1953). Taking
coalition structures into account, the core of a TU game ist@koutcomeg CS, x), € I(CS),
such that no subgroup of agents is motivated to depart frein ¢balitions inCS.

Definition 1. Let CS be a coalition structure, and let € R™ be an allocation of payoffs to the
agents. Theoreof a TU gamg N, v) is the set of all pairg CS, «) such thatr € I(CS) and for
anyS C N itholds thaty ;¢ z; > v(S).

Hence, no coalition would ever “block” the proposal for aecalocation. It is well-known that
the core is a strong notion, and there exist many games whisrempty (Myerson, 1991).

The core definition above is essentially the definition piledi by Sandholm and Lesser (1997)
(and is also very similar to the one given by Dieckmann & Sdbeal1998). If we assume super-
additivity of the characteristic function (i.ex(U UT') > v(U) + v(T") for any disjoint coalitiond/
andT) then in the definition above we may only consider outcomesra/y’S is simply the grand

2. Parts of this work, namely the model and the statement iwfesof our results, have appeared in a preliminary
conference paper (Chalkiadakis, Elkind, Markakis, & Jagsj 2008). Howevela) the introduction of alternative
notions of the core and all related results presented herertirely novel;(b) similarly, our complexity-related
results are entirely novel; an@) the discussion on the properties of the cores and the imdaphparison with
fuzzy coalitional games appear here for the first time as.well
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coalition andd_ . vy z; = v(IN). The core definition then becomes the traditional definiti@t has
been used in the vast majority of the economics literatusbh@e & Rubinstein, 1994).

The environments of interest in our work however are maimg-superadditive and we will
not make any such assumption on the characteristic fundimoieed, there is a plethora of realistic
application scenarios where the emergence of the grandicnas either not guaranteed, might be
perceivably harmful, or is plainly impossible (Sandholm &dser, 1997; Sandholm et al., 1999).
In addition to such motivations, Aumann and Dreze (1974) plevide a thorough and insightful
discussion on why coalition structures arise: they put &odva series of arguments on how this
might happen, and explain that coalition structures mayrgeaaturally even in superadditive
environments for a variety of reasons. Briefly, their argntealescribe how a subset of agents
might find it more worthwhile to bargain within the framewarka specific structure, than within
the framework of the grand coalition; or how the emergenca obalition structure may reflect
considerations that are by necessity excluded from thedbdescription of the game because they
are impossible to measure or communicate. Exogenous argsirfte the emergence of coalition
structures naturally include the impossibility of comnaation among all negotiators, or thg law
prohibition of the grand coalition (Aumann & Dreze, 1974).

3. Related Work

The work that is most relevant to ours is the researcliuaay coalitional gamesntroduced by
Aubin (1981). Branzei, Dimitrov, & Tijs (2005) also providedetailed exposition of such games.
A player in a fuzzy game can participate in a coalition ataasievels and the value of a coalition
S depends on the participation levels of the agentS.ifGiven this model, Aubin then defines the
core for fuzzy games (also referred to as fudin corg. Though our model also allows for partial
participation in a coalition, there are several cruciafedénces between fuzzy games and OCF
games, and the corresponding notions of stability. We pogtfpisting these until after presenting
our model and results, but will do so in Section 8.2. For netwlk just point out that, in distinction
to our work, the formation of coalition structures (ovepap or not) is not addressed in the fuzzy
games literature.

Apart from fuzzy games, very little work exists on overlappicoalition formation settings.
Here we discuss some notable exceptions, as well as sonedratark on the core in the context
of non-overlapping coalition structures.

To begin, Shehory and Kraus (1996) present a setting folapm@ing coalition formation. In
their model, the agents have goals and capabilities—il®lities to execute certain actions. To
serve their goals, the agents have to participate in comditito each of which they contribute some
of their capabilities, which can thus be thought of as resesir The authors then propose heuristic
algorithms that lead to the creation of overlapping caalitstructures. However, the authors stop
short of addressing the question of the stability of overlag coalitions. Dang et al. (2006) also
examine heuristic algorithms for overlapping coalitiomnfi@tion to be used in surveillance multi-
sensor networks. However, their work does not deal with fiealtocation issues, and does not
view the overlapping coalition formation problem from a gatheoretic perspective.

Conconi and Perroni (2001) present a model of internatiomatidimensional policy coordi-
nation in anon-cooperativesetting: agreement structures between countries can bappmg,
namely a country may participate in multiple agreements;dntributing any number of proposed
“elementary strategies” (which can be regarded as beingechromdiscretesets of resources).
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They then introduce an equilibrium concept to describeil#iain this setting. However, in con-
trast to our work, the setting in the work of Conconi and Pari® non-cooperative, and does not
apply to agents with continuous resources.

More recently, Albizuri, Aurrecoechea, & Zarzuelo (2008gsented an extension of Owen’s
value (1977)—which, in turn, can be thought of as a genextidin of the Shapley value (1953)—to
an overlapping coalition formation setting. Specificathgy present an axiomatic characterization
of their configuration value However, in the work of Albizuri et al. there exists no natiof
resources that an agent needs to distribute across coalitio

With regard to non-overlapping coalition structures asented in Section 2, Sandholm and
Lesser (1997) examine the problem of allocatiognputational resources coalitions. They do not
restrict themselves to superadditive settings, but dssthus stability of coalition structures instead.
In particular, they introduce a notion of bounded ratiormbahat explicitly takes into account coali-
tion structures. Apt & Radzik (2006) and Apt & Witzel (20095@ do not restrain themselves to
coalition formation problems where the outcome is the gi@adition only. Instead, they introduce
various stability notions for abstract games whose outsorae be coalition structures, and discuss
simple transformations (e.g., split and merge rules) bychvistable partitions of the set of players
may emerge. However, none of these papers considers amgiexts to overlapping coalitions.

4. Our Model

In this section we extend the traditional model of Section 2doperative games with overlapping
coalitions. In most scenarios of interest, even if overlagoalitions are allowed, an agent would
not be able to participate in all possible coalitions duetklof time, cash flow, or energy. To model
this, we assume that each agent possesses a certain ameoasbvwfices which he can distribute
among the coalitions he joins. Without loss of generalitg,a&n make a normalization and assume
that each agent has one unit of resource: an agent’s cdidriio a coalition is thus given by the
fraction of his resources that he allocates to it. We canthis@ of this as the agent’s “participation
level”, or the fraction of time he devotes to a coalition. @ficse, an agent may own several types
of resources (e.g., timand money), and his contribution to a coalition would then becdbsd

by a vector rather than a scalar. Our model, and all of ourltsgsextend to this more general
setting in a straightforward manner. Nevertheless, focsmmess, we restrict our presentation to
the single-resource setting.

As discussed above, in the non-overlapping model a caali$i@ subset of agents, and a game
is defined by its characteristic functian: 2V — R, representing the maximum total payoff that
a coalition can get. In our setting,partial coalition is given by a vector = (r4,...,7,), where
r; is the fraction of agenj’s resources contributed to this coalition; (= 0 means thaj is not a
member of the coalition). Theupportof a partial coalitionr is denoted byupp(r) and is defined
assupp(r) = {j € N | r; # 0}. We can now define theooperative games with overlapping
coalitions or overlapping coalition formation gamg®©CF-games for short), which we will be
considering in the rest of this work.

Definition 2. An OCF-game?= with player setV = {1,...,n} is given by a functiom : [0, 1]" —
R, wherev(0™) = 0.

Functionv maps each partial coalitionto the corresponding payoff. We denote this game by
G = (N,v), or, if N is clear from the context, simply by. Clearly, a “classic” coalitiors5 C N
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can now be represented as the veetdr where és)j = 1for j € S and0 otherwise. In the
economics literature, these are sometimes callexp coalitions, whereas coalitions of the form
(r1,...,rn) with at least one-; in (0, 1) are referred to aiizzycoalitions (Branzei et al., 2005).
We will avoid the latter term in our work so as not to cause osiuin with fuzzy games, and refer
instead to coalitions of this kind gmrtial coalitions, or simply coalitions.

In most scenarios of interest,is monotonei.e., satisfies/(r) > v(r’) for anyr, r’ such that
rj > riforallj =1,...,n. Note that ifv is monotone, we have(r) > 0 for anyr € [0, 1], since
we setv(0,...,0) = 0. In our discussion of stability of overlapping coalitionge will assume that
v iS monotone.

We now need to specify the possible outcomes of an OCF-gamntlee non-overlapping setting,
an outcome is a paifCs, x), where CS is a partition onN andx is an imputation forCS. To
extend this definition to our scenario, we start by introdgcihe notion of a coalition structure
with overlapping coalitions. While we will be mostly intested in coalition structures ove¥, the
definition below is given for coalition structures over abitrary subsefl’ C N, as this will be
useful for defining the maximum profit a subset of agents céuese (see the definition of the
functionv* below).

Definition 3. For a set of agentd” C N, a coalition structureon T is a finite list of vectors
(partial coalitions) CSt = (r!,...,rF) that satisfies (iy* € [0,1]"; (i) supp(r?) C T for all
i =1,...,k; and (iii) Zle r§ < 1forall j € T. We will refer tok as thesize of the coalition
structure C'Sp and write| CSp| = k. Also,CSt denotes the set of all coalition structures Bn

In the definition above, each’ = (r{,r3,...,r}) corresponds to some partial coalitior, (
being the fraction of the resources that aggobntributes tar?). The constraints state that every
agent fromT distributes at most one unit of his resources among theuwsigoalitions he partici-
pates in (those may include the singleton coalition). THe coalitions to be overlapping. Note
that the coalition structure is a list rather than a set, it ean contain two or more identical partial
coalitions. Observe also that an agent is not required ¢caté all of his resources, i.e., it can be

the case thaEf:1 r;'. < 1. However, under monotonicity, we can assume that for eaehtagve

haver:1 r§ =1 (i.e., a coalition structure is a fractional partition oéthgents).

We would like to remark that one could conceive of other medleht also allow agents to form
overlapping coalitions. As an example, instead of reqgiagents to distribute at most one unit of
resources among partial coalitions, we could have comgsrain the number of (crisp) coalitions
an agent could take part in. While we believe that our modgéigble enough to represent a wide
range of realisitc scenarios, and we focus on it throughoutwork, in Section 10, we discuss
several extensions of our model.

The introduction of overlapping coalition structures irape some new technical challenges.
For instance, while in the non-overlapping setting the neimdd different coalition structures is
finite, in our setting there can be infinitely many differemirimal coalitions, and hence infinitely
many coalition structures. This implies that it is impossito find the social welfare-maximizing
coalition structure by enumerating all candidate soltiein fact, the maximum may not even be
attained. In contrast, in a non-OCF setting this approaplssible—though, in general, infeasible.

We now extend the definition af to coalition structures by setting(CS) = > .. g v(T).
Furthermore, for anys € N we definev*(S) = supggecs, v(CS). Intuitively, v*(S) is the
least upper bound on the value that the member$ @dn achieve by forming a coalition structure;
for the interested reader, we note that it corresponds t@hhbeacteristic function of the game’s
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superadditive cove(Aumann & Dreze, 1974). Clearly*(S) may exceed the value of coalition
S itself, i.e., v(e¥), since it may be profitable for the players $hto form several overlapping
coalitions overS. We say thav is boundedf v*(IN) < oo; for most games of interest, is likely
to be bounded.

As in our setting the agents will not necessarily form thengraoalition, we will be interested
in reasoning about coalition structures fralf ;. The coalition structure will impose restrictions
on admissible ways of distributing the gains; a payoff vectwresponds to an imputation if and
only if it is obtained by distributing the value of each ctiah:

Definition 4. Given a coalition structure”’S € CSy, |CS| = k, animputationfor CS is a k-tuple
x = (x',..., "), wherex’ ¢ R" fori = 1,...,k, such that

» (Payoff Distribution) for every partial coalitom’ ¢ C'S we have) ", « = v(r') andr} =
0 impliesz} = 0;

¢ (Individual Rationality) the total payoff of agelptis at least as large as what he can achieve

on his own:y"5 ) @ > v*({5}).

The set of all imputations fo€'S is denoted byl (CS). Notice that in Definition 4, the profit
from a task assigned to a partial coalition is only distgliamong agents involved in executing it.
Thus, no transfers of that payoff are allowed to outsidersteMilso that the individual rationality
constraint is defined in terms of rather tharw, as even for a single agent it may be profitable to
split into several partial coalitions (e.qg., if there arenyméasks, each of which only requires a small
fraction of his resources).

Now, the set of outcomes that is of interest to us is the skdasiible agreements

Definition 5. A feasible agreement (or asutcom@ for a set of agentg C N is a tuple(CS, x)
whereCS € CSy, |CS| = k for somek € N, andx = (x!,...,z*) € I(CS). We denote the set
of all feasible agreements fof by F(.J).

The payoffp; of an agentj under a feasible agreemerd@'s, x) is p;(CS, z) = Zle x; We
write p(CS, x) to denote the vectofp; (CS, x),...,p,(CS,x)). Finally, note that it is straight-
forward to extend the definitions above to games on subséke@fgents. In particular, we require
that an imputatione € 1(CS ;) satisfiest’ = 0 for j ¢ .J.

Given this model, we are now ready to define the concept ofdrefor cooperative games with

overlapping coalitions.

5. The Core with Overlapping Coalitions

In this section, we investigate several approaches to dgfstability in OCF-games. Specifically,
here we propose and analyze three alternative definitiotiseafore.

Before presenting the core definitions, we define a new cliagaroes, which we will be using
as our running example, namely the clasghwéshold task gamed TGs). TTGs form a simple,
but expressive class of coalitional games, and can be usewde! collaboration in multi-agent
systems. In TTGs agents pool resources in order to accdmialgks, so the idea of agents con-
tributing resources to more than one task and thus partiegpan several coalitions simultaneously
is extremely natural in this context. Thus, and due to themp8city, TTGs provide a convenient
vehicle for the study of core-stability in the overlappiregtisng, and we will be using them for this
purpose throughout the rest of the paper (though our workti$imited to this class of games).
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5.1 Threshold Task Games

Threshold task games are defined as follows.

Definition 6. Athreshold task gam@ = (IV; w; t) is given by:
e asetofagentsV ={1,...,n};
e avectorw = (wy,...,w,) € RT of the agentsiveights

e alistt = (t!,...,t™) of task types where each task typ€ is described by a threshold
T7 > 0 and a utilityw’ > 0; we writet! = (177, u7).

Intuitively, such games describe scenarios where agentsgd into teams to work on tasks.
There is one type of resource (e.g., time or money) that idet&or all tasks, and each agent has
a certain amount of this resource which corresponds to highive); (we chose the term “weight”
to avoid confusion with the use of the term “resource” in tbatext of OCF-games). There are
types of tasks, each of which is described by a resourcerssgant?”’ and a utilityw?. If the team
of agents that works oti has total weight at leagt’, this means that it has sufficient resources to
complete the task, so it obtains the full value of this taskOtherwise, its payoff from this task is
0. We assume that there are infinitely many tasks of each tgpbasif one team of agents chooses
to work ont/, this does not prevent another team from choosgings well. In what follows, we
assume that the ligtis monotonei.e., it satisfied™! < ... < T™ andu! < ... < «™. Indeed, if
there are two task type$, t/ such thatl”® < 77, butu’ > «/, we can safely assume that no team
of agents will choose to work ofi, and hence’ can be deleted fromh. Hence, our monotonicity
assumption can be made without loss of generality.

The description above suggests that we can interpret a ES(V, w, t) as a (hon-overlapping)
coalitional game = (N, ©), where forS C N we set

9(S) = max{0, max{w’ | w(S) >T7}}

(note that we use the standard conventiofx ) = —oco). Such games provide a direct general-
ization of weighted voting games (WVGs) with coalition sttwres introduced by Elkind, Chalki-
adakis, & Jennings (2008). Indeed, WVGs with coalition &inees can be seen as TTGs in which
there is only one task type= ¢! with utility 1.

At the same time, one can also interpret TTGs as games wittappeng coalitions by allowing
each agent to spread his weight across several tasks. Tiesponding OCF-gam@ = (N, ) is
given by

n
o(r1, ..., 7n) = max{0, max{u’ | Zriwi > T7}}.
i=1
That is, a partial coalition can successfully complete & tdfgypet’ and earn its value/’ if the
total weight contributed by all agents to this partial ctai is at least”.

Example 1. Consider a TTGG = (N;w;t), whereN = {1,2,3}, w = (2,2,2) andt =
t' = (3,1). For the corresponding non-overlapping garewe haves({1}) = 0, 5({1,2}) =
0({1,2,3}) = 1. Note that when overlapping coalitions are not allowed, thaximum social
welfare achievable by any coalition structure ovEris 1, as agents cannot split into two disjoint
groups each of which having weight at least 3.
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In contrast, for the corresponding OCF-garée= (N, ©) we havei(1,0,0) = 0, ¥(1,1,0) =
0(1,1,1) = 1, and, moreovery(1,.5,0) = 1 and ©(0,.5,1) = 1. Hence the maximum social
welfare is2 in the overlapping setting since the second agent can s@itMeight between two
coalitions so that each of them has enough resources to evengile task.

From Example 1, it should be clear that for any TGGthe maximum social welfare achievable
in its overlapping versiol is at least as large as the maximum social welfare in its rvemk@pping
versionG—i.e., allowing agents to split their weights between tisks¢acan only increase efficiency.
Moreover, this increase can be arbitrarily large even fangls agent. Indeed, consider one agent
of weight w and one task typeé with T = 1,« = 1. If overlapping coalitions are not allowed,
the agent’s total utility is 1, while in the overlapping seen he can obtainw. For the interested
reader, Appendix A discusses algorithmic aspects of sea#hre maximization in TTGs, both in
the overlapping and in the non-overlapping scenario.

5.2 Three Definitions of the Core

As explained in Section 2 above, core-stability implied tha group of agents should be able to
profitably deviate from a configuration in the core. Hencg, @finition of the core has to depend
on the notion of permissible deviations used. Now, in the-oegrlapping setting a deviator aban-
dons the coalition he originally participated in, and jomsew coalition. Thus, there is no reason
why he should obtain any payoff from the coalition that he Ief the overlapping setting, the situ-
ation is less clear-cut. Indeed, when deviating, an agegtabhandon some coalitions completely,
withdraw some—nbut not all—of his contribution to other dtiahs, and keep his contribution to
the remaining coalitions unchanged. The question then étven this agent should expect to obtain
any payoff from the partial coalitions with non-deviatohsit he is still contributing to.

Our first notion of the core assumes that the answer to thistigueis “no”. Thus, once an
agent is identified as a deviator—i.e., he alters his cauntioh to any given coalition—he no longer
expects to benefit from his cooperation with non-deviat@g.monotonicity, this means that the
deviators have nothing to gain from contributing resoutoesoalitions with non-deviators. There-
fore, under the first definition of the core which we preseméhee assume that the deviators only
form coalitions among themselves, or, in other words, eastiation can be seen as an overlapping
coalition structure over the set of deviators. We remark tia definition can be seen as the most
straightforward generalization of the standard notionhef tore: indeed, just as in the standard
setting, each deviator completely withdraws from coaligiavith non-deviators, and only benefits
from coalitions with other deviators. We formalize this eqgch as follows.

Definition 7. Given an OCF-gamé& = (NV,v) and a set of agentd C N, let (CS,x) and
(CS’,y) be two outcomes aF such that for any partial coalitios’ € CS’ eithersupp(s’) C J
or supp(s’) € N\ J. Then we say thatC'S’, y) is aprofitable deviatiorof .J from (CS, z) if for
all j € J we havep,;(CS’,y) > p;(CS,x). We say that an outcom&'S, ) is in thecoreof G if
no subset of agent$ has a profitable deviation from it. That is, for any set of agehC N, any
coalition structureCS ; on J, and any imputatiory € I(CS ;), we havep;(CS ;,y) < p;(CS, x)
for some agenj € J.

In this definition, the deviatiorC'S” is restricted to be a coalition structure in which there are
no partial coalitions involving both the deviators and tlea{teviators—i.e., each partial coalition
contains either deviators onlyupp(s’) C J) or non-deviators onlys(ipp(s’) € N \ J). Thus,
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any payoff that the players ifi can receive unde€'S” would have to come from partial coalitions
over.J only.

Example 2. Consider the OCF-gam@ that corresponds to a threshold task gaie= (N; w;t),
whereN = {1,2}, w = (4,6), andt = (t!,#?) with t! = (5,15), t> = (4, 10) (one can think of
the players as the two companies A and B discussed in Sectiba fasks then correspond to the
two construction projects). Suppose that the players fevmpartial coalitionsr! andr? of total
weight5 each so that playet contributes a unit of weight te' and 3 units of weight ta-2, while
player 2 contributes4 units of weight tar!, and 2 units of weight tar?, that is, CS = (r!,r2),
wherer! = (1,2),7? = (2,1). Both of these partial coalitions have weightso each of them can
successfully completé, resulting in a payoff ot5 for each of them. Now, suppose that the players
divide the gains using an imputatian= ((7,8), (9,6)). Then, the total payoff obtained by player
2 is 14, so he can successfully deviate by withdrawing from bothesd coalitions, and forming a
single partial coalition of weigh%. This coalition can complete and receive a payoff dfs > 14.

On the other hand, suppose that the players keep the samiéaroakructure, but distribute the
gains asy = ((7,8),(8,7)). Then player2 can no longer gain by withdrawing from both of these
coalitions. He is tempted to withdraw his resources frolmas he can use thegeunits of weight

to completet? and earnu? = 10 > 8. However, if he does that, he can no longer get his share of
payoffs fromr2. Hence, in case of this deviation his total payoff will tie< 15. Also, it is easy

to see that playe? cannot gain by deviating from? only, and player is better off inCS than he
would be on his own. Hencg('s, ) is in the OCF-core of5.

In some sense, Definition 7 takes a rather pessimisticonservativeview on what the mem-
bers of the deviating group can expect to get from the nomattag: indeed, in Example 2 as soon
as player 2 withdraws from the partial coalitieh € CS he expects to be thrown out of, even
thoughr? is not affected by this deviation. Therefore, in what foliywve will refer to the notion of
profitable deviation introduced in Definition 7 ag-grofitable deviationand to the corresponding
notion of the core as theonservative coreor thec-core

This definition is applicable when a deviation by an agenhisrpreted by other agents as an
indicator that this agent is not trustworthy, and therefone should immediately stop all collab-
oration with him. While this kind of reaction is not unusutidiere may be coalitions that are not
affected by the deviation and may not want to punish the tengaln this case, the deviators need
to decide which of the existing coalitions to abandon andvioich existing coalitions to keep their
contribution intact. The members of these partial coaliiavill react accordingly, sharing the pay-
off as before if they have not been affected by the deviatiwh@unishing the deviators otherwise.
Therefore, we refer to the corresponding notion of the cereefined Before giving the formal
definition, we first introduce a notion of agreement betw&emdoalition structures.

Definition 8. Given a set of agent$ C N, we say that two coalition structureSS and C'S” over
N agree outside off with respect to a functiorf if f is a a bijection between the lists of partial
coalitions {r* € CS | supp(r®) ¢ J} and {s* € CS’ | supp(s’) ¢ J} such thatf(r’) = s*
impIieSr;'- = s§ for all j ¢ J. Further, we say that’S and CS’ agree outside of if they agree
outside ofJ with respect to some functigh

Intuitively, this definition says that if two coalition sttures agree outside of, then the con-
tributions of all playersotin J to all partial coalitions must be the same under both outsome
If J is the set of deviators, this condition captures the fadt e deviation by the players i
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does not change the behavior of the non-deviators; theitun¢tis used to establish a correspon-
dence between the partial coalitions involving the noniatevs before and after the deviation. For
illustration, consider the following example.

Example 3. Consider a game with three playefé = {1,2,3} and a coalition structureC'S =
(q'.q%)., whereq' = (1,1,1), ¢* = (0,1,1). Let 08’ = (s',s% 5%), wheres' = (0,0, 1),
s = (0,3,3), 8% = (1, %2, 0). Intuitively, CS’ can be obtained fronCS when playersl and 2
deviate by abandoning their joint project with play&iand forming a coalition of their own. Set
J = {1,2}. Itis not hard to see tha€'S and C'S’ agree outside off with respect to the function
f given byf(q') = s!, f(q?) = s®. On the other hand(S and CS’ also agree outside of
with respect to the functiofi’ given byf'(q') = s2, f’(g?) = s'; this function assumes that when
players1 and 2 decided to deviate, playdrwithdrew his contribution tg' and player2 withdrew

his contribution tog?.

Definition 9. Given an OCF-gamé& = (N, v) and aset of agenté C N, let(CS, z) and(CS’,y)
be two outcomes such thatS and CS’ agree outside off with respect to a functiorf. Suppose

that for any partial coalitions’ € CS’ with supp(s‘) ¢ J and for all j € .J we havey! = !

if 71 = f71(s") andyf = 0 otherwise. Then we say tha€’s’, y) is anr-profitable deviatiorof
J from (CS,z) w.rt. fifforall j € J we havep;(CS’,y) > p;(CS,z). Further, we say that
(CS’,y) is anr-profitable deviatiorof J from (CS, x) if there exists a functiorf such thatC'S and
CS’ agree outside of with respect tof and(CS’, y) is anr-profitable deviatiorof J from (CS, x)
w.r.t. f. We say that an outcom&’s, ) is in therefined corgor ther-core of G if no subset of
agentsJ posesses an r-profitable deviation from it.

In Definition 9, the bijectionf matches the partial coalitions ifiS and C'S’ that involve non-
deviators; the number of such coalitions is the same in bo#iiton structures. Moreover, the
contribution of the non-deviators to the partial coalisanatched by is the same irCS and CS’.
Now, if also the deviators do not change their contributiorsbme partial coalition, they can
claim their share of its payoff, as determineddayOn the other hand, if the deviators change their
contribution tor, they are not entitled to any of its payoff. Observe that wevakhe deviators
to pick the “most favourable” bijectiorf betweenCS and CS’: for instance, in the context of
Example 3 we would pick rather thanf’, thereby allowing the deviators to claim their payoff from
the coalition(0, 1, 1). In other words, we assume that the deviators will withdtasirtcontributions
to disturb the non-deviators as little as possible.

Example 4. Consider the gamé' and the outcoméCsS, y) as described in Example 2. While it has
been argued that playercannot c-profitably deviate frofiC'S, y), he can r-profitably deviate from
it by withdrawing his weight from' and dedicating it ta2. As he does not change his contribution
to r2, he can still claim the payoff he gets fram, so his total payoff i90 + 7 = 17 > 15.

On the other hand, suppose that playérand 2 both split their weights equally between two
partial coalitions, forming the structur€’s’ = (q', ¢*), whereq' = ¢ = (3, 3). Clearly, both
q' and ¢? have weight, so each of them can ear® by completing:!. Now, suppose that the
players distribute the gains using an imputatish = ((3,12), (12,3)). Now, both players earn
15, so none of them can benefit from withdrawing from bothigdacbalitions at the same time,
and therefore the outcome’s’, =’) is in the c-core. Moreover, if any of the players deviatesnfro
one coalition only, he does not have enough weight to compley of the tasks, and therefore the
outcome(CS’, ') is also in the r-core.
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We now provide another example, which suggests that thef ggbfitable deviations allowed
by Definition 9 may still be too small.

Example 5. Consider again the gam@ and a coalition structureC'S” = (s', s?), where playen
contributes all of his weight te', while player2 contributes3 units of weight tos' and3 units of
weight tos?, i.e., s’ = (1,3), s> = (0, 1). Observe that we have(s?) = 0, as the total weight
of s2 is 3 only. Now, consider an imputation = ((3,12), (0,0)). Note that playee could reduce
his contribution tos! by 2 units of weight without affecting the value of this coaliti@nd use this
weight to boost the value @f. However, this is not allowed by our definition of an r-prdfie
deviation, since as soon as playzalters his contribution tas!, he loses the payoff af that he
gets froms'. This does not mean, however, that the outc61®’, z) is in the r-core ofG;: players
1 and2 can collectively deviate t((1, %), (0, 2)). If they share the payoff g$4, 11), (0, 15)), this
will constitute an r-profitable deviation for both of them.

Example 5 demonstrates that Definition 9, while being caraily more lax with respect to
the deviators than Definition 7, can still be too strict: tlewidtors are punished as soon as they
reduce their contribution to a coalition, irrespective dfether it affects the value of this coalition.
In fact, according to Definition 9, the deviators would gt punished even if thepcreasetheir
contribution to a partial coalition with non-deviators dtigh this type of deviation is, of course,
unlikely). One way to fix this is to allow the deviators to chaiheir share of payoffs from a
coalition s* = f(r?) as long asv(s’) = wv(r?). However, the non-deviators can be even more
generous to deviators. Indeed, it can be the case that hfiataviators reduce their contribution
to a particular partial coalition, this coalition is stibble to perform some task, albeit of a smaller
value. If the value of this task is still larger than the taatount of payoff originally received by
the non-deviators from this partial coalition, the deviatoould be allowed to claim the “leftover”
payoff. In other words, this notion of deviation assumes tha non-deviators have no objection to
switching tasks, and only care about the payoff they recaigile this may well be the case, itis
quite optimistic of the deviators to expect this kind of g@T when they contemplate whether to
deviate. Therefore, we refer to this notion of deviatiorogwofitable and call the corresponding
solution concept theptimistic core or theo-core

Definition 10. Given an OCF-gamé& = (N,v) and a set of agentd C N, let (CS,x) and
(CS’,y) be two outcomes such thatS and CS’ agree outside off with respect to a functiorf.
Suppose also that for any partial coalitiost € C'S’ with supp(s®) ¢ J we have}” ;. ;y% =
max{v(s’) — Y pen s %4, 0}, wherer! = f~1(s"). We say that C'S’,y) is an o-profitable devia-
tion of J from (CS, ) w.rt. fif forall j € J we havep;(CS’,y) > p;(CS,x). Further, we say
that (CS’, y) is ano-profitable deviatiof J from (CS, z) if there exists a functiorf such thatCs
and CS’ agree outside off with respect tof and (CS’,y) is an o-profitable deviatiorof J from
(CS,z) w.rt. f. We say that an outcom&'S, x) is in theoptimistic core or theo-core of G if no
subset of agentg has an o-profitable deviation from it.

Example 6. Consider again the gamé' discussed in Examples 2, 4, and 5, and the outcome
(CS,a'), whereCS' = (¢',q%), ¢' = ¢* = (3, 3). ' = ((3,12), (12, 3)), which was described

in Example 4. Note that if player reduces his contribution tg® to 2, this coalition would still

be able to earnl0 by focusing on task’. As playerl only gets3 units of payoff fromy! anyway,
under our definition of an o-profitable deviation, playis entitled to the remaining payoff from
this modified partial coalition, i.e10 — 3 = 7. He can then combine the unit of weight saved in
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this manner with the weight he contributesd®, and embark ort? making a profit ofl0. Thus,
by abandoningz? altogether and reducing his contribution tg, player2 can earn7 4+ 10 > 15.
Thus, the outcomgeC's’, ') is not in the o-core of5.

In contrast, consider an outcome that combin&$ with a more symmetric payoff division
scheme, such as, e.g..= ((7,8), (8,7)). Now, if player2 reduces his contribution tg! by 1, the
resulting partial coalition can earn0 by focusing ort?. Of those payoffs, playdrmust receive,
leaving 3 for player2. While player2 can still use his remaining weight to complete this will
only give him a total profit of0 + 3 = 13 < 15, i.e., this deviation is not o-profitable. Similarly, we
can show that withdrawing some of the resources fgdrand abandoning;' is even less profitable
for player2. Finally, it is easy to see that playdrdoes not have an o-profitable deviation either.
Hence, the outcom@’s’, ) is in the o-core of G).

6. Core Characterization

In the previous section, we introduced three definition$efdore for overlapping coalition forma-
tion games. Among the three definitions of the core ctlwere though in some sense conservative,
is the closest to the traditional definition of the core ing@hNTU games (Osborne & Rubinstein,
1994). Indeed, unlike the other two definitions, it does suane any interaction between the devi-
ators and the non-deviators. This motivates us to studyotldgdapping core variant in more detail,
which we proceed to do in this section and the next. To promesdability, in those two sections
we will be referring to the-coresimply as “the core”.

We start by providing a characterization of the set of outesrm the core: essentially, an
outcome is in the core if and only if under this outcome thaltpiyments to each subset of agents
match or exceed the maximum value that can be achieved bysubiset. Our proof relies on
some technical restrictions on the functiethat defines the game. In particular, we requite be
continuous, monotone and bounded (observe that if a gameristone and bounded, theh(.S) <
oo forany S C N), as well as to satisfy another natural restriction defiimer] These assumptions
allow us to avoid some pathological situations that mayearisour model at its generality, such as
the supremum* (V) being unachievable (e.g.,fis strictly concave in one of its arguments, it can
be the case that no finite coalition structure can achi&ya’)).

Specifically, we say that a ganié/, v) is U-finite if for any (CS, ) such thai C'S| > U and
x € I1(C9), there exists 4CS’, y) such that CS’'| < U,y € I(CS’), andp;(CS, z) < p;(CS’, y)
forallj =1,...,n(i.e., for any outcomé¢CS, x) with more thanJ coalitions there exists another
outcome(CS’,y) with at mostU coalitions that is weakly prefered taCS, x) by all agents).
When this condition holds, we can assume that all coalittamctures that arise in a game consist
of at mostU partial coalitions. This is a natural restriction in manggtical scenarios, as it might
be difficult for agents to maintain a very complicated catleion pattern. It holds when, for
example, there is a bound on the number of partial coaliteacsh agent can be involved in. In
generalU-finiteness imposes some upper bound on the total numbenidlpaoalitions with the
same support that can occur. A natural example is providesl ddgss of games where for any two
partial coalitionsr, ' such thatupp(r) = supp(r’) andr; +r; < 1foranyj = 1,...,n, we
havev(r + 7') > v(r) + v(r’). Note that in such games we can assume that no coalitiortisteuc
contains two partial coalitions with the same supgras it is at least as profitable for the players
in S to merge these partial coalitions. (However, notice that tloes not imply superadditivity,

192



COOPERATIVE GAMES WITH OVERLAPPING COALITIONS

nor does it mean that the grand coalition necessarily erageagethe criterion above refers only to
coalitions with identical support.) Hence, any such ganifinite.

Remark 1. Note that in all of our resultd/ can be a function of (as long asU(n) < o).
Alternatively, instead of imposing the conditionloffiniteness onv(-), we could restrict the set of
allowed outcomes (or potential deviations) to coalitiorustures with at most/ partial coalitions.
All of our results hold under this model as well.

We now state and prove the first of our main results.

Theorem 1. Given a gamg N, v), wherev is monotone, continuous, bounded, drifinite for
somelU € N, an outcomé CS, x) is in thec-coreof (N, v) if and only if for allS C N

> pi(CS,x) > v*(S). (1)

jeSs

Proof. For the “if” direction, suppose thaiCs, z) satisfies) ;¢ p;(CS,z) > v*(5) forall S C
N. Assume for the sake of contradiction t&tS, «) is not in the core, i.e., there exists a Seta
coalition structureC'Ss € CSg and an imputationy € 1(CSg) such thap;(CSs,y) > p;(CS,x)
for all j € S. Then we haver(CSs) = > ,cspi(CSs,y) > > cspi(CS.x) > v*(S), a
contradiction with the way*(.S) was defined.

For the “only if” direction, consider an outcont€’'S, ) that does not satisfy (1); we will show
that(CS, ) is notin the core. To begin, spt= p(CS, ), and assum_ ;¢ p; < v*(S) for some
S C N. To show that( C'S, z) is not in the core, we will construct a sét, a coalition structure
CSg € CSs and an imputatiory € I(CSg ) such thatp;(CSg,y) > p; forall j € S’. Fixa
setS that satisfies ;¢ p; < v*(S). Chooses small enough so thdt_ ;o p; < v*(S) —¢, and
let CSS = {CSg € CSs | v(CSs) > v*(S) — €}. By definition ofv*(.5), there is an infinite
sequence of coalition structuress®) that satisfiesim; ., v(CS®) = v*(9), so the set S is
non-empty. Given a coalition structu@Ss € CSg, an imputationy € I(CSg) and a respective
payoff vectorg = p(CSs, y), define thetotal lossTL(CS g, q) of (CSs, q) aszj:pqu (pj — gqj)-
SetTLynin = inf{TL(CSs,q) | CSs € CSG,y € I(CSs),q = p(CSs,y)}. First, we prove that
there exists a coalition structu@S € CS% and an imputatiory € I(CSg) that achieve the total
loss of T'L;iy,.

Lemma 1. Under the theorem’s conditions, there exist6’8ig € CS§, an imputationy € I(CSg)
and a payoff vectog = p(CSgs,y) s.t. TL(CSs,q) = TLpin.

Proof. By definition of T'L,,;,,, there exists an infinite sequence of coalition structlﬂﬁg), t =
1,...,00, and respective imputationg?), t = 1, ..., co, such that

lim TL(CS, p(CSY,yV)) = TLuin
—00

and CS(;) € CSGforallt = 1,...,00. As the game id/-finite, a coalition structure can be
seen as a list of at moét vectors in[0, 1]". By adding all-zero partial coalitions if necessary, we
can assume that each coalition structure is a list of exéttectors in[0, 1], which are ordered
lexicographically. Az is monotone and bounded, there exist8 a 0 such that the value of each

partial coalition in any of the’JSg) is betweerp and B. Consequently, each® corresponds to a
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vector in[0, B]"Y. Hence, the sequencﬁ@S(;), y®),t =1,...,00 can be viewed as a subset of
[0, B)X (for sufficiently large but finite value oK) and hence has a limit point, which we denote by
(CS*,y*). Itis easy to see that the limit of a sequence of coalitiomcstires is a coalition structure,
i.e., for anyr’ € CS* we haver € [0,1]", and for anyj = 1,...,n it holds thaty "} | r! < 1.
Moreover, by continuity ofy, the value of each partial coalition i@iS* is the limit of the values

of the respective partial coalitions tﬁS(;), t =1,...,00. From this, it is easy to see thgt is in

I(CS*). Also, as aIIC’Sg) are inCS%g, so isCS*. Finally, asp(-,-) and TL(-,-) are continuous
functions of their arguments, we conclude tiai(C'S™*, p(CS*, y*)) = TLin- O

Continuing with the proof of our Theorem, Ie€'S s, y) be an outcome that satisfie6C'Sg) >
v*(S) — e, TL(CSs,p(CSs,y)) = TLmin, Whose existence is guaranteed by Lemma 1. Set
qg = p(CSgs,y). Let us now construct a directed graphwhose vertices are the agents and there
is an edge frony to i if there exists a coalition iC'S s containing bothj andi such that undey,
agentj gets a non-zero payoff from that coalition, i.e., for sonfec CSg we haverf,rf > 0
and yf > 0. Observe that if there is an eddg ) in I, we can change/* by increasing the
payoff toi by a small enoughy and decreasing the payoff toby the same value of without
violating the constraints, i.e., we hage= (z!,...,2%) € I(CSg), wherez! = y! for | # k and
28 =(yf,...,yf—6,...,yF +6,...,yk). Now, color all vertices of as follows: a vertey is red
if the agentj is underpaid undey, i.e.,q; < p;, white if j is indifferent, i.e.,g; = p;, and green if
he is overpaid, i.eq; > p;. As) ;cop; < v*(S) —eand}_ . qq; = v(CSs) > v*(S) — ¢, the
graph contains at least one green vertex. As argued abaVverd is a path from a green vertgx
to a red vertex, we can transfer a small amount of payoff frgno ¢ and hence decrease the total
loss, which is a contradiction with our choice @f'Ss,y). Hence, given an arbitrary green vertex
Jj, the set of all vertices reachable frgnin the graph, which we denote B¥(;), can only contain
green or white vertices.

We would now like to argue that the agents/ij) can successfully deviate frofCs, x).
Indeed, letCS” be the coalition structure that consists of the coalitidva the agents i (;) form
among themselves if’Ss. Clearly, the value ofC'S’ is equal to the total value of the coalitions
formed by these agents ifiSs. Note also that undgrCS's, y), the agents iR(j) do not get any
payoffs from coalitions that involve agents not/{;). Indeed, suppose that arc R(j) gets a
non-zero payoff from a coalition that involves an ager¢ R(j). Then inT there is an edge from
i to k, a contradiction with howR(j) was constructed. In other words, @6 5, the payoffs that the
agents inR(j) get come only from the coalitions that they form among thdwese and yet these
agents are all green or white, i.e., each of them is doing msevihan what he was doing undgs,
and some of them (in particular, ageitare doing strictly better. To finish the proof, let the agent
in R(7) distribute the payoffs in the same way ag #S s, y), except that playef transfers a small
fraction of his payoffs to each of the white playersii;) (this is possible by construction). The
last step ensures that each agen®in) is strictly better off than irf C'S, ). This demonstrates that
(CS,z) is not in the core, as required. O

Remark 2. Note that we did not have to make use of the additional regirns we imposed on
to prove the “if” direction of the theorem (these are used e fproof of Lemma 1). Hence, this
implication holds for an arbitraryG.

It is easily verifiable that Theorem 1 holds in the non-ovgpiag case with coalition structures
as well. The result is trivial to prove in that setting, asheagent’'s payoffs come from just one
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coalition; in contrast, we had to use more involved comlmnak arguments for transferring payoffs
among agents. We also get the following interesting resudt eorollary:

Corollary 1. By settingS = N in the statement of Theorem 1, we conclude that any outcothe in
c-coremaximizes the social welfare.

We now turn our attention to characterizing the set of cioalistructuresC'S that admit payoff
allocationsz such that the corresponding tupl€’s, ) belongs to the core. That is, while in
Theorem 1 we saw a necessary and sufficient condition forla {5, ) to belong to the core,
suppose that we are now only given a structGie = (!, ..., *) and we want to check whether
there existsomepayoff allocationz such that(C'S, ) belongs to the core. Our characterization
can be seen as a generalization of the notidmatdncednesim the context of overlapping coalition
formation. In the classic setting, the analogous questdtwhen does the grand coalition admit
a payoff allocation in the core”, answered by Bondareva 81%hd Shapley (1967). Before we
proceed to our result, we define balancedness with respaatdalition structure.

Definition 11. Fix a coalition structureCS = (r!,....r*), k € N, and letK = {1,....k}. A
collection of number§As}scw, {1 }ick is calledbalanced w.r.t. the given coalition structur®
if and only if Ag > 0 for all S, andz&jes As +p; = 1foralli € K, j € supp(r?).

Definition 12. A game is calledbalanced w.r.t. a coalition structurgs = (!, ..., 7*) if and only
if for every collection{\s}scn, {1 }iex that is balanced w.r.tCS it holds that) | ¢ Asv*(S) +

S v (rt) < vH(N).

The proof of the following theorem is based on LP-dualityg @aelies on the characterization
result of Theorem 1; furthermore, the proof illustrated tha condition of balancedness introduced
above arises rather naturally.

Theorem 2. Let (IV,v) be an OCF-game, whereis monotone, continuous, bounded, dndinite
for somel/ € N and consider a coalition structur€S = (r!, ..., "), for somek € N. There exists
an imputationz s.t. (CS, ) belongs to the-core if and only ithe game is balanced w.r€S.

Proof. Suppose there exists a payoff allocatwrsuch that(CS, x) belongs to the core, and let
K ={1,...,k}. Then the following linear program (denoted as LP) has amaptsolution:

min EieK,jeN Lij
S.t. Z]GS Zi:j€supp(’l"i) w’lj 2 ’U*(S) VS g N
Zj Tij = ’U(’l"l) Vie K

The first constraint expresses the condition of Theorem d tla@ second the fact that the payoff
of each partial coalition needs to be distributed exactlyteNthat we have no variables; if

j ¢ supp(r’)—recall Definition 4. These are precisely the conditiong tieed to be satisfied for
(CS, ) to be in the core and clearly the optimal value of the LF*igV) (using the first constraint
and Corollary 1). By the LP-duality theorem, this means thatdual program also has an optimal
solution of valuev* (V). The dual is given by:

max Yo ¢ Asv*(S) + Loy piv(r?) |
st DgjesAs =1 Vi€ K, j € supp(r’)
Ag >0 VS C N
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Hence for any feasible solution of the dual, the value of thedive function is at most*(N),
which implies that for any balanced collectigi\s }sc v, {1 }ick, it holds that) " ¢ Asv*(S) +
Sy pav(rt) < vH(N).

For the other direction, suppose that for any balancedatale the above holds. This means
that for any feasible solution, the value of the dual is attmd$N). Therefore the dual is both
bounded and feasible (setting = 1 and the rest t® is feasible), which implies that it has an
optimal solution. But then the primal program also has aimugdtsolutionx and this means by
Theorem 1 thatC'S, x) belongs to the core. O

Remark 3. In the traditional superadditive setting, the condition liflancedness is somewhat
simpler and more intuitive. In our setting, the charactatian leads to a slightly more complicated
expression, essentially due to the fact that the linear awgthat describes core allocations for
each coalition structure requires a larger set of consttain

7. Convex OCF-Games Have a Non-Empty Core

In this section, we first generalize the notion of convexatyOICF-games and then proceed to show
that it provides a sufficient condition for non-emptinessheaf c-core.

Recall that for classical TU-games convexity means thatifaf N andS ¢ T'C N \ R it
holds that(S U R) — v(S) < v(T U R) — v(T). Thus, convexity in the classic TU-games setting
means that it is more useful for a coalitiéhto join a larger coalition than a smaller one. We now
apply this intuition to our setting (recall th#t(S) denotes the set of all feasible agreementsSor

Definition 13. An OCF-game = (NN, v) is convex if foreaclR C NandS Cc T'C N\ R

the following condition holds: for anyCS®, %) € F(S), any (CST,x") ¢ F(T), and any
(CSSVE xSUR) ¢ F(S U R) that satisfieg; (CS VUE, 25VF) > p, (0SS, x) Vj € S, there exists
an outcome CSTVE £TVE) ¢ F(T UR) s.t.

D ( CSTUR, $TUR)
D ( CSTUR, $TUR)

p;(CST, 2"y VvjeT, and
pj(CSSUR,mSUR) Vj € R.

AVARLY}

This definition is similar in flavour to that provided by Sugsd Borm (1999), where a general-
ization of convexity is defined in the context of stochastiogerative games. The intuition behind
this definition is as follows: Consider two fixed agreements; onS and one ori’ respectively.
Any time that there is a feasible agreement%uo R that the members &§ do not object to com-
pared to their own agreement (i.e., all membersadre weakly better off than in their previous
agreement), then there is a feasible agreemerit onR such that (i) the members @f do not ob-
ject to this agreement, compared to the previous agreemeéhtamd (ii) the members aR weakly
prefer this agreement to the agreemeniSan R.

We note that a different notion of convexity has been defirmdfizzy games by Branzei,
Dimitrov, & Tijs (2003). That definition deals with the mangil contribution of a partial coalition
when joining another existing partial coalition, where tasult of the join is a new partial coalition.
We, on the other hand, quantify the marginal contributiomading a set of player®, to a set of
playersT’, w.r.t. the best overlapping coalition structure that tee/sU T' can form. Secondly, the
definition of Branzei et al., as well as the classic definitibirconvexity, simply enforce a property
on the functiorv(-), concerning the marginal contributiettR UT") — v(T"). In our case, our games
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are not fully transferable and hence we cannot simply tattuathe difference in values. Instead,
our definition has to enforce the existence of a coalitioncstire onR? U T" such that individually
every player is at least as well-off as in the coalition g overR U S, whereS C T

We now show that convexity is a sufficient condition for thenvenptiness of the core, in
analogy to the classic result on convex TU-games (Shapii)l

Theorem 3. If an OCF-game& = (N, v) is convex and is continuous, bounded, monotone and
U-finite for somdJ € N, then thec-coreof this game is not empty.

Proof. Let G = (NV,v) be a convex OCF-game. For asy C N, let G° be the restriction of
G on S. To prove the theorem, we explicitly construct an outcom®, x), « € I(CS), and
show that it belongs to the core 6f Fix an arbitrary ordering of the playeis2,...,n — 1,n.
The construction takes place in rounds. Firstget= v*({1}), p2 = v*({2}); by assumptions
of the theorem and using arguments similar to those in thefmioLemma 1, there exist coalition
structures i€ Sy, CSyoy that achieve these payoffs. Les! be the structure that achieves this for
player1in G{}, and letz! be the corresponding imputation. We know that there extdesaat one
coalition structureC's? ¢ CS11,2) and a corresponding imputatiar? such thap, (CS?, z2) > py,
p2(CS2%, x?) > py (e.g., take the union of payoff-maximizing structuresGf't and G}, and
combine the corresponding imputations). If there existartban one such feasible agreement, we
pick the one most preferred by playzrMore formally, we choose a feasible agreem@ii§?, 2)
that maximizes the payoff,(CS?, 22) (which will be at least,) over all feasible agreements on
{1,2} subject top; (CS?, z2) > pi(CS!, z') (by our assumptions on(-), this maximum exists).

Now, letj; be the maximum payoff that agehtan get inG13}. Again, there exists at least one
coalition structureCS? in CSy1,2,3y and a corresponding imputatiae® such that agents, 2 are
(weakly) better off than ifCS?, %), and3 is also weakly better off than being on its own. If there
exist more than one such feasible agreement, we pick onentérdimizes3’s payoff, i.e., we pick
an agreementCS?, x3) so thatps(CS3, 23) is maximized over all agreements éh, 2, 3} subject
to the constraintg; (CS3, x3) > p1(CS?, 22), p2(CS3, 23) > po( CS?, x?).

Continuing in the same manner, at every roénge pick an outcoméCS"@ x¥) that maximizes
pi(CS*, x¥) subject to constraints;(CS*, zF) > p;(CS*1 zF1) fori € {1,....k — 1}; the
assumptions on(-) ensure that all these maxima exist. In the end, we obtainsiblezagreement
(CS™, ™) on N in which all the agents are weakly better off than on their pasmwell as weakly
better off compared to the agreements of the previous rounds

We now show thatC'S™, ™) belongs to the core @F. For this it suffices to prove the following
stronger claim.

Claim 1. For &k = 1,...,n, the feasible agreemerQCS"f,xk) belongs to the core of the game
G{l,...,kz}_

Proof. We prove this by induction. Fdr = 1, it is obvious that CS!, z!) belongs to the core of
G,

Now, suppose that for some, 2 < m < n, we have(CS*, z*) € core(G1*}) for all
k < m. We will prove that(CS™, ™) is in the core ofG{Lm},

Suppose, for the sake of contradiction, that this is not tieec Then there is a subsgtC
{1,...,m} and(CS*,x*) € F(S) such that

pi(CS*,@*) > p;(CS™, &™) Vi € S. @)
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We consider three different cases for the memberSs: of
Case 1:m ¢ S. In this case we know by construction that foralk {1,...,m — 1} we have
pi(CS™, &™) > p;(CS™ 1 &m~1), which implies that;(CS*, x*) > p;(CS™ 1 ™) for all
i € S. Hence, the tupléCS™, x*) is a deviation that makes the membersddtrictly better off than
in the agreemerttCS™ !, z™~1). But this is a contradiction since by inducti¢6'S™ !, ™ 1) ¢
core(G{L-m=1}),
Case 2:S = {1,...,m}. Now we will get a contradiction with how we constructedsS™, ).
Indeed, we choseCS™, =) to maximizep,,(CS™, x™) subject to the constrainis(CS™, ™)
> pi(CS™ L xm ) foralli = 1,...,m — 1. However, by (2), the outcomeCS*, z*) also
satisfies these constraints and provides a higher payefftttan(CS™, ™) does, a contradiction.
Case 3:5 = S’ U {m}, whereS" is a strict subset of1,...,m — 1}. In this case we will utilize
convexity. LetC'S’ be the coalition structure that consists of the singletailittons for all agents of
S’, and letz’ be the corresponding imputation. By constructiofis*, =*) is a feasible agreement
on S’ U {m} such thatp;(CS*,z*) > p;(CS",x') foralli € S'. LetT = {1,...,m — 1}.
Since (CS™ 1, ™) € F(T), by applying Def. 13 forS’ C T and withR = {m}, we get
that there exists a feasible agreemefif, ) onT U {m} = {1,...,m} such thap;(CS,x) >
pi(CS™ L g™~ fori =1,...,m — 1, andp,,(CS, ) > p,,(CS*,=*). But then by (2) above
we get thap,,,(CS, ) > p,,, (CS™, x™), a contradiction with how we chog&'s™, ™). O

Applying Claim 1 withk = n, we get that the core @F is non-empty. O

In the traditional setting, if a game is represented usirgleraccess for(S), there is a trivial
algorithm for computing an element of the core in convex ganirdeed, one can set the payoff
vector to be the vector of the marginal contributions of therds for an arbitrary permutation of
the set of agents. In our setting, our proof does yield a phaeefor constructing an element of the
core, though not a polynomial-time one. Our procedure regusolving a series of optimization
guestions, which for arbitrary convex games are NP-hardthénfuture, we would like to find
classes of convex games where our proof yields a polynatimi&-algorithm. In particular, looking
at our proof, this would be true for games in which we can soivaolynomial time the following
problem: Given a set of agents C N, a feasible agreement dfy an outcome CS, x), and an
agentk ¢ S, find a feasible agreemefn€S’, y) on S U {k} that maximizegy(CS’, y) subject to
the constraintp; (CS’, y) > p;(CS, x).

8. Properties of the Three Cores

Following the detailed study of the-core stability concept in the previous two sections, in this
section we further explore the properties of our three matiof the OCF-core. In particular, we
investigate the relationships among these notions, artty she effects of allowing overlapping
coalition formation on the stability of the underlying ganWe also compare our OCF model and
notions of the core to the fuzzy games setting and the nofitimedfuzzy core (Aubin, 1981).

We start by exploring the connection between stability anciat welfare maximization in
TTGs. As demonstrated earlier in the paper, in OCF-gamesetheo properties are closely re-
lated. Indeed, Theorem 1 and Corollary 1 show that any owtcionthe c-core of an OCF-game
maximizes the social welfare as long as the characterigtiction of the game satisfies a number of
technical conditions; by Theorem 5 below the same holdshfer{core and the o-core. However,
as one of these conditions is continuity, this result doeslimectly apply to TTGs. While the proof
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of Theorem 1 can be adapted to work for the TTG setting, thise exists a direct proof for the
following theorem.

Theorem 4. For any TTGG = (N;w;t) and any outcoméCS,x) € c-core(G), we have
v(CS) > v(CS’) for any coalition structureC'S” € CSy .

Proof. Fix an outcome CS,x) € c-core(G), and letp be the payoff vector that corresponds to
(CS,x). Suppose that there exists a coalition structG® € CSy such thatw(CS’) > v(CS).
Let CS' = (r!,...,rF). Forj = 1,...,k, let 27 be the total weight of the partial coalitiof, i.e.,
setz! = rlwy + - + rhwn.

Now, consider a coalition structu@S” = (q*, ..., ¢*) given bng =2/ /w(N) foralli € N,
all j = 1,...k; note that we hav§_*_, ¢/ < 1. The total weight of a partial coalitio’ can be

computed a$",y ¢lw; = 27. Thereforeg’ € C'S” can accomplish the same taskrdse CS’,
and hence)(CS”) = v(CS’") > v(CS). Now, observe that since i@'S” all players contribute to
all partial coalitions, there are no restrictions on how vhkie of CS” can be distributed among

the players. In particular, we can set= w and construct an imputatian € 1(CS")
by settingy! = %(m + ). Indeed, we havé",_y v/ = v(r), Z;‘f’:l yl = pi + 4. Now,
it is clear that the entire set of agertscan deviate fron{C'S, x) to (CS”, y); as they all deviate
simultaneously, this is a c-profitable deviation, a conttémh with (CS, x) being in the c-core of

G. O

The discussion in Section 5.2 suggests a natural relaiprsiween the three notions of a
successful deviation, and, consequently, between the ttoees. (In what follows, we refer to the
outcomes in the c-core, r-core and o-core-asable r-stableando-stable respectively.)

Theorem 5. For any OCF-gamé&r, we haver-core(G) C r-core(G) C c-core(G). Moreover, these
containments can be strict, i.e., there exists an OCF-gahseich thato-core(G) C r-core(G) C
c-core(G).

Proof. Observe that any c-profitable deviation can be viewed agaofitable deviation in which all
players abandon all coalitions they contributed to. Siryilany r-profitable deviation corresponds
to an o-profitable deviation where whenever a deviator changs contribution to coalition, he
withdraws all of his resources from it; note that, as illagtd by Example 5, the deviators’ payoff
in this o-profitable deviation can be strictly higher thantlwe original r-profitable deviation. It
follows that any outcome that is r-stable is also c-staliel @ny outcome that is o-stable is also
r-stable, thus proving the first part of the theorem.

To prove the second part of the theorem, consider the gardescribed in Examples 2, 4, 5
and 6. We have demonstrated that the outc@i§, x) is in c-core(G) \ r-core(G) and that the
outcome(CS’, x') is in r-core(G) \ o-core(G). O

Theorem 5 shows that our three notions of stability can betanhially different with respect to
individual outcomesHowever, it does not exclude the possibility that they ap@alent when seen
as notions of stability of thentire gamei.e., that for any OCF-gam@ we havec-core(G) # ) iff
r-core(G) # () iff o-core(G) # (0. We will now show that this is not the case. The games used in
the proofs of the following two propositions are not thrddhask games. However, they, too, can
be described in terms of agents’ weights and tasks.
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Proposition 1. There exists an OCF-gange such thatc-core(G) # () while r-core(G) = 0.

Proof. Consider an OCF-gam@& = (NN, v) with seven agent®’ = {1,...,7} whose weights are
given byw = (1,1,1,1,3,3,3), and two task types' andt? with values100 and2, respectively.
The first task can be completed in any of the following four siay

e 1 unit of player 1's weight and units of player 5’s weight;
e 1 unit of player 2's weight and units of player 6’s weight;
e 1 unit of player 3's weight and units of player 7’s weight;
e 1 unit of player 4's weight and units of weight from either of the players 5, 6, or 7.

Thatis,v(r) = 100 if w;r; > 1 andw,r; > 2, where

(17]) S {(1’ 5)’ (2’ 6)’ (3’ 7)7 (4’ 5)’ (47 6)’ (47 7)}

The second task requires2 units of weight in total from players 5, 6 and 7.
Consider a coalition structur€S = (r!, 72,73 r4), given by

2 2
rl = (17070707 57070)7 7"2 = (0717070 O g 0)7
2 11
= (0,0,1,0,0,0, - 0,0,0,0, =, =,0
(7 y Ly Vs Yy 73)7 ( 3 3 )

That is, partial coalitions-!, »? andr? successfully complete', while r* successfully com-
pletest?. Consider also an imputatian € Z(CS) given by

z' = (0,0,0,0,100,0,0), = (0,0,0,0,0,100,0),
=(0,0,0,0,0,0,100), x*=(0,0,0,0,1,1,0).

Let p be the payoff vector that correspondsato we havep; = ps = p3 = pg = 0, p5 =
pe = 101, p; = 100. Itis not hard to see thatCS, ) € c-core(G). Indeed, suppose for the sake
of contradiction that there is a set of playefghat can c-profitably deviate frofC'S, ). Since
(CS, ) maximizes the social welfare, the deviation cannot be ganabusly profitable for all
players inN, so|J| < 7. Moreover,J cannot contain 2 or more players from the Set {5,6, 7}:
indeed, if one of these players deviates, he loses 100 untayoff, which can only be replaced
if he forms a coalition with 4. However, since 4 cannot fornotadistinct coalitions of value 100
each, this is not possible. Thereforegcannot contain any of the players in the Seeach of these
players already gets the maximum payoff frelpand, since the other two players frasnare not
in J, the set of deviators does not have enough resourced fdfinally, there is no c-profitable
deviation for players inV \ S, as no task can be completed by agentd/iky S only.

We will now show that the r-core afi is empty. Suppose otherwise, and (€tS’, y) be an
outcome in the r-core of7. Let p be the payoff vector that correspondsyo It is not hard to
show that any outcome in the r-core @fmaximizes the social welfare; the proof is similar to that
of Theorem 4. Hence, we can assume without loss of genethityC'S = (q', ¢%, ¢°, ¢*) with
v(g') = v(g?) = v(g®) = 100 andv(g*) = 2, and, moreover: > 2, ¢ > 2,42 > 2. It follows
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that either ()} = ¢ = ¢3 = 1 or (b) ¢} = 1 for somej € {1,2,3} andg! = 1 fori € {1,2,3},

i # j. We say that a playeris usefulfor a coalitionr if v(r’) < v(r), wherer’ is given byr, = 0,

r;- = r; for all j # 4. Observe that in an r-stable outcome no player can get anyffolagm a
partial coalition for which he is not useful: otherwise tlither members of that coalition, who can
complete the corresponding task on their own, can r-prdjitdéviate. We will now show that we
havep, = ... = p4 = 0 both in case (a) and in case (b). Observe that by the argurnhent player

1 can get payoff frong! only, player 2 can get payoff from? only, player 3 can get payoff from
q> only, and player 4 can get payoff from exactly one of the tioais q', g2, andg?.

In case (a), we clearly hayg = 0, as playe# is not useful for any coalition ir’S’. Now, if,
e.g.,y1 > 0, theny? < 100, and players 4 and 5 can r-profitably deviate by forming aitioalthat
performst!. Henceyl = y2 = y3 = 0, and therefore; = ps = p3 = 0. In case (b), assume
without loss of generality that} = 1. Thenp; = 0, as player 1 is not useful for any coalition
in CS’, soy} = 0, since otherwise players 1 and 5 can r-profitably deviatd, aonsequently,
ps = 0. This implies that als@3 = y3 = 0: if, e.g.,y3 > 0, theny2 < 100, and players 4 and
6 can r-profitably deviate by forming a coalition that penfisrt'. Hence, in both cases we have
pr=---=ps=0.

Now, asv(q*) = 2, we havey? + y& + y3 = 2, so at least one of the payoffd, y; andy3 is
strictly positive. Assume without loss of generality thgt= 6 > 0. Then players 6, 7 and their
partners ingZ andg? (i.e., players’, i” such thaty? = 1, ¢3, = 1) can r-profitably deviate from
(CS',y) by forming a coalition structur€’S” = (s, s2, s®), wheres! is given by

2
sh=1, sp= 5 sg=0for ¢ #1,6,
s? is given by
2
st =1, s2= 3 s2=0fore #4"7,
ands® = (0,0,0,0,0, %, %). We will now construct an imputatior for CS” by settingz}, =
22, =82 =22 =100-8% 22 =yt + 8 2 =yt + 3, andz] = 0forall (i,5) #

(i',1),(6,1),(i",2),(7,2),(6,3),(7,3). Itis not hard to see that € Z(CS”), and, moreover,
the deviation(CS”, z) is r-profitable for 6, 74 and:”. Hence,(CS’,y) is not in the r-core of
G. O

Proposition 2. There exists an OCF-gantg such that-core(G) # () while o-core(G) = 0.

Proof. Consider an OCF-gam@ = (N, v) with 3 agentsV = {1, 2, 3} whose weights are given
byw = (8,8,8), and 2 task types' andt2. The first task needs 6 units of weight from each player,
and has value 300, i.e(ry, 79, r3) = 300 if w;r; > 6 fori = 1,2, 3. The second task needs 4 units
of weight in total from any of the players and has value 2.

Let CS = (r!,r?), wherer! = (%, %,g), r? = (},%,2). Clearly,v(r') = 300, v(r?) = 2.
Consider also an imputation € Z(CS) given byz! = (100,100, 100), > = (0.5,0.5,1). Itis
not hard to see thatCs, x) € r-core(G). Indeed, ag’'S maximizes the social welfare, there is no
deviation that will be simultaneously profitable for all at® Furthermore, if any agent withdraws
his contribution from-!, he will lose the associated payoff of 100 and no deviationazanpensate
for this loss. Moreover, it is clear that withdrawing cohtriion fromr2 cannot be profitable either,

as there is no way to earn more thas- v(r2) with this amount of weight.
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We will now show thaiG has an empty o-core. Suppose for the sake of contradictadrittare
exists an outcomeCsS’, y) € o-core(G). Itis not hard to show that any outcome in the o-core of
G maximizes the social welfare; the proof is similar to thaffbkEorem 4. Hence, we can assume
that CS” = (q', ¢*), wherev(q') = 300, v(¢?) = 2, and, moreoverg} > & fori = 1,2,3. We
havey? + y2 + y2 = 2, so we can assume without loss of generality #ffat= 6 > 0. This means
that players 2 and 3 can o-profitably deviate fro615’, y) as follows: players 2 and 3 withdraw
gaws — 6 andgiws — 6 units of weight fromg?, respectively (as argued above, we haye, > 6,
q3ws > 6), as well as their entire contribution &, and use these resources to comptétef they
divide the resulting payoff by allocatingt + 3 to player 2 andjZ + § to player 3, this constitutes
an o-profitable deviation for them. Thus;'S’, y) is not in the o-core of5. O

Thus, so far in this section we investigated the relatiggshimong our notions of the overlap-
ping core; it is also insightful to compare them to the noe+apping and the fuzzy one. We now
proceed to do so.

8.1 Comparison with the Non-Overlapping Core

Given an OCF-gamé& = (N,v), we can define a non-overlapping ga@é® = (N,v™) by
settingv™(C) = v(r®), where the partial coalitiom® is given byr¢ = 1if i € C andr{ = 0
otherwise for allC’ C N. Observe that for a threshold task gaﬁﬁapplylng this transformatlon to
its overlapping version gives us exactly its non-overlapping versién We can now compare the
core of the gamé&:"° and the overlapping cores of the original gatieln particular, it is natural
to ask whether the core 6f"° can be empty when the o-core Gf(and hence by Theorem 5 also
the r-core and the c-core @f) is not, and vice versa, i.e., whether the c-core (the largethe
overlapping cores) aff can be empty when the coreGf*° is not. Interestingly, it turns out that the
answer to both of these questions is positive. We demoadtrat via examples based on threshold
task games; as argued above, for any such gadme haveG™ = G.

Proposition 3. There exists a TTG with core(G) = (), buto-core(G) # 0.

Proof. Consider a threshold task ganie = (N;w;t), whereN = {1,2,3}, w = (2,2,2),
t =t' = (3,1). In G, any coalition structure&’S contains at most one coalitiaf with v(C') = 1.
Letp = (p1, p2, p3) be an imputation foC'S. Asv(CS) = 1, there exists somec N with p; > 0.
Then the coalitionrC” = N \ {i} can successfully deviate frofC'S, p), as we havev(C’) =
p(C") =1 — p; < 1. Hence, any outcome @ is not stable.

In G, the players can form two successful partial coalitionswNmnsider an outcon(e(JS x),
whereCS = (r!,r?) with r! = (1, 3,0), r* = (0, 3,1), andz' = (3, 3,0), 2> = (0, 3, 3). We
claim that(CS, ) is in the o-core of5. Indeed, suppose for the sake of contradiction that there is
a group of players/ that has an o-profitable deviation frof@'s, ). We have|.J| € {1,2,3}. Itis
easy to see thaf/| # 1: no player has enough weight to compléet@n his own. Also|.J| # 2: any
pair of players earn$ in (C9, ), and on their own they can make at most 3. Finally, |.J| # 3,

as(CS, x) maximizes the social welfare. The contradiction complétesroof. O

Intuitively, Proposition 3 holds becauge has more feasible outcomes thé’m and some of
these additional outcomes turn out to be stable. On the flig, & allows for a wider range of
deviations, so an outcome that is stable with respe¢t tnay be unstable with respect & Our
next proposition illustrates this.
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Proposition 4. There exists a TT@ with c-core(G) = §, but core(G) # 0.

Proof. Consider a threshold task ganie = (N;w;t), whereN = {1,2,3}, w = (9,1,1),
t = (t1,¢%) with t! = (8,100), t> = (2,1).

In G, player 1 can work on task, while players 2 and 3 can cooperate on t&sksharing the
profits equally. Clearly, the resulting outcome is stable.

On the other hand has no c-stable outcomes. Indeed, suppose that there isteommau
(CS,x) in the c-core ofG;, and letp be the corresponding payoff vector. By Theorem(CH
consists of two partial coalitionsr!, which completes!, andr?, which completes?. Hence,
v(CS) = 101. If p; > 100, thenps + p3 < 1, and hence players 2 and 3 can deviate by forming a
coalitionr = (0,1, 1) that can complet¢? and has value 1. f; < 100, player 1 can deviate by
forming a coalitionr = (1,0,0) that can completé' and has value 100. Hence, we haye= 100,
p2 + p3 = 1, and therefore we can assume without loss of generalitypthat % Now, players
1 and 2 can deviate by forming a coalition structars’ = (%, 0,0), (%, 1,0) and distributing the
payoffs ag((100,0,0), (1, 2,0)). We conclude thatCS, ) is not c-stable, a contradiction. [
8.2 Comparison with Fuzzy Games

As mentioned earlier in this paper, Aubin (1981) introduttesnotion of &uzzy gamgin which a
player can participate in a coalition at various levels, tiredvalue of a coalitiort depends on the
participation levels of its members. Thus, at a first glaitoe definition of a fuzzy game is identical
to the definition of an OCF-game, as both are given by chatatitefunctions defined of0, 1]™.
However, there are several crucial differences betweezyfand OCF-games.

First, fuzzy games and OCF-games differ in their definitibmm outcome. Indeed, while in
OCF-games an outcome is an (overlapping) coalition stradhgether with a list of payoff vectors,
in fuzzy games the only allowable outcome is the formatiothefgrand coalition. Furthermore, an
outcome of an OCF-core needs to be stable against any deviata setS to a (possibly overlap-
ping) coalition structure. In the Aubin core, outcomes nesly be stable against a deviation to a
partial (“fuzzy”) coalition, but not necessarily againstvihtions to a coalition structure. Indeed, the
formation of coalition structures (overlapping or not) & addressed in the fuzzy games literature.

One could try to represent games with overlapping coaligimactures using the fuzzy games
formalism. Indeed, given an OCF-game, we can construct zyfgame whose characteristic
function simulates the behaviour of the characteristicfiom of the original OCF-game on coali-
tion structures. Specifically, given any OCF-gatie= (N,v), we define a related fuzzy game
G’ = (N,') as follows. For any- € [0, 1], we define

k
CST:{(q177qk)|k217qi ZOfori:17"'7n7j:17"'7k72q§:TZ'}>
=

and set'(r) = supggecs, v(CS). Thatis, for each partial coalition, v’ identifies the best
coalition structureCS that can be obtained by splittinginto subcoalitions, and returns its value
v(CS). The resulting fuzzy gamé” is very similar to the original OCF-gant&. For example, for
TTGs, this transformation would enable the members of taadjcoalition to work on several tasks
simultaneously. More generally, given a TTG any outcome ofG)’ (i.e., a payoff vector for the
grand coalition) corresponds to a social-welfare maxingzutcomeg CS, ) of G and vice versa.

203



CHALKIADAKIS , ELKIND, MARKAKIS, POLUKAROV & JENNINGS

In fact, this relationship holds between any OCF-garhand the corresponding fuzzy garGé as
long as the sefv(CS) | CS € CS(,... 1)} is compact (and thus contains its least upper bound).

However, this approach fails to capture several delicgtects of overlapping coalition forma-
tion. The main reason for this is that in the fuzzy game foatiah, the actual set of tasks executed
by a partial coalition is implicit in the definition of the dfeteristic function. Indeed, an outcome
of the fuzzy game is simply a payoff vector, and while we arargoteed that there is a set of tasks
that provides the corresponding total payoff, this set siksacannot be “read off” the description of
the outcome. This leads to a number of difficulties.

First, the fuzzy games formalism would not allow us to reamoout partial coalition structures
with suboptimal social welfare. While by Theorem 4 such itimal structures are unlikely to be the
final outcomes of a game, a dynamic coalition formation grotmay produce such partial coalition
structures as intermediate steps. Thus, using the langfdgezy coalitions impairs our ability to
study the processes that lead to the formation of partiditcrastructures. As such processes are
of great interest from the practical perspective, this isxgmortant disadvantage of the fuzzy model.

Further, under the OCF representation, there is a onedocorrespondence between partial
coalitions and tasks. This makes the OCF approach intlyitgpealing, and suggests that it pro-
vides the right level of granularity for reasoning abouttiércoalition formation. Indeed, consider
our problem from a computational perspective in the cordéXITGs. While under the OCF repre-
sentation finding a socially optimal coalition structure te difficult (see Appendix A), computing
the value of a given partial coalition is straightforward: we simply pick the most valuable task
that can be completed using the resources posessedibyontrast, in the fuzzy game framework,
the two issues are intertwined, so even computing a padaltion’s worth is a hard problem.

Even more importantly, the definition of the fuzzy core gimAubin (1981) is not appropriate
for many natural scenarios, and, in particular, TTGs. Spadly, the fuzzy core of a fuzzy game
G = (N,v) is defined as the set of all outcomgs, p) such thaip(N) = v(1,...,1) and for any
partial coalitionr it holds that) """ , p;~; > v(r). Essentially, this means that when a group of
players deviates from the grand coalition via a partial itioal , each deviating playerreceives
both her payoff from, and her original payoff from the grand coalition, scaledddoy a factor of
(1 —r;). Thus, the fuzzy core is even more “optimistic” from the @eors’ perspective than the o-
core. Indeed, the deviators do not worry what the grand mahvill be able to do once they leave.
They simply assume that if they withdraw, say, 40% of thedortaces, they will get 60% of what
they used to get. However, in many games—and, in particlilegs—if some players abandon the
grand coalition, the latter may not have sufficient resoaitoecomplete any task. Clearly, in this
case the deviators could not possibly get any payoff fromtwdraains of the grand coalition. Thus,
the fuzzy core may be empty, even if in practice the game Bestarhe example in the proof of
Proposition 5 illustrates this.

Proposition 5. There exists a TTG such thato-core(G) # 0, but the fuzzy core of the corre-
sponding fuzzy game)’ is empty.

Proof. Consider a TTG> given by N = {1,2}, w = (10, 10), andt = ((20, 20), (7,9)), and the
induced OCF-gamé'. The corresponding fuzzy gani€’)’ = (N, ') is given by
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20 ifrq4+mro =2

18 ifld4<ri+ry<?2
9 fo7T<ri+ra<14
0 ifri+r<0.7

It is not hard to see that the outcor€S, =) of G, whereCS = r = (1,1) andz = (10, 10) is
o-stable. Moreover, intuitively, it is clear that no ratimgent or a coalition of agents would want
to deviate from this outcome. On the other hand, under thaitlefi of the fuzzy core the outcome
(10,10) of ()" is not stable: indeed, fay = (.7,.7) we havep;q; + p2g2 = 14 < 18 = v/(q).

We will now prove thano outcome of(G)’ is in the fuzzy core. Observe that sing1,1) =
20, any outcome of G’ is of the form(zy, z2), wherez; + z = 20. Clearly, any outcome with
z1 < 9o0rz < 9is unstable, as the partial coalitidn, 0) (respectively,(0, 1)) can profitably
deviate from it. Thus we can assume that> 9, zo > 9, or, equivalentlyz, < 11, z; < 11. Thus,
for the partial coalitiony considered above, we havey; + z2q2 < 11 x 1.4 = 15.4 < 18 = v(q),
which means thafz, z2) is not in the fuzzy core. O

Remark 4. To remedy some of the difficulties illustrated above, we @uisd a notion of stability
that is defined within the framework of fuzzy games, yet enéisdly equivalent to the c-core. Let
us say that an outcome of G’ is f-stableif for any r € [0, 1]” we havev'(r) < ZiESupp(’I")pi’
and define thd-core of G’ to be the set of all f-stable outcomes@f Note that this definition is
different from the standard definition of the fuzzy core. FGs, one can show that an outcome
p of G’ is in thef-core of G’ if and only if the corresponding outcont€'S, ) of G is in the c-
core of G. The proof makes use of the fact that in TTGs one can distrithe profitv’(r) of a
deviating partial coalition among the members sfipp(r) arbitrarily. (In more detail, one can
construct a partial coalition structur€’'S involving agents isupp(r) that performs tasks of total
valuev’(r) so that each agent isupp(r) participates in each partial coalition ir’S.) Moreover,
this equivalence is true for general OCF games whose chariatic functions satisfy some natural
regularity conditions; the proof is similar to the proof ofi@dorem 1. Unfortunately, while the f-core
provides an analogue of the c-core in the fuzzy game setismat clear how to devise an analogue
of the r-core or the o-core for this setting. Indeed, to defirese concepts, we would have to reason
about partial coalitions that are hurt by a deviation. Howevthe description of an outcome of
a fuzzy game does not indicate which partial coalitions agiplayer belongs to, so we cannot
determine which tasks will be affected by a deviation.

We conclude that there are natural settings where OCF-ganoggle a more realistic and
nuanced model than fuzzy games; threshold task games apgd@aone such example.

9. Computational Aspects of Stability in Threshold Task Ganes

In this section, we investigate the computational compyexd core-related questions in TTGs. Our
goal here is twofold. First, TTGs provide a natural model gdrt collaboration, and therefore it

is important to understand how to allocate resources in gaches in a stable manner. Second,
our analysis highlights important differences betweenttitee definitions of the core for games
with overlapping coalitions. In particular, the resultegented in this section provide a complexity-
theoretic separation between the c-core, on one hand, andcitre and the o-core, on the other
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hand. We believe that results of this type are useful fording a better understanding of stability
in the context of general OCF games.

Unless explicitly stated otherwise, we make the usual apiamthat all parameters of the
game—i.e., all weights, thresholds and task utilities—Hategers given in binary. This assumption
can be made without loss of generality, and is necessaryftoreal complexity-theoretic analysis.

9.1 Games with Non-Overlapping Coalitions

We start by analyzing the complexity of TTGs in the non-oseping setting. As mentioned in

Section 5.1, such games can be seen as a generalizationgiftegeivoting games with coalition

structures. Elkind, Chalkiadakis & Jennings (2008) shoat #everal stability-related questions in
such games are computationally hard when weights are nstggeen in binary. Hence, we can
formulate the following proposition, whose proof followamediately from those results.

Proposition 6. Given a TTGG = (IV; w; t), it is coNP-hard to decide whether the corresponding
gameG has an empty core. Also, given an outcoi®, p) of G, it is coNRcomplete to decide
whether(CS, p) is in the core of;. These results hold even if there is only one task type, and th
utility of this task isl.

On the other hand, Elkind et al. (2008) provide a polynortirak algorithm for checking if an
outcome of a weighted voting game is in the core if weightsgien in unary. That algorithm is
based on dynamic programming: given a weighted voting gaidescribed by a set of playens,

a list of weightsw and a threshold’, for each weight., . . ., w(N) it identifies the minimum payoff
P, to a coalition that has weight, and then checks iP,, < 1 for somew > T.

It is not hard to see that a similar approach works for thriestask games as well. The only
complication is that for each weight, in addition to computing the minimum payoff to a coalition
of this weight under the given imputation, we have to compligemaximum utility available to a
coalition of this weight, i.e.max{u’ | w > T}, and compare the two quantities. However, these
additional steps are very easy (in particular, they can lolpeed efficiently even if task utilities
are large). This gives us the following result.

Proposition 7. There exists an algorithm that, given a TUG= (N; w; t) and an outcoméC'S, p)
of G, checks whetheCS, p) is in the core ofZ and runs in timepoly (w(N), |p|), where|p| is the
number of bits in the binary representationyof

For weighted voting games with unary weights, Elkind et 2008) also show that, by con-
structing a linear program that uses the algorithm of Pritipos7 as an oracle, we can check in
polynomial time whether a given coalition structut® can be stabilized, i.e., whether there exists
a payoff vectomp € Z(CS) such thai CS, p) is in the core. This algorithm can be easily adapted to
work for TTGs with unary weights. Hence, the question of \llkeeta given coalition structure can
be stabilized is poly-time solvable for these games, too.

9.2 Games with Overlapping Coalitions

We will now show that, similarly to the non-overlapping caall weights, thresholds and utilities
in a TTG are integers given in binary, then it is computatilgnaard to check if a given outcome
of the corresponding OCF game is stable. Moreover, thisnessiresult holds for all three defi-
nitions of stabilty, i.e., the c-core, the r-core, and theooe. While these results are perhaps not
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surprising given the similar result for the non-overlagpsetting (i.e., Proposition 6 above), the
reason behind the computational hardness is quite diffeletieed, the reduction used in the proof
of Proposition 6 is based omRTITION, a classic NP-hard problem which asks whether, given a
set of weights, we can split it into two sets of the same weiissentially, the proof proceeds by
constructing an outcome that is stable if and only if a certaibset of agents cannot be split into
two groups that have the same weight. This proof techniquelikely to work in the overlapping
scenario, as one can always form two partial coalitions @sdéme weight by allowing all agents to
split their weight equally between two coalitions. Hentw proof of the following theorem uses a
somewhat different approach.

Theorem 6. Givena TTGH = (N; w;t) and an outcoméCs, x) of the corresponding OCF game
G, itis coNPcomplete to decide whethe€'S, ) is in the c-core ofy.

Proof. Our reduction is based onNBOUNDED KNAPSACK, a well-known NP-hard problem. An
instance of WWIBOUNDED KNAPSACK (Martello & Toth, 1990) is given by a set dfitems, where
each itemi has a sizes; and a valuez;, the knapsack siz& and the target valug. It is a “yes”-
instance if we can fill the knapsack using an unlimited nunddezopies of each item so that the
total size of the resulting set of items is at maéstwhile their total value is at leadt, i.e., if there
is a vector of non-negative integefs, . .., ay) such thath:1 o;8; < B and Zle oz > 7.
Otherwise, it is a “no™-instance.

Consider an instancé = ((s1,...,¢);(21,-..,2¢); B; Z) of UNBOUNDED KNAPSACK. We
can assume without loss of generality that< B, z; < Z forall j = 1,..., /. Moreover, we can
assume thaf is monotone, i.es; < s; impliesz; < z;. Indeed, if we have a pair of items such that
s; < s, butz; > z;, we can simply delete thgh item, as it is not used by any optimal solution.

We will now construct an instance of our problem as followst 8 = {1} and letw; = B.
Sett = (t!,¢2,...,t"*1), whereT’ = sj,w/ = z; forj =1,...,andT*"! = B, ! = Z — 1.
Due to our restrictions o, the game= = (NV; w; t) is a threshold task game.

Consider an outcoméCsS, p) where CS consists of a single partial coalitionwith r; = 1
andp € Z(CS). AsB > s; forall j = 1,...,¢, this coalition executes the task! and receives
utility of Z — 1. Hence, playei can c-profitably deviate frorhC'S, p) if and only if he can find a
collection of tasks whose total resource requirement isast his weightB and whose total utility
is at leastZ, i.e., if and only if we started with a “yes”-instance oNBOUNDED KNAPSACK. [

In the proof of Theorem 6 the outcomi€'S, ) consists of a single partial coalition. Thus, any
r-profitable deviation fron{ C'S, x) is c-profitable. This implies the following corollary.

Corollary 2. Given a TTGG and an outcomgCS, ) of the corresponding OCF gant, it is
coNR-complete to decide {fC'S, x) is in the r-core ofG.

For the o-core, the situation is somewhat more complicdtkmivever, a more careful examination
of the proof of Theorem 6 allows us to obtain the followingaltary.

Corollary 3. Given a TTGG = (N;w;t) and an outcomégCS, x) of the corresponding OCF
gameG, it is coNRcomplete to decide {fCS, z) is in the o-core of7.

Proof. In the proof of Theorem 6, we construct an OCF game with 1 plagd an outcomeér, x).
Consider any o-profitable deviatiqd's, y) from (7, ). This deviation itself is not necessarily a
c-profitable deviation fronfr, ): under(CS,y), agent 1 may withdraw some, but not all of his
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resources fronfr, ) and therefore continue to derive some benefit from it. Howedwe a single
agent, allocating some of the resources to the originalgbarbalition » is equivalent to forming
a new partial coalition using that amount of resources, gen (C'S,y), one can construct a
deviation from(r,x) that will be c-profitable for agent 1. On the other hand, amyrafitable
deviation from(r, ) is also o-profitable. Hencér, x) is o-stable if and only if it is c-stable, i.e.,
if and only if we started with a “no™-instance ofNBOUNDED KNAPSACK. O

In the rest of the section, we will focus on the case where alameters of the game (i.e.,
all players’ weights, all thresholds and all task utilijiese integers that are given in unary, or,
equivalently, are at most polynomial in the number of play&iven a gamé& = (IV; w; t), where
t/ = (T7,w)forj =1,...,m, let|G| = w(N) + X7 (T7 + ).

It turns out that in this setting checking whether an outcasnm the c-core becomes easy.
Intuitively, the reason for this is that once a group of playgecides to deviate, the agents in this
group can easily decide how to proceed: they need to poohileights and find the most profitable
set of tasks that can be completed using this amount of ressur

Theorem 7. There exists an algorithm that, given a TTG= (IV; w;t) and an outcoméCS, x)
of the corresponding OCF gant&, checks whethefCS, z) is in the c-core of7 and runs in time
poly(|G|, |x|), where|z| is the size of the binary representation of the imputation

Proof. Our algorithm is based on dynamic programming. First, foran=1,...,w(N), letU,
be the maximum profit that a coalition of weightcan make, i.e.,

m m
U, = max Zajuj | ZajTj <w,(al,...,a™) e N™?
j=1 j=1

For eachw = 1,...,w(N), the quantityU,, can be computed using the dynamic programming
algorithm for U(NBOUNDED KNAPSACK. The running time of this procedure is polynomial .

Now, letp be the payoff vector that corresponds to the imputasoror alli = 1,...,n and
alw =1,...,w(N), setP,;,, = min{p(S) | S C {1,...,i},w(S) = w}. The quantities?; ,,
can be easily computed using dynamic programming. IndeedyawveP; ,, = p; if w = w; and
P, ,, = 400 otherwise (we use the convention thain ) = +oc0). Furthermore, we can compute
P11 4 given the value$Pp, . )y=1,.. . Dy settingP; 11 ,, = min{ P, ,, pi + Pi w—w, }- The running
time of this procedure ipoly (|G|, |p|).

Suppose that we have computeg,, for w =1,...,w(N). Observe that the valug, , is the
least amount received by a coalition of weightinderp. Now, for eachw = 1,...,w(N), we can
compare the quantitie8, ,, andU,,. If there is a value ofv for which the latter exceeds the former,
there is a coalition inV that could increase its collective earnings by deviatimgf CS, x), i.e.,
(CS,x) is not in the c-core of7. Itis not hard to see that the converse is also trué’,if, > Uy,

forallw = 1,...,w(N), then no coalition has a c-profitable deviation fr¢diS, =), and hence
(CS, x) is in the c-core of7.
Clearly, this algorithm runs in timpoly (|G|, |x|). O

In contrast, the corresponding problems for the r-core hadtcore are computationally hard.
Intuitively, the reason for this is that the decisions thaypts make are no longer binary: instead
of simply deciding whether or not to deviate, they have toidkeevhich of their coalitions with
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non-deviators to abandon. In the case of the o-core, thesasthe possibility of reducing one’s
contribution to a partial coalition rather than abandornitrajtogether.

Theorem 8. Givena TTGG = (N; w; t) and an outcomeCsS, x) of the corresponding OCF game
G, itis stronglycoNP-complete to decide whethé€'S, x) is in the r-core ofG.

Proof. Itis not hard to see that this problem is in cONP: to show thadatcome(CS, ) is not in
the r-core ofG;, we can guess a set of deviatorgind a deviatiorf CS’, y), and check thatCS’, y)
is r-profitable forJ by computing the payoffs of all players ihunderz andy.

To show coNP-hardness, we reduce froomNMUM EDGE BICLIQUE (Peeters, 2003). An
instance on MxIMUM EDGE BICLIQUE is given by a bipartite grapt® = (L, R, E) with a set
of verticesL U R and a set of edgeE C L x R, and a parametek. It is a “yes™-instance ifB
contains a biclique of size at leakt, i.e., if there are sets’ C L, R’ C Rsuchthatl’'|«|R'| > K,
and for allA € L and allp € R we have()\, p) € E. Otherwise, it is a “no™-instance.

Suppose that we are given an instaniég K') of MAXIMUM EDGE BICLIQUE with B =
(L,R,E), L ={\1,..., AN}, R={p1,...,pr}- Then we create an instance of our problem as
follows. Assume without loss of generality tH& < |R|, We seth = |R|+ 1,k = |L|, M = k*n?,

V = k?nM, and create: players with weightsv; = --- = w,_1 = k, w, = k(kn —n + 1) and

2 task typest! = (kn;V) andt?> = (K;(n — 1)k + 1). Also, we create a coalition structure
CS = (r',...,7%) given byr! = 1/kforalli =1,...,nand allj = 1,...,k. Observe that the
total weight of each’/ € CS is kn, so each such partial coalition perforiis Finally, to construct
the imputatione = (z',...,z%), forallj = 1,...,kandalli = 1,...,n — 1, we setx{ =1if
(i,j) € E anda? = M otherwise. Also, we set), = V — S.""' 27 forall j = 1,..., k.

Suppose we started with a “yes™-instance oA¥MuUM EDGE BICLIQUE, and let(L’, R') be
the corresponding subgraph Bf Then the subset of playets = {i | p; € R’} can r-profitably
deviate from(CS, =) by abandoning the partial coalitions in the Set {r’ | A\; € L'}, and using
the freed-up resources to embark#n Indeed, undes the players inJ collectively earn at most
(n — 1)k from partial coalitions inS, and devote at leagt’ units of weight to these coalitions.

Conversely, consider any r-profitable deviatig#lS’, y), and letJ be the corresponding set of
deviators. Suppose thai coalitions inC'S’ work ont!, andk, coalitions work ort?. First, suppose
n € J. Observe thatCs’, y) is profitable for player if and only if k; = k, k2 = 0: indeed, under
(CS, ) playern earns at least(V — (n — 1)M), whereas under any outcome that completes less
thatk copies oft! he earns at mogk — 1)V + k%”((n —1Dk+1) <k(V —(n—1)M). However,
any deviation that results in executikgcopies oft! must involve all resources of all players, i.e.,
J ={1,...,n}, and any such deviation cannot be simultaneously profifablall members of the
deviating set. Hence, we have¢ J, and thereforev(.JJ) < k(n — 1). Consequentlyk; = 0
and the deviators’ total profit is at mo@f(i)((n — 1)k + 1) < M. This means thatCS’, y) is an

r-profitable deviation only if no player € J abandons a coalition’ € CS such thatrg = M.
On the other hand, to successfully execute even one coply thfe members of must collectively
withdraw at leastX” units of weight. LetR' = {p; | i € J}, and letL’ correspond to the set of
partial coalitions inC'S affected by the deviation; theil, R’) is a biclique of size atleadt. [

It is not hard to check that in the proof of Theorem 8 no playan withdraw part of his re-

sources from a partial coalition i6'S and still claim any profit from that coalition. This implies
that checking whether a given outcome is in the o-core is etatipnally hard, too.
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Corollary 4. Given a TTGG and an outcomé&CS, x) of the corresponding OCF gane, it is
stronglycoNP-complete to decide whethé€’S, x) is in the o-core of.

On the other hand, combining the techniques of Theorem 7 &edrém 4 leads to a pseu-
dopolynomial algorithm for checking whether the c-core afla&s is non-empty.

Theorem 9. Given a TTGG = (N;w;t), one can check in timpoly(|G|) whether the corre-
sponding OCF gamé' has a non-empty c-core.

Proof. We will show that if the c-core of a gam@ is non-empty, then for any social welfare-
maximizing set of tasks we can construct a coalition stmecfiS' that executes this set of tasks and
an imputationz € Z(CS) such that(CS, z) is in the c-core of; moreover, inCS each agent
contributes to each coalition. Hence, our algorithm firgtats a social welfare-maximizing set of
tasks, then constructs a coalition structure that can parthis set of tasks, and finally solves a
linear program to check if this coalition structure can lab#ized. The details follow.

Assume for simplicity that contains a task type with 7" = 1; if this is not the case we
can add a task typ# = (1,0) to ¢. This allows us to assume that in any coalition structure all
agents’ resources are committed to some tasks. Fix a soelfdra-maximizing multi-set of tasks
{ait!,... ant™}. Suppose-core(G) # 0, and let(CS’,y) be an outcome in the c-core 6f.

By Theorem 4, we havg ", aju/ = v(CS’). Consider a coalition structur€S that contains
ai + - -+ + oy, coalitions: the firsty; coalitions have weighT'* each, the nextv, coalitions have
weight T2 each, etc., and each agerdistributes his resources evenly between all coalitioms, i
he contributeaui%;v) units of weight to each of the firgt; coalitions, etc. As inCS all agents
contribute to all partial coalitions, angd C'S) = v(CS’), we havey € Z(CS). Moreover, it is

clear that the outcomgCS, y) is in c-core(G): any c-profitable deviation fromiCS, y) is also a
c-profitable deviation froniC'S’, ).

By Proposition 9 when all weights are given in unary, we cad #rsocial welfare-maximizing

coalition structureC'S = (', ..., 7%) in polynomial time. Consider the following linear program:
pi > 0Ofori=1,...,n
Zpi = v(09)
iEN
S pi > Uy forall JC N,

e

whereU,, is defined as in the proof of Theorem 7. While this linear panghas exponentially
many constraints, it can be solved in linear time by the stlig method (Schrijver, 1986), since it
has a polynomial-time separation oracle. Indeed, we caid@&chether a given candidate solution
is feasible using the algorithm described in the proof ofareen 7.

Clearly, if this linear program has a feasible solutjnthen the imputatior: given by:p{ =

pls((g;)) forall: € N andallj = 1,...,|CS| satisfiest € Z(CS), and, moreover(CS,x) €

c-core(GG). Conversely, if it does not have a feasible solution, tig&hcannot be stabilized, and
hence by the argument above the c-coré/a$ empty. O
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10. Conclusions, Extensions, and Future Work

In this paper we introduced a model of cooperative gamesttmats for overlapping coalitions and
takes into account the need for resource allocation. Ingdem we generalized the usual models
where either the grand coalition is the only desirable auie®r the outcomes are required to be
partitions of the set of agents. Given our model, we definetistndied in depth a notion of the
core (thec-corg which is a generalization of the core in the traditional mlsdf cooperative game
theory. Under some quite general conditions, we provideldaaacterization for an outcome—that
is, a(coalition structure, imputationpair—to belong to the core. We also showed that any outcome
in the core maximizes the social welfare. Further, we inipedl a notion of balancedness for OCF-
games, and showed that a coalition structGie admits an imputatior: so that(CS, ) is in the
core if and only if the game is balanced. Moreover, we extdrttie notion of convexity to our
setting and showed that convex games have a non-empty core.

In addition, we considered two other notions of core-siighih OCF-games, which differ from
each other (as well as from the first one) in what the deviagpgct to obtain from their collabora-
tion with non-deviators. Together, our three notions ofdbree span a wide range of beliefs that the
deviators may hold regarding payoffs from coalitions witmsdeviators, and can be substantially
different from each other with respect to the sets of outcothat they characterize, and with respect
to their computational complexity. We also compared the @@mes with their non-overlapping
analogues, and showed that from the social welfare maxiioizperspective, OCF-games may
provide higher total utility, and are easier to work with ihtaeir classic counterparts. We have
also argued that OCF-games provide a more appropriate hmgd&amework than fuzzy games
for many scenarios; in particular, this is certainly theects threshold task games. To summarize,
our paper is one of the very first attempts to provide a tha@aereatment of overlapping coalition
formation, and to study stability in this setting in a thagbumanner.

10.1 Extensions

In many environments, when a coalition is formed, it may havehoice of actions to execute.
While in a deterministic setting such as the one considerdtis paper, the coalition will simply
choose the action that results in the highest possible fayo& probabilistic environment this
choice is more difficult: a coalition may want to strike a lvela between the expected payoff and
the variance. To address this issue, we can incorpaktional actionsin our model as follows.

A coalition is allowed to select an action from a (usuallytiéhiaction spacel. Without loss of
generality, we assume that each coalition can undertakaaion in.A.2> The value of a coalition is
then determined by the resource contribution levels of gemersandthe action selected. There-
fore, the characteristic function in our setting is thenmidion(r, a) pairs, where = (r1,...,7,)
is a vector of resources, aads A4 is an action. All of our definitions and results generalizadily
to the situation where each coalition has a choice of actfsimply put, our presentation so far
corresponds to a situation where each coalition had exan#lyaction available to it).

Another extension we have examined has to do with modellegatvailable resources. For
ease of presentation it was assumed throughout the papédndina exists only one type of (contin-
uous) resource. Nevertheless, all of our results still fiolde assume multiple types of resources
(e.g., agents have to distribute both tigred money among their coalitions). Moreover, we have

3. The situation where this is not the case can be modeledttiygsthe value of the respectieoalition, action)pair
to 0.
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also studied a “discrete” OCF setting, with agent contrdsuievels taking values in a finite set
(i.e., an agent may be able to contribute 20%, but not 21% fdsources to a given coalition).
Such a setting is obviously of interest in many application®lving countable resources (as the
discretization of effectively any kind of resources is coamin practice). With discrete resources,
the number of possible coalition structures is now finiteg(@salition in our setting is a collection

of resources—see Section 4). All of our definitions and teewr carry through in this setting with

minor differences in the arguments used in the proofs.

10.2 Future Work

There exist many exciting open questions for future workstrf all, an important research di-
rection is to develop a better understanding of scenariosrevbverlapping coalitions can natu-
rally arise, and to identify the appropriate stability cepts for these scenarios. We believe that
techniques developed in this paper will prove useful fos fiirpose. Moreover, one of our first
priorities is to investigate further the alternative nasoof stability (i.e., the o-core and the r-core)
proposed above, and obtain relevant characterizatiotseas we did with the c-core. Extending
other solution concepts for coalitional games—such as, thg Shapley value—to OCF settings is
an important research direction as well.

We also plan to study further the computational complexitgare-related questions in this
setting. First, while we have initiated the study of completheoretic aspects of stability in OCF
games, in this paper we have focused on the complexity ofkaingevhether a given outcome is
stable. Another natural problem in this domain is studyimg ¢omplexity of checking whether a
game has a stable solution—i.e., whether its c-core (r;@o®re) is non-empty. Theorem 9 makes
the first steps in this direction, suggesting that this probinay be easier in the overlapping setting
than in the classic setting: indeed, Elkind et al. (2008)jecmre that for WVGs with coalition
structures checking the non-emptiness of the core is hanhfary weights.

Now, the hardness results for computing an allocation irctwe or checking if the core is non-
empty in the traditional setting—as those in the work of Gav&1978), Tamir (1991), Deng and
Papadimitriou (1994), Sandholm et al. (1999), Conitzer 8addholm (2006)—and our hardness
results in this paper suggest that one can only hope to fgespigcial classes of games where we can
have efficient algorithms for computing core allocations.dted earlier, an element of the core in
convex games can be computed in the traditional settinglginytaking the vector of the marginal
contributions of the agents for an arbitrary permutatiorihef set of agents. In our setting, even
though our proof yields a procedure for constructing an elgnof the c-core, it requires solving a
series of optimization questions, which for arbitrary cexgames are NP-hard. Naturally, it would
be desirable to find classes of convex games where our prelsya polynomial time algorithm.

We are also interested in finding processes that lead to tiearcaot necessarily convex games;
thoughrandomized algorithmsuch as the ones of Dieckmann and Schwalbe (1998) and Chalki-
adakis and Boutilier (2004) trivially extend to the ovepapm setting, they would be of little prac-
tical value here due to the huge space of potential overgppbdnfigurations. Therefore, we are
interested in finding ways to exploit known game structurerime the search space for potential
stable configurations. Another subject of future reseasexiending our model to allow for infinite
coalition structures. Furthermore, it would be interagtim establish links between outcomes in the
core and outcomes of bargaining equilibria in overlappiogliional bargaining games.
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Finally, the incorporation of actions in our model allows foe investigation of action stochas-
ticity and, more generally, uncertainty in an OCF settingar iastance, a coalitional action can
be associated with a distribution over possible payoff @umtes resulting from its execution. This
poses challenges to study such models from both a thedratidaa practical standpoint, since the
introduction of uncertainty leads to several intricacies neadily resolved by the use of “determin-
istic” concepts and models, as the work of Suijs and Borm$),98uijs, Borm, Wagenaere, and Tijs
(1999), Blankenburg, Klusch, and Shehory (2003), Chaliiesland Boutilier (2004) and Chalki-
adakis, Markakis, and Boutilier (2007) demonstrates. Oelaed note, enriching our model de-
scription so as to capture type uncertainty (ChalkiadakiBtilier, 2004; Chalkiadakis et al.,
2007) would allow for the ready translation of uncertairggarding the types (capabilities) of play-
ers to coalitional value uncertainty, while still capturithe potential stochasticity of coalitional
action outcomes at the same time.
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Appendix A. Algorithmic Aspects of Social Welfare Maximization in TTGs

In this appendix, we study the complexity of finding a socialfare-maximizing outcome in TTGs,
both in the overlapping and in the non-overlapping scenatidess explicitly mentioned otherwise,
we make the standard assumption that all parameters in Huogigkion of a TTG (i.e., all agents’
weights, all thresholds and all task utilities), are intsggiven in binary.

It is not hard to see that finding a non-overlapping coalistmcture that maximizes the social
welfare is an NP-hard problem.

Proposition 8. Given a TTGG = (IV; w;t) and a parametefs, it is NP-complete to decide &
has an outcoméCsS, p) with v(CS) > K. This holds even if there is just one task type, t.es,t!,
and all weights, thresholds and utilities are given in unary

Proof. Itis easy to see that the problem is in NP. To show NP-har¢gmesgive a reduction from 3-
PARTITION (Garey & Johnson, 1990) to our problem. An instance ofa®?TION is given by a list
of non-negative integerd = (ay,...,as;) and an integer parametét that satisfieszg’i , =B
andB/4 < a; < B/2forall: = 1,...,3¢. Itis a “yes™instance if the elements of can
be partitioned int setssSy, ..., S, such thata(S;) = --- = a(S;) = B and a “no™-instance
otherwise.

Given an instance of 3ARTITION, consider a TTGZ with N = {1,...,3¢}, w; = a; for
i =1,...,3¢ and a single task type= (T, u) with 7= B andu = 1. Clearly, deciding whether
the maximum social welfare achievabledfis at leas is equivalent to checking whether the given
instance of 3-RRTITION is a “yes"-instance. Moreover, since 3+®TITION is known to remain

NP-hard when the input is given in unary, the same is true Gopooblem. O
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In contrast, finding a social welfare-maximizing coalitistnucture in the OCF game that cor-
responds to a TTG is a somewhat easier problem. Indeed, weiroaty add together all agents’
weights, and then find an optimal set of tasks to execute ghisramount of resource. The latter
problem is equivalent to NBOUNDED KNAPSACK, which is known to be NP-hard when the inputs
are given in binary, but is polynomial-time solvable if dbments of the input are given in unary or
if there are at most items; for details, see (Martello & Toth, 1990), Section.3Xnsequently, a
similar conclusion holds for our problem.

Proposition 9. Given a TTGG = (NV;w;t) and a parametel, it is NP-complete to decide if
G has an outcomé¢CS, =) with v(C'S) > K. However, this problem becomes polynomial-time
solvable if all weights, thresholds and utilities are giierunary or if there are at most task types.
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