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Abstract
In the usual models of cooperative game theory, the outcome of a coalition formation process is
either the grand coalition or a coalition structure that consists of disjoint coalitions. However, in
many domains where coalitions are associated with tasks, anagent may be involved in executing
more than one task, and thus may distribute his resources among several coalitions. To tackle such
scenarios, we introduce a model forcooperative games with overlapping coalitions—or overlap-
ping coalition formation (OCF) games. We then explore the issue of stability in this setting. In
particular, we introduce a notion of the core, which generalizes the corresponding notion in the
traditional (non-overlapping) scenario. Then, under somequite general conditions, we characterize
the elements of the core, and show that any element of the coremaximizes the social welfare. We
also introduce a concept of balancedness for overlapping coalitional games, and use it to charac-
terize coalition structures that can be extended to elements of the core. Finally, we generalize the
notion of convexity to our setting, and show that under some natural assumptions convex games
have a non-empty core. Moreover, we introduce two alternative notions of stability in OCF that
allow a wider range of deviations, and explore the relationships among the corresponding defini-
tions of the core, as well as the classic (non-overlapping) core and the Aubin core. We illustrate the
general properties of the three cores, and also study them from a computational perspective, thus
obtaining additional insights into their fundamental structure.

1. Introduction

Coalition formation, widely studied in game theory and economics (Myerson, 1991), has attracted
much attention in AI as means of forming teams of autonomous selfish agents that need to cooperate
to perform certain tasks (Sandholm & Lesser, 1997; Shehory &Kraus, 1998; Sandholm, Larson,
Andersson, Shehory, & Tohme, 1999; Manisterski, Sarne, & Kraus, 2008; Rahwan, Ramchurn,
Jennings, & Giovannucci, 2009). Traditionally, in the gametheory literature it is assumed that the
outcome of the coalition formation process is either thegrand coalition(i.e., the set of all agents), or
a coalition structurethat consists of disjoint coalitions (i.e.,a partition of the set of agents). While
natural for some settings, in many scenarios of interest this assumption is not applicable.
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Specifically, it is often natural to associate coalitions with tasks to be performed by the agents. In
such situations, some agents may be involved in several tasks, and therefore may need to distribute
their resources among the coalitions in which they participate. Indeed, such “overlaps” may be
necessary to obtain a good outcome, and are natural in a plethora of interesting applications. As
a simple e-commerce example, consider online trading agents representing individuals or virtual
enterprises, and facing the challenge of allocating their owners’ capital to a variety of projects
(i.e., coalitions) simultaneously. There are many other examples of settings in which an agent (be
it a software entity or a human) splits his resources (such asprocessing power, time or money)
among several tasks. These tasks, in turn, may require the participation of more than one agent: a
computation may run on several servers, a software project usually involves more than one engineer,
and a start-up may rely on several investors. Thus, each taskcorresponds to a coalition of agents,
but agents’ contributions to those coalitions may be fractional, and, moreover, agents can participate
in several tasks at once, resulting incoalition structures with overlapping coalitions. The formation
of overlapping coalitions is particularly prevalent in systems demanding multiagent or multirobot
coordination, computational grid networks, and sensor networks—see, e.g., the work of Patel et
al. (2005), and Dang, Dash, Rogers, & Jennings (2006). To date, however, there has been essentially
no theoretical treatment of the topic, with just a few exceptions (which we discuss in Section 3).

Against this background, the goal of this paper is to introduce and study a model that explicitly
takesoverlapping coalition formation (OCF)into account. Our model is applicable in situations
where agents need to allocate different parts of their resources to simultaneously serve different
tasks as members of different coalitions. Besides allowingfor overlapping coalitions, it departs
from the conventional coalition formation framework in twoimportant aspects. First, there is no
inherent superadditivity assumption in our work, and hencethe grand coalition does not always
emerge. Thus, our subsequent definition of the core incorporates coalition structures. Second, ex-
actly because we are interested in outcomes other than the grand coalition formation, we do not
use the standardtransferable utility (TU)framework, where agents can make arbitrary payments to
each other. Instead, following the seminal paper by Aumann and Dreze (1974), we allow arbitrary
monetary transferswithin coalitions, but not cross-coalitional transfers. That is,an agent not con-
tributing to a coalition should not expect to receive payofffrom it. Indeed, as argued by Aumann
and Dreze, the inability of some of the agents to work together and share payoffs may be one of the
primary reasons why the grand coalition does not form, and a particular coalition structure arises.
Finally, our model can take task (coalitional action) execution explicitly into account; this facilitates
possible extensions to tackle coalition formation under uncertainty.1

Apart from defining a model for overlapping coalition formation, the main contribution of this
work is exploring the stability concept of thecore in the OCF setting. We suggest three different
notions of the core, depending on the nature of deviations allowed, since, as we shall see, the
range of permissible deviations in an overlapping setting can be much richer than in the traditional
non-overlapping one. More specifically, the definition of stability depends on whether a deviator
who reduced his contribution to some—but not all—coalitions, expects to get any payoff from the
coalitions that he did not abandon completely.

To provide more intuition, consider the example of two construction companies, 1 and 2, who
are currently partners (not necessarily the only partners)working on construction projects A (“build-
ing a university campus”) and B (“building a hospital”). Assume that partner 1 has more stakes in

1. To simplify notation, we only show how to incorporate coalitional actions in the model in Section 10.

180



COOPERATIVE GAMES WITH OVERLAPPING COALITIONS

project B, expecting to extract from it a great value, and hascontributed to it75% of its available re-
sources, contributing the remaining25% to A; while partner 2 contributes most of its resources (say
67%) to project A and the remaining fraction (say33%) to B. Thus, they currently participate in two
overlapping coalitions, each one performing a different task. Now, if partner 2 feels unhappy about
the current payoff division arrangement, it might considerabandoning project A (by cancelling the
project if it is the project leader, or by taking advantage ofsome contractual exit clause) in order to
commit its resources to a more profitable to 2 project (say C).However, by doing so, it might hurt
project A’s chances of completion. Does this mean that 2’s actions will trigger the spite of company
1, which might use available means to kick 2 out of project B? And what if company 2 lowered
its degree of participation in A instead of withdrawing completely? How much of the profits from
completing A would 2 then be entitled to? The different answers one can provide to these ques-
tions correspond to different notions of profitable deviations, and, therefore, to different notions of
core-stability. In particular, we demonstrate that the core notions we put forward in this paper are
substantially different from each other with respect to thesets of outcomes they characterize.

Our main technical results involve thec-core, the first core concept that we suggest. Among the
three concepts of the core introduced in this paper, the c-core is the closest to the standard definition
of the core in general non-transferable utility (NTU) games. In particular, we provide conditions
for the existence of the c-core as follows. Under quite general assumptions, we first provide a
characterization for outcomes, i.e., pairs of the form(overlapping coalition structure, imputation),
to be in the c-core. Our proof is based on a graph-theoretic argument, which may be of independent
interest. As a corollary of this result, we show that any outcome in the c-core maximizes the social
welfare. Second, we characterize coalition structures that admit payoff allocations such that the
resulting outcome is in the c-core. This is done by generalizing the Bondareva-Shapley theorem
to our setting (note that this theorem does not hold for arbitrary non-transferable utility games).
Furthermore, we extend the notion of convexity in coalitional games to overlapping coalitions, and
show that under mild assumptions any convex OCF game has a non-empty c-core.

We then discuss the properties of all three versions of the OCF-core we suggest, and relate
them to each other and to the classic core. We also demonstrate how our model and core con-
cepts differ from fuzzy coalitional games (Aubin, 1981); though relevant to that model, our work
is fundamentally different. In addition, we initiate the study of computational aspects of stability
in the overlapping setting. Note that the computational analysis of coalitional games, even in non-
overlapping scenarios, is hindered by the fact that, in general, coalitional games do not possess a
compact representation, as one may have to list the value of every possible coalition. Thus, the ex-
isting work on algorithmic aspects of coalitional games focused on game representations that are ei-
ther incomplete—such as, e.g., weighted voting games (Elkind, Goldberg, Goldberg, & Wooldridge,
2009), induced subgraph games (Deng & Papadimitriou, 1994), or network flow games (Bachrach
& Rosenschein, 2007)—or are only guaranteed to be succinct for specific subclasses of games, such
as MC-nets (Ieong & Shoham, 2005) or coalitional skill games(Bachrach & Rosenschein, 2008);
another approach is to show complexity bounds for all games representable by polynomial-sized
circuits (Greco, Malizia, Palopoli, & Scarcello, 2009). This issue is even more severe in the OCF
setting, as now we have to specify the value of everypartial coalition. Therefore, in this paper,
we follow the first of these approaches, and introduce a formalism of threshold task gamesthat is
capable of describing a large family of overlapping coalition formation settings in a succinct man-
ner. Within this formalism, we obtain both negative and positive results regarding the complexity of
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deciding the questions of membership and non-emptiness forour OCF-core concepts. We conclude
by describing some natural extensions of our model and suggesting directions for future work.2

2. Preliminaries

In this section, we provide a brief overview of the basic concepts in cooperative game theory re-
garding non-overlapping coalition structures. To begin, letN = {1, . . . , n} be a set of players (or
“agents”). A subsetS ⊆ N is called acoalition. A coalition structure(CS ) in non-overlapping
environments is a partition of the set of agents.

Under the assumption oftransferable utility, coalition formation can be abstracted into a fairly
simple model. This assumption postulates the existence of a(divisible) commodity (e.g., “money”)
that can be freely transferred among players. The role of thecharacteristic functionof acoalitional
game with transferable utility (TU-game)is to specify a single number denoting the worth of a
coalition. Formally, a characteristic functionv : 2N 7→ R defines thevaluev(S) of each coalition
S (von Neumann & Morgenstern, 1944). A transferable utility gameG is completely specified by
the set of playersN and the characteristic functionv; we can therefore writeG = (N, v).

While the characteristic function describes the payoffs available to coalitions, it does not pre-
scribe a way of distributing these payoffs. This is capturedby the notion of animputation, defined as
follows. We say that anallocation is a vector of payoffsx = (x1, . . . , xn) assigning some payoff to
eachj ∈ N . An allocationx is efficientwith respect to a coalition structureCS if

∑

j∈S xj = v(S)
for all S ∈ CS ; and it is called animputationif it is efficient and satisfiesindividual rationality, i.e.,
xj ≥ v({j}) for j = 1, . . . , n. The set of all imputations ofCS is denoted byI(CS ).

Now, when rational agents seek to maximize their individualpayoffs, thestability of the un-
derlying coalition structure becomes critical, as agents might be tempted to abandon agreements in
pursuit of further gains for themselves. A structure is stable only if the outcomes attained by the
coalitions and the payoff combinations agreed to by the agents satisfy both individual and group
rationality. Given this requirement, research in coalition formation has developed several notions of
stability, among the strongest and the most well-studied ones being thecore(Gillies, 1953). Taking
coalition structures into account, the core of a TU game is a set of outcomes(CS ,x), x ∈ I(CS ),
such that no subgroup of agents is motivated to depart from their coalitions inCS .

Definition 1. Let CS be a coalition structure, and letx ∈ Rn be an allocation of payoffs to the
agents. Thecoreof a TU game(N, v) is the set of all pairs(CS ,x) such thatx ∈ I(CS ) and for
anyS ⊆ N it holds that

∑

j∈S xj ≥ v(S).

Hence, no coalition would ever “block” the proposal for a core allocation. It is well-known that
the core is a strong notion, and there exist many games where it is empty (Myerson, 1991).

The core definition above is essentially the definition provided by Sandholm and Lesser (1997)
(and is also very similar to the one given by Dieckmann & Schwalbe, 1998). If we assume super-
additivity of the characteristic function (i.e.,v(U ∪T ) ≥ v(U)+ v(T ) for any disjoint coalitionsU
andT ) then in the definition above we may only consider outcomes whereCS is simply the grand

2. Parts of this work, namely the model and the statement of some of our results, have appeared in a preliminary
conference paper (Chalkiadakis, Elkind, Markakis, & Jennings, 2008). However,(a) the introduction of alternative
notions of the core and all related results presented here are entirely novel;(b) similarly, our complexity-related
results are entirely novel; and(c) the discussion on the properties of the cores and the in-depth comparison with
fuzzy coalitional games appear here for the first time as well.
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coalition and
∑

j∈N xj = v(N). The core definition then becomes the traditional definitionthat has
been used in the vast majority of the economics literature (Osborne & Rubinstein, 1994).

The environments of interest in our work however are mainly non-superadditive and we will
not make any such assumption on the characteristic function. Indeed, there is a plethora of realistic
application scenarios where the emergence of the grand coalition is either not guaranteed, might be
perceivably harmful, or is plainly impossible (Sandholm & Lesser, 1997; Sandholm et al., 1999).
In addition to such motivations, Aumann and Dreze (1974) also provide a thorough and insightful
discussion on why coalition structures arise: they put forward a series of arguments on how this
might happen, and explain that coalition structures may emerge naturally even in superadditive
environments for a variety of reasons. Briefly, their arguments describe how a subset of agents
might find it more worthwhile to bargain within the frameworkof a specific structure, than within
the framework of the grand coalition; or how the emergence ofa coalition structure may reflect
considerations that are by necessity excluded from the formal description of the game because they
are impossible to measure or communicate. Exogenous arguments for the emergence of coalition
structures naturally include the impossibility of communication among all negotiators, or theby law
prohibition of the grand coalition (Aumann & Dreze, 1974).

3. Related Work

The work that is most relevant to ours is the research onfuzzy coalitional games, introduced by
Aubin (1981). Branzei, Dimitrov, & Tijs (2005) also providea detailed exposition of such games.
A player in a fuzzy game can participate in a coalition at variouslevels, and the value of a coalition
S depends on the participation levels of the agents inS. Given this model, Aubin then defines the
core for fuzzy games (also referred to as theAubin core). Though our model also allows for partial
participation in a coalition, there are several crucial differences between fuzzy games and OCF
games, and the corresponding notions of stability. We postpone listing these until after presenting
our model and results, but will do so in Section 8.2. For now, let us just point out that, in distinction
to our work, the formation of coalition structures (overlapping or not) is not addressed in the fuzzy
games literature.

Apart from fuzzy games, very little work exists on overlapping coalition formation settings.
Here we discuss some notable exceptions, as well as some related work on the core in the context
of non-overlapping coalition structures.

To begin, Shehory and Kraus (1996) present a setting for overlapping coalition formation. In
their model, the agents have goals and capabilities—i.e., abilities to execute certain actions. To
serve their goals, the agents have to participate in coalitions, to each of which they contribute some
of their capabilities, which can thus be thought of as resources. The authors then propose heuristic
algorithms that lead to the creation of overlapping coalition structures. However, the authors stop
short of addressing the question of the stability of overlapping coalitions. Dang et al. (2006) also
examine heuristic algorithms for overlapping coalition formation to be used in surveillance multi-
sensor networks. However, their work does not deal with payoff allocation issues, and does not
view the overlapping coalition formation problem from a game-theoretic perspective.

Conconi and Perroni (2001) present a model of internationalmultidimensional policy coordi-
nation in anon-cooperativesetting: agreement structures between countries can be overlapping,
namely a country may participate in multiple agreements, bycontributing any number of proposed
“elementary strategies” (which can be regarded as being chosen fromdiscretesets of resources).
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They then introduce an equilibrium concept to describe stability in this setting. However, in con-
trast to our work, the setting in the work of Conconi and Perroni is non-cooperative, and does not
apply to agents with continuous resources.

More recently, Albizuri, Aurrecoechea, & Zarzuelo (2006) presented an extension of Owen’s
value (1977)—which, in turn, can be thought of as a generalization of the Shapley value (1953)—to
an overlapping coalition formation setting. Specifically,they present an axiomatic characterization
of their configuration value. However, in the work of Albizuri et al. there exists no notion of
resources that an agent needs to distribute across coalitions.

With regard to non-overlapping coalition structures as presented in Section 2, Sandholm and
Lesser (1997) examine the problem of allocatingcomputational resourcesto coalitions. They do not
restrict themselves to superadditive settings, but discuss the stability of coalition structures instead.
In particular, they introduce a notion of bounded rational core that explicitly takes into account coali-
tion structures. Apt & Radzik (2006) and Apt & Witzel (2009) also do not restrain themselves to
coalition formation problems where the outcome is the grandcoalition only. Instead, they introduce
various stability notions for abstract games whose outcomes can be coalition structures, and discuss
simple transformations (e.g., split and merge rules) by which stable partitions of the set of players
may emerge. However, none of these papers considers any extensions to overlapping coalitions.

4. Our Model

In this section we extend the traditional model of Section 2 to cooperative games with overlapping
coalitions. In most scenarios of interest, even if overlapping coalitions are allowed, an agent would
not be able to participate in all possible coalitions due to lack of time, cash flow, or energy. To model
this, we assume that each agent possesses a certain amount ofresources which he can distribute
among the coalitions he joins. Without loss of generality, we can make a normalization and assume
that each agent has one unit of resource: an agent’s contribution to a coalition is thus given by the
fraction of his resources that he allocates to it. We can alsothink of this as the agent’s “participation
level”, or the fraction of time he devotes to a coalition. Of course, an agent may own several types
of resources (e.g., timeand money), and his contribution to a coalition would then be described
by a vector rather than a scalar. Our model, and all of our results, extend to this more general
setting in a straightforward manner. Nevertheless, for conciseness, we restrict our presentation to
the single-resource setting.

As discussed above, in the non-overlapping model a coalition is a subset of agents, and a game
is defined by its characteristic functionv : 2N 7→ R, representing the maximum total payoff that
a coalition can get. In our setting, apartial coalition is given by a vectorr = (r1, . . . , rn), where
rj is the fraction of agentj’s resources contributed to this coalition (rj = 0 means thatj is not a
member of the coalition). Thesupportof a partial coalitionr is denoted bysupp(r) and is defined
assupp(r) = {j ∈ N | rj 6= 0}. We can now define thecooperative games with overlapping
coalitions, or overlapping coalition formation games(OCF-games for short), which we will be
considering in the rest of this work.

Definition 2. AnOCF-gameG with player setN = {1, . . . , n} is given by a functionv : [0, 1]n →
R, wherev(0n) = 0.

Functionv maps each partial coalitionr to the corresponding payoff. We denote this game by
G = (N, v), or, if N is clear from the context, simply byv. Clearly, a “classic” coalitionS ⊆ N
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can now be represented as the vectoreS , where (eS)j = 1 for j ∈ S and 0 otherwise. In the
economics literature, these are sometimes calledcrisp coalitions, whereas coalitions of the form
(r1, . . . , rn) with at least onerj in (0, 1) are referred to asfuzzycoalitions (Branzei et al., 2005).
We will avoid the latter term in our work so as not to cause confusion with fuzzy games, and refer
instead to coalitions of this kind aspartial coalitions, or simply coalitions.

In most scenarios of interest,v is monotone, i.e., satisfiesv(r) ≥ v(r′) for anyr, r′ such that
rj ≥ r′j for all j = 1, . . . , n. Note that ifv is monotone, we havev(r) ≥ 0 for anyr ∈ [0, 1]n, since
we setv(0, . . . , 0) = 0. In our discussion of stability of overlapping coalitions,we will assume that
v is monotone.

We now need to specify the possible outcomes of an OCF-game. In the non-overlapping setting,
an outcome is a pair(CS ,x), whereCS is a partition onN andx is an imputation forCS . To
extend this definition to our scenario, we start by introducing the notion of a coalition structure
with overlapping coalitions. While we will be mostly interested in coalition structures overN , the
definition below is given for coalition structures over an arbitrary subsetT ⊆ N , as this will be
useful for defining the maximum profit a subset of agents can achieve (see the definition of the
functionv∗ below).

Definition 3. For a set of agentsT ⊆ N , a coalition structureon T is a finite list of vectors
(partial coalitions)CST = (r1, . . . , rk) that satisfies (i)ri ∈ [0, 1]n; (ii) supp(ri) ⊆ T for all
i = 1, . . . , k; and (iii)

∑k
i=1 r

i
j ≤ 1 for all j ∈ T . We will refer tok as thesizeof the coalition

structureCST and write|CST | = k. Also,CST denotes the set of all coalition structures onT .

In the definition above, eachri = (ri1, r
i
2, . . . , r

i
n) corresponds to some partial coalition (rij

being the fraction of the resources that agentj contributes tori). The constraints state that every
agent fromT distributes at most one unit of his resources among the various coalitions he partici-
pates in (those may include the singleton coalition). This allows coalitions to be overlapping. Note
that the coalition structure is a list rather than a set, i.e., it can contain two or more identical partial
coalitions. Observe also that an agent is not required to allocate all of his resources, i.e., it can be
the case that

∑k
i=1 r

i
j < 1. However, under monotonicity, we can assume that for each agent j we

have
∑k

i=1 r
i
j = 1 (i.e., a coalition structure is a fractional partition of the agents).

We would like to remark that one could conceive of other models that also allow agents to form
overlapping coalitions. As an example, instead of requiring agents to distribute at most one unit of
resources among partial coalitions, we could have constraints on the number of (crisp) coalitions
an agent could take part in. While we believe that our model isflexible enough to represent a wide
range of realisitc scenarios, and we focus on it throughout our work, in Section 10, we discuss
several extensions of our model.

The introduction of overlapping coalition structures imposes some new technical challenges.
For instance, while in the non-overlapping setting the number of different coalition structures is
finite, in our setting there can be infinitely many different partial coalitions, and hence infinitely
many coalition structures. This implies that it is impossible to find the social welfare-maximizing
coalition structure by enumerating all candidate solutions—in fact, the maximum may not even be
attained. In contrast, in a non-OCF setting this approach ispossible—though, in general, infeasible.

We now extend the definition ofv to coalition structures by settingv(CS ) =
∑

r∈CS
v(r).

Furthermore, for anyS ⊆ N we definev∗(S) = supCS∈CSS
v(CS ). Intuitively, v∗(S) is the

least upper bound on the value that the members ofS can achieve by forming a coalition structure;
for the interested reader, we note that it corresponds to thecharacteristic function of the game’s
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superadditive cover(Aumann & Dreze, 1974). Clearly,v∗(S) may exceed the value of coalition
S itself, i.e., v(eS), since it may be profitable for the players inS to form several overlapping
coalitions overS. We say thatv is boundedif v∗(N) < ∞; for most games of interest,v is likely
to be bounded.

As in our setting the agents will not necessarily form the grand coalition, we will be interested
in reasoning about coalition structures fromCSN . The coalition structure will impose restrictions
on admissible ways of distributing the gains; a payoff vector corresponds to an imputation if and
only if it is obtained by distributing the value of each coalition:

Definition 4. Given a coalition structureCS ∈ CSN , |CS | = k, an imputationfor CS is ak-tuple
x = (x1, . . . ,xk), wherexi ∈ Rn for i = 1, . . . , k, such that

• (Payoff Distribution) for every partial coalitionri ∈ CS we have
∑n

j=1 x
i
j = v(ri) andrij =

0 impliesxij = 0;

• (Individual Rationality) the total payoff of agentj is at least as large as what he can achieve
on his own:

∑k
i=1 x

i
j ≥ v∗({j}).

The set of all imputations forCS is denoted byI(CS ). Notice that in Definition 4, the profit
from a task assigned to a partial coalition is only distributed among agents involved in executing it.
Thus, no transfers of that payoff are allowed to outsiders. Note also that the individual rationality
constraint is defined in terms ofv∗ rather thanv, as even for a single agent it may be profitable to
split into several partial coalitions (e.g., if there are many tasks, each of which only requires a small
fraction of his resources).

Now, the set of outcomes that is of interest to us is the set offeasible agreements:

Definition 5. A feasible agreement (or anoutcome) for a set of agentsJ ⊆ N is a tuple(CS ,x)
whereCS ∈ CSJ , |CS | = k for somek ∈ N, andx = (x1, . . . ,xk) ∈ I(CS ). We denote the set
of all feasible agreements forJ byF(J).

The payoffpj of an agentj under a feasible agreement(CS ,x) is pj(CS ,x) =
∑k

i=1 x
i
j. We

write p(CS ,x) to denote the vector(p1(CS ,x), . . . , pn(CS ,x)). Finally, note that it is straight-
forward to extend the definitions above to games on subsets ofthe agents. In particular, we require
that an imputationx ∈ I(CS J) satisfiesxij = 0 for j 6∈ J .

Given this model, we are now ready to define the concept of the core for cooperative games with
overlapping coalitions.

5. The Core with Overlapping Coalitions

In this section, we investigate several approaches to defining stability in OCF-games. Specifically,
here we propose and analyze three alternative definitions ofthe core.

Before presenting the core definitions, we define a new class of games, which we will be using
as our running example, namely the class ofthreshold task games(TTGs). TTGs form a simple,
but expressive class of coalitional games, and can be used tomodel collaboration in multi-agent
systems. In TTGs agents pool resources in order to accomplish tasks, so the idea of agents con-
tributing resources to more than one task and thus participating in several coalitions simultaneously
is extremely natural in this context. Thus, and due to their simplicity, TTGs provide a convenient
vehicle for the study of core-stability in the overlapping setting, and we will be using them for this
purpose throughout the rest of the paper (though our work is not limited to this class of games).
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5.1 Threshold Task Games

Threshold task games are defined as follows.

Definition 6. A threshold task gameG = (N ;w; t) is given by:

• a set ofagentsN = {1, . . . , n};

• a vectorw = (w1, . . . , wn) ∈ R+ of the agents’weights;

• a list t = (t1, . . . , tm) of task types, where each task typetj is described by a threshold
T j ≥ 0 and a utilityuj ≥ 0; we writetj = (T j , uj).

Intuitively, such games describe scenarios where agents can split into teams to work on tasks.
There is one type of resource (e.g., time or money) that is needed for all tasks, and each agent has
a certain amount of this resource which corresponds to his weight wi (we chose the term “weight”
to avoid confusion with the use of the term “resource” in the context of OCF-games). There arem
types of tasks, each of which is described by a resource requirementT j and a utilityuj . If the team
of agents that works ontj has total weight at leastT j , this means that it has sufficient resources to
complete the task, so it obtains the full value of this taskuj. Otherwise, its payoff from this task is
0. We assume that there are infinitely many tasks of each type, so that if one team of agents chooses
to work ontj, this does not prevent another team from choosingtj as well. In what follows, we
assume that the listt is monotone, i.e., it satisfiesT 1 < . . . < Tm andu1 < . . . < um. Indeed, if
there are two task typesti, tj such thatT i ≤ T j , butui ≥ uj, we can safely assume that no team
of agents will choose to work ontj, and hencetj can be deleted fromt. Hence, our monotonicity
assumption can be made without loss of generality.

The description above suggests that we can interpret a TTGG = (N,w, t) as a (non-overlapping)
coalitional gamêG = (N, v̂), where forS ⊆ N we set

v̂(S) = max{0,max{uj | w(S) ≥ T j}}

(note that we use the standard conventionmax ∅ = −∞). Such games provide a direct general-
ization of weighted voting games (WVGs) with coalition structures introduced by Elkind, Chalki-
adakis, & Jennings (2008). Indeed, WVGs with coalition structures can be seen as TTGs in which
there is only one task typet = t1 with utility 1.

At the same time, one can also interpret TTGs as games with overlapping coalitions by allowing
each agent to spread his weight across several tasks. The corresponding OCF-gaměG = (N, v̌) is
given by

v̌(r1, . . . , rn) = max{0,max{uj |
n
∑

i=1

riwi ≥ T j}}.

That is, a partial coalition can successfully complete a task of type tj and earn its valueuj if the
total weight contributed by all agents to this partial coalition is at leastT j .

Example 1. Consider a TTGG = (N ;w; t), whereN = {1, 2, 3}, w = (2, 2, 2) and t =
t1 = (3, 1). For the corresponding non-overlapping gameĜ we havev̂({1}) = 0, v̂({1, 2}) =
v̂({1, 2, 3}) = 1. Note that when overlapping coalitions are not allowed, themaximum social
welfare achievable by any coalition structure overN is 1, as agents cannot split into two disjoint
groups each of which having weight at least 3.
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In contrast, for the corresponding OCF-gaměG = (N, v̌) we havěv(1, 0, 0) = 0, v̌(1, 1, 0) =
v̌(1, 1, 1) = 1, and, moreover,̌v(1, .5, 0) = 1 and v̌(0, .5, 1) = 1. Hence the maximum social
welfare is2 in the overlapping setting since the second agent can split his weight between two
coalitions so that each of them has enough resources to complete the task.

From Example 1, it should be clear that for any TTGG, the maximum social welfare achievable
in its overlapping versioňG is at least as large as the maximum social welfare in its non-overlapping
versionĜ—i.e., allowing agents to split their weights between the tasks can only increase efficiency.
Moreover, this increase can be arbitrarily large even for a single agent. Indeed, consider one agent
of weightw and one task typet with T = 1, u = 1. If overlapping coalitions are not allowed,
the agent’s total utility is 1, while in the overlapping scenario he can obtainw. For the interested
reader, Appendix A discusses algorithmic aspects of socialwelfare maximization in TTGs, both in
the overlapping and in the non-overlapping scenario.

5.2 Three Definitions of the Core

As explained in Section 2 above, core-stability implies that no group of agents should be able to
profitably deviate from a configuration in the core. Hence, any definition of the core has to depend
on the notion of permissible deviations used. Now, in the non-overlapping setting a deviator aban-
dons the coalition he originally participated in, and joinsa new coalition. Thus, there is no reason
why he should obtain any payoff from the coalition that he left. In the overlapping setting, the situ-
ation is less clear-cut. Indeed, when deviating, an agent may abandon some coalitions completely,
withdraw some—but not all—of his contribution to other coalitions, and keep his contribution to
the remaining coalitions unchanged. The question then is whether this agent should expect to obtain
any payoff from the partial coalitions with non-deviators that he is still contributing to.

Our first notion of the core assumes that the answer to this question is “no”. Thus, once an
agent is identified as a deviator—i.e., he alters his contribution to any given coalition—he no longer
expects to benefit from his cooperation with non-deviators.By monotonicity, this means that the
deviators have nothing to gain from contributing resourcesto coalitions with non-deviators. There-
fore, under the first definition of the core which we present here, we assume that the deviators only
form coalitions among themselves, or, in other words, each deviation can be seen as an overlapping
coalition structure over the set of deviators. We remark that this definition can be seen as the most
straightforward generalization of the standard notion of the core: indeed, just as in the standard
setting, each deviator completely withdraws from coalitions with non-deviators, and only benefits
from coalitions with other deviators. We formalize this approach as follows.

Definition 7. Given an OCF-gameG = (N, v) and a set of agentsJ ⊆ N , let (CS ,x) and
(CS ′,y) be two outcomes ofG such that for any partial coalitionsℓ ∈ CS

′ either supp(sℓ) ⊆ J
or supp(sℓ) ⊆ N \ J . Then we say that(CS′,y) is a profitable deviationof J from (CS ,x) if for
all j ∈ J we havepj(CS ′,y) > pj(CS ,x). We say that an outcome(CS ,x) is in thecoreof G if
no subset of agentsJ has a profitable deviation from it. That is, for any set of agents J ⊆ N , any
coalition structureCSJ onJ , and any imputationy ∈ I(CS J), we havepj(CS J ,y) ≤ pj(CS ,x)
for some agentj ∈ J .

In this definition, the deviationCS ′ is restricted to be a coalition structure in which there are
no partial coalitions involving both the deviators and the non-deviators—i.e., each partial coalition
contains either deviators only (supp(sℓ) ⊆ J) or non-deviators only (supp(sℓ) ⊆ N \ J). Thus,
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any payoff that the players inJ can receive underCS ′ would have to come from partial coalitions
overJ only.

Example 2. Consider the OCF-gaměG that corresponds to a threshold task gameG = (N ;w; t),
whereN = {1, 2}, w = (4, 6), andt = (t1, t2) with t1 = (5, 15), t2 = (4, 10) (one can think of
the players as the two companies A and B discussed in Section 1; the tasks then correspond to the
two construction projects). Suppose that the players form two partial coalitionsr1 andr2 of total
weight5 each so that player1 contributes a unit of weight tor1 and3 units of weight tor2, while
player 2 contributes4 units of weight tor1, and2 units of weight tor2, that is,CS = (r1, r2),
wherer1 = (14 ,

2
3), r

2 = (34 ,
1
3). Both of these partial coalitions have weight5, so each of them can

successfully completet1, resulting in a payoff of15 for each of them. Now, suppose that the players
divide the gains using an imputationx = ((7, 8), (9, 6)). Then, the total payoff obtained by player
2 is 14, so he can successfully deviate by withdrawing from both of these coalitions, and forming a
single partial coalition of weight5. This coalition can completet1 and receive a payoff of15 > 14.
On the other hand, suppose that the players keep the same coalition structure, but distribute the
gains asy = ((7, 8), (8, 7)). Then player2 can no longer gain by withdrawing from both of these
coalitions. He is tempted to withdraw his resources fromr1, as he can use these4 units of weight
to completet2 and earnu2 = 10 > 8. However, if he does that, he can no longer get his share of
payoffs fromr2. Hence, in case of this deviation his total payoff will be10 < 15. Also, it is easy
to see that player2 cannot gain by deviating fromr2 only, and player1 is better off inCS than he
would be on his own. Hence,(CS ,y) is in the OCF-core of̌G.

In some sense, Definition 7 takes a rather pessimistic, orconservative, view on what the mem-
bers of the deviating group can expect to get from the non-deviators: indeed, in Example 2 as soon
as player 2 withdraws from the partial coalitionr1 ∈ CS he expects to be thrown out ofr2, even
thoughr2 is not affected by this deviation. Therefore, in what follows, we will refer to the notion of
profitable deviation introduced in Definition 7 as ac-profitable deviation, and to the corresponding
notion of the core as theconservative core, or thec-core.

This definition is applicable when a deviation by an agent is interpreted by other agents as an
indicator that this agent is not trustworthy, and thereforeone should immediately stop all collab-
oration with him. While this kind of reaction is not unusual,there may be coalitions that are not
affected by the deviation and may not want to punish the deviators. In this case, the deviators need
to decide which of the existing coalitions to abandon and forwhich existing coalitions to keep their
contribution intact. The members of these partial coalitions will react accordingly, sharing the pay-
off as before if they have not been affected by the deviation and punishing the deviators otherwise.
Therefore, we refer to the corresponding notion of the core as refined. Before giving the formal
definition, we first introduce a notion of agreement between two coalition structures.

Definition 8. Given a set of agentsJ ⊆ N , we say that two coalition structuresCS andCS ′ over
N agree outside ofJ with respect to a functionf if f is a a bijection between the lists of partial
coalitions{ri ∈ CS | supp(ri) * J} and {sℓ ∈ CS

′ | supp(sℓ) * J} such thatf(ri) = sℓ

impliesrij = sℓj for all j /∈ J . Further, we say thatCS andCS
′ agree outside ofJ if they agree

outside ofJ with respect to some functionf .

Intuitively, this definition says that if two coalition structures agree outside ofJ , then the con-
tributions of all playersnot in J to all partial coalitions must be the same under both outcomes.
If J is the set of deviators, this condition captures the fact that the deviation by the players inJ
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does not change the behavior of the non-deviators; the function f is used to establish a correspon-
dence between the partial coalitions involving the non-deviators before and after the deviation. For
illustration, consider the following example.

Example 3. Consider a game with three playersN = {1, 2, 3} and a coalition structureCS =
(q1, q2), whereq1 = (1, 12 ,

1
2), q

2 = (0, 12 ,
1
2 ). Let CS ′ = (s1, s2, s3), wheres1 = (0, 0, 12),

s2 = (0, 12 ,
1
2), s

3 = (1, 12 , 0). Intuitively, CS ′ can be obtained fromCS when players1 and 2
deviate by abandoning their joint project with player3 and forming a coalition of their own. Set
J = {1, 2}. It is not hard to see thatCS andCS ′ agree outside ofJ with respect to the function
f given byf(q1) = s1, f(q2) = s2. On the other hand,CS andCS

′ also agree outside ofJ
with respect to the functionf ′ given byf ′(q1) = s2, f ′(q2) = s1; this function assumes that when
players1 and2 decided to deviate, player1 withdrew his contribution toq1 and player2 withdrew
his contribution toq2.

Definition 9. Given an OCF-gameG = (N, v) and a set of agentsJ ⊆ N , let (CS ,x) and(CS ′,y)
be two outcomes such thatCS andCS

′ agree outside ofJ with respect to a functionf . Suppose
that for any partial coalitionsℓ ∈ CS

′ with supp(sℓ) * J and for all j ∈ J we haveyℓj = xij
if ri = f−1(sℓ) and yℓj = 0 otherwise. Then we say that(CS ′,y) is an r-profitable deviationof
J from (CS ,x) w.r.t. f if for all j ∈ J we havepj(CS ′,y) > pj(CS ,x). Further, we say that
(CS ′,y) is anr-profitable deviationof J from (CS ,x) if there exists a functionf such thatCS and
CS

′ agree outside ofJ with respect tof and(CS ′,y) is anr-profitable deviationof J from (CS ,x)
w.r.t. f . We say that an outcome(CS ,x) is in therefined core, or the r-core, of G if no subset of
agentsJ posesses an r-profitable deviation from it.

In Definition 9, the bijectionf matches the partial coalitions inCS andCS ′ that involve non-
deviators; the number of such coalitions is the same in both coalition structures. Moreover, the
contribution of the non-deviators to the partial coalitions matched byf is the same inCS andCS ′.
Now, if also the deviators do not change their contribution to some partial coalitionr, they can
claim their share of its payoff, as determined byx. On the other hand, if the deviators change their
contribution tor, they are not entitled to any of its payoff. Observe that we allow the deviators
to pick the “most favourable” bijectionf betweenCS andCS

′: for instance, in the context of
Example 3 we would pickf rather thanf ′, thereby allowing the deviators to claim their payoff from
the coalition(0, 12 ,

1
2). In other words, we assume that the deviators will withdraw their contributions

to disturb the non-deviators as little as possible.

Example 4. Consider the gaměG and the outcome(CS ,y) as described in Example 2. While it has
been argued that player2 cannot c-profitably deviate from(CS ,y), he can r-profitably deviate from
it by withdrawing his weight fromr1 and dedicating it tot2. As he does not change his contribution
to r2, he can still claim the payoff he gets fromr2, so his total payoff is10 + 7 = 17 > 15.

On the other hand, suppose that players1 and2 both split their weights equally between two
partial coalitions, forming the structureCS ′ = (q1, q2), whereq1 = q2 = (12 ,

1
2). Clearly, both

q1 and q2 have weight5, so each of them can earn15 by completingt1. Now, suppose that the
players distribute the gains using an imputationx′ = ((3, 12), (12, 3)). Now, both players earn
15, so none of them can benefit from withdrawing from both partial coalitions at the same time,
and therefore the outcome(CS ′,x′) is in the c-core. Moreover, if any of the players deviates from
one coalition only, he does not have enough weight to complete any of the tasks, and therefore the
outcome(CS ′,x′) is also in the r-core.
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We now provide another example, which suggests that the set of profitable deviations allowed
by Definition 9 may still be too small.

Example 5. Consider again the gaměG and a coalition structureCS ′′ = (s1, s2), where player1
contributes all of his weight tos1, while player2 contributes3 units of weight tos1 and3 units of
weight tos2, i.e.,s1 = (1, 12), s

2 = (0, 12). Observe that we havev(s2) = 0, as the total weight
of s2 is 3 only. Now, consider an imputationz = ((3, 12), (0, 0)). Note that player2 could reduce
his contribution tos1 by 2 units of weight without affecting the value of this coalition, and use this
weight to boost the value ofs2. However, this is not allowed by our definition of an r-profitable
deviation, since as soon as player2 alters his contribution tos1, he loses the payoff of12 that he
gets froms1. This does not mean, however, that the outcome(CS ′′,z) is in the r-core ofǦ: players
1 and2 can collectively deviate to((1, 16), (0,

5
6)). If they share the payoff as((4, 11), (0, 15)), this

will constitute an r-profitable deviation for both of them.

Example 5 demonstrates that Definition 9, while being considerably more lax with respect to
the deviators than Definition 7, can still be too strict: the deviators are punished as soon as they
reduce their contribution to a coalition, irrespective of whether it affects the value of this coalition.
In fact, according to Definition 9, the deviators would stillbe punished even if theyincreasetheir
contribution to a partial coalition with non-deviators (though this type of deviation is, of course,
unlikely). One way to fix this is to allow the deviators to claim their share of payoffs from a
coalition sℓ = f(ri) as long asv(sℓ) = v(ri). However, the non-deviators can be even more
generous to deviators. Indeed, it can be the case that after the deviators reduce their contribution
to a particular partial coalition, this coalition is still able to perform some task, albeit of a smaller
value. If the value of this task is still larger than the totalamount of payoff originally received by
the non-deviators from this partial coalition, the deviators could be allowed to claim the “leftover”
payoff. In other words, this notion of deviation assumes that the non-deviators have no objection to
switching tasks, and only care about the payoff they receive. While this may well be the case, it is
quite optimistic of the deviators to expect this kind of reaction when they contemplate whether to
deviate. Therefore, we refer to this notion of deviation aso-profitable, and call the corresponding
solution concept theoptimistic core, or theo-core.

Definition 10. Given an OCF-gameG = (N, v) and a set of agentsJ ⊆ N , let (CS ,x) and
(CS ′,y) be two outcomes such thatCS andCS

′ agree outside ofJ with respect to a functionf .
Suppose also that for any partial coalitionsℓ ∈ CS′ with supp(sℓ) * J we have

∑

j∈J y
ℓ
j =

max{v(sℓ)−
∑

k∈N\J x
i
k, 0}, whereri = f−1(sℓ). We say that(CS ′,y) is an o-profitable devia-

tion of J from (CS ,x) w.r.t. f if for all j ∈ J we havepj(CS′,y) > pj(CS,x). Further, we say
that (CS ′,y) is ano-profitable deviationof J from (CS ,x) if there exists a functionf such thatCS
andCS

′ agree outside ofJ with respect tof and (CS ′,y) is an o-profitable deviationof J from
(CS ,x) w.r.t. f . We say that an outcome(CS ,x) is in theoptimistic core, or theo-core, ofG if no
subset of agentsJ has an o-profitable deviation from it.

Example 6. Consider again the gaměG discussed in Examples 2, 4, and 5, and the outcome
(CS ′,x′), whereCS ′ = (q1, q2), q1 = q2 = (12 ,

1
2), x

′ = ((3, 12), (12, 3)), which was described
in Example 4. Note that if player2 reduces his contribution toq1 to 2, this coalition would still
be able to earn10 by focusing on taskt2. As player1 only gets3 units of payoff fromq1 anyway,
under our definition of an o-profitable deviation, player2 is entitled to the remaining payoff from
this modified partial coalition, i.e.,10 − 3 = 7. He can then combine the unit of weight saved in
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this manner with the weight he contributes toq2, and embark ont2 making a profit of10. Thus,
by abandoningq2 altogether and reducing his contribution toq1, player2 can earn7 + 10 > 15.
Thus, the outcome(CS ′,x′) is not in the o-core of̌G.

In contrast, consider an outcome that combinesCS with a more symmetric payoff division
scheme, such as, e.g.,y = ((7, 8), (8, 7)). Now, if player2 reduces his contribution toq1 by 1, the
resulting partial coalition can earn10 by focusing ont2. Of those payoffs, player1 must receive7,
leaving3 for player 2. While player2 can still use his remaining weight to completet2, this will
only give him a total profit of10+3 = 13 < 15, i.e., this deviation is not o-profitable. Similarly, we
can show that withdrawing some of the resources fromq2 and abandoningq1 is even less profitable
for player 2. Finally, it is easy to see that player1 does not have an o-profitable deviation either.
Hence, the outcome(CS ′,y) is in the o-core of(Ǧ).

6. Core Characterization

In the previous section, we introduced three definitions of the core for overlapping coalition forma-
tion games. Among the three definitions of the core, thec-core, though in some sense conservative,
is the closest to the traditional definition of the core in general NTU games (Osborne & Rubinstein,
1994). Indeed, unlike the other two definitions, it does not assume any interaction between the devi-
ators and the non-deviators. This motivates us to study thisoverlapping core variant in more detail,
which we proceed to do in this section and the next. To promotereadability, in those two sections
we will be referring to thec-coresimply as “the core”.

We start by providing a characterization of the set of outcomes in the core: essentially, an
outcome is in the core if and only if under this outcome the total payments to each subset of agents
match or exceed the maximum value that can be achieved by thissubset. Our proof relies on
some technical restrictions on the functionv that defines the game. In particular, we requirev to be
continuous, monotone and bounded (observe that if a game is monotone and bounded, thenv∗(S) <
∞ for anyS ⊆ N ), as well as to satisfy another natural restriction defined later. These assumptions
allow us to avoid some pathological situations that may arise in our model at its generality, such as
the supremumv∗(N) being unachievable (e.g., ifv is strictly concave in one of its arguments, it can
be the case that no finite coalition structure can achievev∗(N)).

Specifically, we say that a game(N, v) is U -finite if for any (CS ,x) such that|CS | > U and
x ∈ I(CS ), there exists a(CS ′,y) such that|CS ′| ≤ U , y ∈ I(CS ′), andpj(CS ,x) ≤ pj(CS

′,y)
for all j = 1, . . . , n (i.e., for any outcome(CS ,x) with more thanU coalitions there exists another
outcome(CS ′,y) with at mostU coalitions that is weakly prefered to(CS ,x) by all agents).
When this condition holds, we can assume that all coalition structures that arise in a game consist
of at mostU partial coalitions. This is a natural restriction in many practical scenarios, as it might
be difficult for agents to maintain a very complicated collaboration pattern. It holds when, for
example, there is a bound on the number of partial coalitionseach agent can be involved in. In
generalU -finiteness imposes some upper bound on the total number of partial coalitions with the
same support that can occur. A natural example is provided bya class of games where for any two
partial coalitionsr, r′ such thatsupp(r) = supp(r′) andrj + r′j ≤ 1 for any j = 1, . . . , n, we
havev(r + r′) ≥ v(r) + v(r′). Note that in such games we can assume that no coalition structure
contains two partial coalitions with the same supportS, as it is at least as profitable for the players
in S to merge these partial coalitions. (However, notice that this does not imply superadditivity,
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nor does it mean that the grand coalition necessarily emerges, as the criterion above refers only to
coalitions with identical support.) Hence, any such game is2n-finite.

Remark 1. Note that in all of our resultsU can be a function ofn (as long asU(n) < ∞).
Alternatively, instead of imposing the condition ofU -finiteness onv(·), we could restrict the set of
allowed outcomes (or potential deviations) to coalition structures with at mostU partial coalitions.
All of our results hold under this model as well.

We now state and prove the first of our main results.

Theorem 1. Given a game(N, v), wherev is monotone, continuous, bounded, andU -finite for
someU ∈ N, an outcome(CS ,x) is in thec-coreof (N, v) if and only if for allS ⊆ N

∑

j∈S

pj(CS ,x) ≥ v∗(S). (1)

Proof. For the “if” direction, suppose that(CS ,x) satisfies
∑

j∈S pj(CS ,x) ≥ v∗(S) for all S ⊆
N . Assume for the sake of contradiction that(CS ,x) is not in the core, i.e., there exists a setS, a
coalition structureCSS ∈ CSS and an imputationy ∈ I(CSS) such thatpj(CSS ,y) > pj(CS ,x)
for all j ∈ S. Then we havev(CSS) =

∑

j∈S pj(CSS ,y) >
∑

j∈S pj(CS ,x) ≥ v∗(S), a
contradiction with the wayv∗(S) was defined.

For the “only if” direction, consider an outcome(CS ,x) that does not satisfy (1); we will show
that(CS ,x) is not in the core. To begin, setp = p(CS ,x), and assume

∑

j∈S pj < v∗(S) for some
S ⊆ N . To show that(CS ,x) is not in the core, we will construct a setS′, a coalition structure
CSS′ ∈ CSS′ and an imputationy ∈ I(CSS′) such thatpj(CSS′ ,y) > pj for all j ∈ S′. Fix a
setS that satisfies

∑

j∈S pj < v∗(S). Chooseε small enough so that
∑

j∈S pj < v∗(S) − ε, and
let CSε

S = {CSS ∈ CSS | v(CSS) ≥ v∗(S) − ε}. By definition of v∗(S), there is an infinite
sequence of coalition structuresCS (t) that satisfieslimt→∞ v(CS (t)) = v∗(S), so the setCSε

S is
non-empty. Given a coalition structureCSS ∈ CSS , an imputationy ∈ I(CSS) and a respective
payoff vectorq = p(CSS ,y), define thetotal lossTL(CSS, q) of (CSS , q) as

∑

j:pj>qj
(pj − qj).

SetTLmin = inf{TL(CSS , q) | CSS ∈ CSǫ
S ,y ∈ I(CSS), q = p(CSS,y)}. First, we prove that

there exists a coalition structureCS ∈ CSε
S and an imputationy ∈ I(CSS) that achieve the total

loss ofTLmin.

Lemma 1. Under the theorem’s conditions, there exists aCSS ∈ CSǫ
S , an imputationy ∈ I(CSS)

and a payoff vectorq = p(CSS ,y) s.t.TL(CSS , q) = TLmin.

Proof. By definition ofTLmin, there exists an infinite sequence of coalition structuresCS
(t)
S , t =

1, . . . ,∞, and respective imputationsy(t), t = 1, . . . ,∞, such that

lim
t→∞

TL(CS (t),p(CS (t),y(t))) = TLmin

andCS
(t)
S ∈ CSǫ

S for all t = 1, . . . ,∞. As the game isU -finite, a coalition structure can be
seen as a list of at mostU vectors in[0, 1]n. By adding all-zero partial coalitions if necessary, we
can assume that each coalition structure is a list of exactlyU vectors in[0, 1]n, which are ordered
lexicographically. Asv is monotone and bounded, there exists aB > 0 such that the value of each
partial coalition in any of theCS (t)

S is between0 andB. Consequently, eachy(t) corresponds to a
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vector in[0, B]nU . Hence, the sequence(CS (t)
S ,y(t)), t = 1, . . . ,∞ can be viewed as a subset of

[0, B]K (for sufficiently large but finite value ofK) and hence has a limit point, which we denote by
(CS ∗,y∗). It is easy to see that the limit of a sequence of coalition structures is a coalition structure,
i.e., for anyri ∈ CS

∗ we haver ∈ [0, 1]n, and for anyj = 1, . . . , n it holds that
∑U

i=1 r
i
j ≤ 1.

Moreover, by continuity ofv, the value of each partial coalition inCS ∗ is the limit of the values
of the respective partial coalitions inCS (t)

S , t = 1, . . . ,∞. From this, it is easy to see thaty∗ is in

I(CS ∗). Also, as allCS (t)
S are inCSε

S , so isCS ∗. Finally, asp(·, ·) andTL(·, ·) are continuous
functions of their arguments, we conclude thatTL(CS ∗,p(CS ∗,y∗)) = TLmin.

Continuing with the proof of our Theorem, let(CSS,y) be an outcome that satisfiesv(CSS) ≥
v∗(S) − ε, TL(CSS ,p(CSS ,y)) = TLmin, whose existence is guaranteed by Lemma 1. Set
q = p(CSS ,y). Let us now construct a directed graphΓ whose vertices are the agents and there
is an edge fromj to i if there exists a coalition inCSS containing bothj andi such that undery,
agentj gets a non-zero payoff from that coalition, i.e., for somerk ∈ CSS we haverkj , r

k
i > 0

and ykj > 0. Observe that if there is an edge(j, i) in Γ, we can changeyk by increasing the
payoff to i by a small enoughδ and decreasing the payoff toj by the same value ofδ without
violating the constraints, i.e., we havez = (z1, . . . ,zt) ∈ I(CSS), wherezl = yl for l 6= k and
zk = (yk1 , . . . , y

k
j − δ, . . . , yki + δ, . . . , ykn). Now, color all vertices ofΓ as follows: a vertexj is red

if the agentj is underpaid undery, i.e.,qj < pj, white if j is indifferent, i.e.,qj = pj , and green if
he is overpaid, i.e.,qj > pj . As

∑

j∈S pj < v∗(S) − ε and
∑

j∈S qj = v(CSS) ≥ v∗(S) − ε, the
graph contains at least one green vertex. As argued above, ifthere is a path from a green vertexj
to a red vertexi, we can transfer a small amount of payoff fromj to i and hence decrease the total
loss, which is a contradiction with our choice of(CSS ,y). Hence, given an arbitrary green vertex
j, the set of all vertices reachable fromj in the graph, which we denote byR(j), can only contain
green or white vertices.

We would now like to argue that the agents inR(j) can successfully deviate from(CS ,x).
Indeed, letCS ′ be the coalition structure that consists of the coalitions that the agents inR(j) form
among themselves inCSS . Clearly, the value ofCS ′ is equal to the total value of the coalitions
formed by these agents inCSS . Note also that under(CSS ,y), the agents inR(j) do not get any
payoffs from coalitions that involve agents not inR(j). Indeed, suppose that ani ∈ R(j) gets a
non-zero payoff from a coalition that involves an agentk 6∈ R(j). Then inΓ there is an edge from
i to k, a contradiction with howR(j) was constructed. In other words, inCSS , the payoffs that the
agents inR(j) get come only from the coalitions that they form among themselves, and yet these
agents are all green or white, i.e., each of them is doing no worse than what he was doing underCS ,
and some of them (in particular, agentj) are doing strictly better. To finish the proof, let the agents
in R(j) distribute the payoffs in the same way as in(CSS ,y), except that playerj transfers a small
fraction of his payoffs to each of the white players inR(j) (this is possible by construction). The
last step ensures that each agent inR(j) is strictly better off than in(CS ,x). This demonstrates that
(CS ,x) is not in the core, as required.

Remark 2. Note that we did not have to make use of the additional restrictions we imposed onv
to prove the “if” direction of the theorem (these are used in the proof of Lemma 1). Hence, this
implication holds for an arbitraryG.

It is easily verifiable that Theorem 1 holds in the non-overlapping case with coalition structures
as well. The result is trivial to prove in that setting, as each agent’s payoffs come from just one
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coalition; in contrast, we had to use more involved combinatorial arguments for transferring payoffs
among agents. We also get the following interesting result as a corollary:

Corollary 1. By settingS = N in the statement of Theorem 1, we conclude that any outcome inthe
c-coremaximizes the social welfare.

We now turn our attention to characterizing the set of coalition structuresCS that admit payoff
allocationsx such that the corresponding tuple(CS ,x) belongs to the core. That is, while in
Theorem 1 we saw a necessary and sufficient condition for a tuple (CS ,x) to belong to the core,
suppose that we are now only given a structureCS = (r1, . . . , rk) and we want to check whether
there existssomepayoff allocationx such that(CS ,x) belongs to the core. Our characterization
can be seen as a generalization of the notion ofbalancednessin the context of overlapping coalition
formation. In the classic setting, the analogous question is “when does the grand coalition admit
a payoff allocation in the core”, answered by Bondareva (1963) and Shapley (1967). Before we
proceed to our result, we define balancedness with respect toa coalition structure.

Definition 11. Fix a coalition structureCS = (r1, . . . , rk), k ∈ N, and letK = {1, ..., k}. A
collection of numbers{λS}S⊆N , {µi}i∈K is calledbalanced w.r.t. the given coalition structureCS
if and only ifλS ≥ 0 for all S, and

∑

S:j∈S λS + µi = 1 for all i ∈ K, j ∈ supp(ri).

Definition 12. A game is calledbalanced w.r.t. a coalition structureCS = (r1, ..., rk) if and only
if for every collection{λS}S⊆N , {µi}i∈K that is balanced w.r.t.CS it holds that

∑

S λSv
∗(S) +

∑k
i=1 µiv(r

i) ≤ v∗(N).

The proof of the following theorem is based on LP-duality, and relies on the characterization
result of Theorem 1; furthermore, the proof illustrates that the condition of balancedness introduced
above arises rather naturally.

Theorem 2. Let (N, v) be an OCF-game, wherev is monotone, continuous, bounded, andU -finite
for someU ∈ N and consider a coalition structureCS = (r1, ..., rk), for somek ∈ N. There exists
an imputationx s.t.(CS ,x) belongs to thec-core if and only ifthe game is balanced w.r.t.CS .

Proof. Suppose there exists a payoff allocationx such that(CS ,x) belongs to the core, and let
K = {1, . . . , k}. Then the following linear program (denoted as LP) has an optimal solution:

min
∑

i∈K,j∈N xij
s.t.

∑

j∈S

∑

i:j∈supp(ri) xij ≥ v∗(S) ∀S ⊆ N
∑

j xij = v(ri) ∀i ∈ K

The first constraint expresses the condition of Theorem 1, and the second the fact that the payoff
of each partial coalition needs to be distributed exactly. Note that we have no variablesxij if
j 6∈ supp(ri)—recall Definition 4. These are precisely the conditions that need to be satisfied for
(CS ,x) to be in the core and clearly the optimal value of the LP isv∗(N) (using the first constraint
and Corollary 1). By the LP-duality theorem, this means thatthe dual program also has an optimal
solution of valuev∗(N). The dual is given by:

max
∑

S λSv
∗(S) +

∑k
i=1 µiv(r

i)
s.t.

∑

S:j∈S λS + µi = 1 ∀i ∈ K, j ∈ supp(ri)

λS ≥ 0 ∀S ⊆ N
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Hence for any feasible solution of the dual, the value of the objective function is at mostv∗(N),
which implies that for any balanced collection{λS}S⊆N , {µi}i∈K , it holds that

∑

S λSv
∗(S) +

∑k
i=1 µiv(r

i) ≤ v∗(N).
For the other direction, suppose that for any balanced collection, the above holds. This means

that for any feasible solution, the value of the dual is at most v∗(N). Therefore the dual is both
bounded and feasible (settingµi = 1 and the rest to0 is feasible), which implies that it has an
optimal solution. But then the primal program also has an optimal solutionx and this means by
Theorem 1 that(CS ,x) belongs to the core.

Remark 3. In the traditional superadditive setting, the condition ofbalancedness is somewhat
simpler and more intuitive. In our setting, the characterization leads to a slightly more complicated
expression, essentially due to the fact that the linear program that describes core allocations for
each coalition structure requires a larger set of constraints.

7. Convex OCF-Games Have a Non-Empty Core

In this section, we first generalize the notion of convexity to OCF-games and then proceed to show
that it provides a sufficient condition for non-emptiness ofthe c-core.

Recall that for classical TU-games convexity means that forR ⊆ N andS ⊂ T ⊆ N \ R it
holds thatv(S ∪R)− v(S) ≤ v(T ∪ R)− v(T ). Thus, convexity in the classic TU-games setting
means that it is more useful for a coalitionR to join a larger coalition than a smaller one. We now
apply this intuition to our setting (recall thatF(S) denotes the set of all feasible agreements forS):

Definition 13. An OCF-gameG = (N, v) is convex if for eachR ⊆ N andS ⊂ T ⊆ N \ R
the following condition holds: for any(CSS ,xS) ∈ F(S), any (CST ,xT ) ∈ F(T ), and any
(CSS∪R,xS∪R) ∈ F(S ∪R) that satisfiespj(CSS∪R,xS∪R) ≥ pj(CS

S,xS) ∀j ∈ S, there exists
an outcome(CST∪R,xT∪R) ∈ F(T ∪R) s.t.

pj(CS
T∪R,xT∪R) ≥ pj(CS

T ,xT ) ∀j ∈ T , and

pj(CS
T∪R,xT∪R) ≥ pj(CS

S∪R,xS∪R) ∀j ∈ R.

This definition is similar in flavour to that provided by Suijsand Borm (1999), where a general-
ization of convexity is defined in the context of stochastic cooperative games. The intuition behind
this definition is as follows: Consider two fixed agreements,one onS and one onT respectively.
Any time that there is a feasible agreement onS ∪ R that the members ofS do not object to com-
pared to their own agreement (i.e., all members ofS are weakly better off than in their previous
agreement), then there is a feasible agreement onT ∪ R such that (i) the members ofT do not ob-
ject to this agreement, compared to the previous agreement on T and (ii) the members ofR weakly
prefer this agreement to the agreement onS ∪R.

We note that a different notion of convexity has been defined for fuzzy games by Branzei,
Dimitrov, & Tijs (2003). That definition deals with the marginal contribution of a partial coalition
when joining another existing partial coalition, where theresult of the join is a new partial coalition.
We, on the other hand, quantify the marginal contribution ofadding a set of playersR, to a set of
playersT , w.r.t. the best overlapping coalition structure that the setR ∪ T can form. Secondly, the
definition of Branzei et al., as well as the classic definitionof convexity, simply enforce a property
on the functionv(·), concerning the marginal contributionv(R∪T )− v(T ). In our case, our games
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are not fully transferable and hence we cannot simply talk about the difference in values. Instead,
our definition has to enforce the existence of a coalition structure onR ∪ T such that individually
every player is at least as well-off as in the coalition structure overR ∪ S, whereS ⊆ T .

We now show that convexity is a sufficient condition for the non-emptiness of the core, in
analogy to the classic result on convex TU-games (Shapley, 1971).

Theorem 3. If an OCF-gameG = (N, v) is convex andv is continuous, bounded, monotone and
U -finite for someU ∈ N, then thec-coreof this game is not empty.

Proof. Let G = (N, v) be a convex OCF-game. For anyS ⊆ N , let GS be the restriction of
G on S. To prove the theorem, we explicitly construct an outcome(CS ,x), x ∈ I(CS ), and
show that it belongs to the core ofG: Fix an arbitrary ordering of the players1, 2, . . . , n − 1, n.
The construction takes place in rounds. First, letp̂1 = v∗({1}), p̂2 = v∗({2}); by assumptions
of the theorem and using arguments similar to those in the proof of Lemma 1, there exist coalition
structures inCS{1}, CS{2} that achieve these payoffs. LetCS

1 be the structure that achieves this for
player1 in G{1}, and letx1 be the corresponding imputation. We know that there exists at least one
coalition structureCS 2 ∈ CS{1,2} and a corresponding imputationx2 such thatp1(CS 2,x2) ≥ p̂1,
p2(CS

2,x2) ≥ p̂2 (e.g., take the union of payoff-maximizing structures inG{1} andG{2}, and
combine the corresponding imputations). If there exist more than one such feasible agreement, we
pick the one most preferred by player2. More formally, we choose a feasible agreement(CS 2,x2)
that maximizes the payoffp2(CS 2,x2) (which will be at least̂p2) over all feasible agreements on
{1, 2} subject top1(CS 2,x2) ≥ p1(CS

1,x1) (by our assumptions onv(·), this maximum exists).
Now, let p̂3 be the maximum payoff that agent3 can get inG{3}. Again, there exists at least one

coalition structureCS 3 in CS{1,2,3} and a corresponding imputationx3 such that agents1, 2 are
(weakly) better off than in(CS 2,x2), and3 is also weakly better off than being on its own. If there
exist more than one such feasible agreement, we pick one thatmaximizes3’s payoff, i.e., we pick
an agreement(CS 3,x3) so thatp3(CS 3,x3) is maximized over all agreements on{1, 2, 3} subject
to the constraintsp1(CS 3,x3) ≥ p1(CS

2,x2), p2(CS 3,x3) ≥ p2(CS
2,x2).

Continuing in the same manner, at every roundk we pick an outcome(CSk,xk) that maximizes
pk(CS

k,xk) subject to constraintspi(CS k,xk) ≥ pi(CS
k−1,xk−1) for i ∈ {1, ..., k − 1}; the

assumptions onv(·) ensure that all these maxima exist. In the end, we obtain a feasible agreement
(CSn,xn) onN in which all the agents are weakly better off than on their own, as well as weakly
better off compared to the agreements of the previous rounds.

We now show that(CSn,xn) belongs to the core ofG. For this it suffices to prove the following
stronger claim.

Claim 1. For k = 1, . . . , n, the feasible agreement(CSk,xk) belongs to the core of the game
G{1,...,k}.

Proof. We prove this by induction. Fork = 1, it is obvious that(CS 1,x1) belongs to the core of
G{1}.

Now, suppose that for somem, 2 ≤ m ≤ n, we have(CSk,xk) ∈ core(G{1,...,k}) for all
k < m. We will prove that(CSm,xm) is in the core ofG{1,...,m}.

Suppose, for the sake of contradiction, that this is not the case. Then there is a subsetS ⊆
{1, ...,m} and(CS ∗,x∗) ∈ F(S) such that

pi(CS
∗,x∗) > pi(CS

m,xm) ∀i ∈ S. (2)
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We consider three different cases for the members ofS:
Case 1:m 6∈ S. In this case we know by construction that for alli ∈ {1, . . . ,m − 1} we have
pi(CS

m,xm) ≥ pi(CS
m−1,xm−1), which implies thatpi(CS ∗,x∗) > pi(CS

m−1,xm−1) for all
i ∈ S. Hence, the tuple(CS ∗,x∗) is a deviation that makes the members ofS strictly better off than
in the agreement(CSm−1,xm−1). But this is a contradiction since by induction(CSm−1,xm−1) ∈
core(G{1,...,m−1}).
Case 2:S = {1, . . . ,m}. Now we will get a contradiction with how we constructed(CSm,xm).
Indeed, we chose(CSm,xm) to maximizepm(CSm,xm) subject to the constraintspi(CSm,xm)
≥ pi(CS

m−1,xm−1) for all i = 1, . . . ,m − 1. However, by (2), the outcome(CS ∗,x∗) also
satisfies these constraints and provides a higher payoff tom than(CSm,xm) does, a contradiction.
Case 3:S = S′ ∪ {m}, whereS′ is a strict subset of{1, . . . ,m − 1}. In this case we will utilize
convexity. LetCS ′ be the coalition structure that consists of the singleton coalitions for all agents of
S′, and letx′ be the corresponding imputation. By construction,(CS ∗,x∗) is a feasible agreement
on S′ ∪ {m} such thatpi(CS ∗,x∗) ≥ pi(CS

′,x′) for all i ∈ S′. Let T = {1, . . . ,m − 1}.
Since(CSm−1,xm−1) ∈ F(T ), by applying Def. 13 forS′ ⊆ T and withR = {m}, we get
that there exists a feasible agreement(CS ,x) on T ∪ {m} = {1, . . . ,m} such thatpi(CS ,x) ≥
pi(CS

m−1,xm−1) for i = 1, . . . ,m − 1, andpm(CS ,x) ≥ pm(CS ∗,x∗). But then by (2) above
we get thatpm(CS ,x) > pm(CSm,xm), a contradiction with how we chose(CSm,xm).

Applying Claim 1 withk = n, we get that the core ofG is non-empty.

In the traditional setting, if a game is represented using oracle access forv(S), there is a trivial
algorithm for computing an element of the core in convex games. Indeed, one can set the payoff
vector to be the vector of the marginal contributions of the agents for an arbitrary permutation of
the set of agents. In our setting, our proof does yield a procedure for constructing an element of the
core, though not a polynomial-time one. Our procedure requires solving a series of optimization
questions, which for arbitrary convex games are NP-hard. Inthe future, we would like to find
classes of convex games where our proof yields a polynomial-time algorithm. In particular, looking
at our proof, this would be true for games in which we can solvein polynomial time the following
problem: Given a set of agentsS ⊆ N , a feasible agreement onS, an outcome(CS ,x), and an
agentk 6∈ S, find a feasible agreement(CS ′,y) onS ∪ {k} that maximizespk(CS

′,y) subject to
the constraintspj(CS ′,y) ≥ pj(CS ,x).

8. Properties of the Three Cores

Following the detailed study of thec-core stability concept in the previous two sections, in this
section we further explore the properties of our three notions of the OCF-core. In particular, we
investigate the relationships among these notions, and study the effects of allowing overlapping
coalition formation on the stability of the underlying game. We also compare our OCF model and
notions of the core to the fuzzy games setting and the notion of the fuzzy core (Aubin, 1981).

We start by exploring the connection between stability and social welfare maximization in
TTGs. As demonstrated earlier in the paper, in OCF-games these two properties are closely re-
lated. Indeed, Theorem 1 and Corollary 1 show that any outcome in the c-core of an OCF-game
maximizes the social welfare as long as the characteristic function of the game satisfies a number of
technical conditions; by Theorem 5 below the same holds for the r-core and the o-core. However,
as one of these conditions is continuity, this result does not directly apply to TTGs. While the proof
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of Theorem 1 can be adapted to work for the TTG setting, there also exists a direct proof for the
following theorem.

Theorem 4. For any TTGG = (N ;w; t) and any outcome(CS ,x) ∈ c-core(Ǧ), we have
v(CS ) ≥ v(CS ′) for any coalition structureCS ′ ∈ CSN .

Proof. Fix an outcome(CS ,x) ∈ c-core(Ǧ), and letp be the payoff vector that corresponds to
(CS ,x). Suppose that there exists a coalition structureCS

′ ∈ CSN such thatv(CS ′) > v(CS ).
LetCS ′ = (r1, . . . , rk). Forj = 1, . . . , k, let zj be the total weight of the partial coalitionrj, i.e.,
setzj = rj1w1 + · · ·+ rjnwn.

Now, consider a coalition structureCS ′′ = (q1, . . . , qk) given byqji = zj/w(N) for all i ∈ N ,
all j = 1, . . . , k; note that we have

∑k
j=1 q

j
i ≤ 1. The total weight of a partial coalitionqj can be

computed as
∑

i∈N qjiwi = zj . Therefore,qj ∈ CS′′ can accomplish the same task asrj ∈ CS
′,

and hencev(CS ′′) = v(CS ′) > v(CS ). Now, observe that since inCS ′′ all players contribute to
all partial coalitions, there are no restrictions on how thevalue ofCS ′′ can be distributed among
the players. In particular, we can setδ = v(CS

′′)−v(CS )
n

, and construct an imputationy ∈ I(CS ′′)

by settingyji = v(rj)
v(CS

′′)
(pi + δ). Indeed, we have

∑

i∈N yji = v(rj),
∑k

j=1 y
j
i = pi + δ. Now,

it is clear that the entire set of agentsN can deviate from(CS ,x) to (CS ′′,y); as they all deviate
simultaneously, this is a c-profitable deviation, a contradiction with (CS ,x) being in the c-core of
Ǧ.

The discussion in Section 5.2 suggests a natural relationship between the three notions of a
successful deviation, and, consequently, between the three cores. (In what follows, we refer to the
outcomes in the c-core, r-core and o-core asc-stable, r-stableando-stable, respectively.)

Theorem 5. For any OCF-gameG, we haveo-core(G) ⊆ r-core(G) ⊆ c-core(G). Moreover, these
containments can be strict, i.e., there exists an OCF-gameG such thato-core(G) ⊂ r-core(G) ⊂
c-core(G).

Proof. Observe that any c-profitable deviation can be viewed as an r-profitable deviation in which all
players abandon all coalitions they contributed to. Similarly, any r-profitable deviation corresponds
to an o-profitable deviation where whenever a deviator changes his contribution to coalition, he
withdraws all of his resources from it; note that, as illustrated by Example 5, the deviators’ payoff
in this o-profitable deviation can be strictly higher than inthe original r-profitable deviation. It
follows that any outcome that is r-stable is also c-stable, and any outcome that is o-stable is also
r-stable, thus proving the first part of the theorem.

To prove the second part of the theorem, consider the gameǦ described in Examples 2, 4, 5
and 6. We have demonstrated that the outcome(CS ,x) is in c-core(Ǧ) \ r-core(Ǧ) and that the
outcome(CS ′,x′) is in r-core(Ǧ) \ o-core(Ǧ).

Theorem 5 shows that our three notions of stability can be substantially different with respect to
individual outcomes. However, it does not exclude the possibility that they are equivalent when seen
as notions of stability of theentire game, i.e., that for any OCF-gameG we havec-core(G) 6= ∅ iff
r-core(G) 6= ∅ iff o-core(G) 6= ∅. We will now show that this is not the case. The games used in
the proofs of the following two propositions are not threshold task games. However, they, too, can
be described in terms of agents’ weights and tasks.
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Proposition 1. There exists an OCF-gameG such thatc-core(G) 6= ∅ while r-core(G) = ∅.

Proof. Consider an OCF-gameG = (N, v) with seven agentsN = {1, . . . , 7} whose weights are
given byw = (1, 1, 1, 1, 3, 3, 3), and two task typest1 andt2 with values100 and2, respectively.
The first task can be completed in any of the following four ways:

• 1 unit of player 1’s weight and2 units of player 5’s weight;

• 1 unit of player 2’s weight and2 units of player 6’s weight;

• 1 unit of player 3’s weight and2 units of player 7’s weight;

• 1 unit of player 4’s weight and2 units of weight from either of the players 5, 6, or 7.

That is,v(r) = 100 if wiri ≥ 1 andwjrj ≥ 2, where

(i, j) ∈ {(1, 5), (2, 6), (3, 7), (4, 5), (4, 6), (4, 7)}.

The second taskt2 requires2 units of weight in total from players 5, 6 and 7.
Consider a coalition structureCS = (r1, r2, r3, r4), given by

r1 = (1, 0, 0, 0,
2

3
, 0, 0), r2 = (0, 1, 0, 0, 0,

2

3
, 0),

r3 = (0, 0, 1, 0, 0, 0,
2

3
), r4 = (0, 0, 0, 0,

1

3
,
1

3
, 0).

That is, partial coalitionsr1, r2 andr3 successfully completet1, while r4 successfully com-
pletest2. Consider also an imputationx ∈ I(CS ) given by

x1 = (0, 0, 0, 0, 100, 0, 0), x2 = (0, 0, 0, 0, 0, 100, 0),

x3 = (0, 0, 0, 0, 0, 0, 100), x4 = (0, 0, 0, 0, 1, 1, 0).

Let p be the payoff vector that corresponds tox: we havep1 = p2 = p3 = p4 = 0, p5 =
p6 = 101, p7 = 100. It is not hard to see that(CS ,x) ∈ c-core(G). Indeed, suppose for the sake
of contradiction that there is a set of playersJ that can c-profitably deviate from(CS ,x). Since
(CS ,x) maximizes the social welfare, the deviation cannot be simultaneously profitable for all
players inN , so|J | < 7. Moreover,J cannot contain 2 or more players from the setS = {5, 6, 7}:
indeed, if one of these players deviates, he loses 100 units of payoff, which can only be replaced
if he forms a coalition with 4. However, since 4 cannot form two distinct coalitions of value 100
each, this is not possible. Therefore,J cannot contain any of the players in the setS: each of these
players already gets the maximum payoff fromt1, and, since the other two players fromS are not
in J , the set of deviators does not have enough resources fort2. Finally, there is no c-profitable
deviation for players inN \ S, as no task can be completed by agents inN \ S only.

We will now show that the r-core ofG is empty. Suppose otherwise, and let(CS ′,y) be an
outcome in the r-core ofG. Let p be the payoff vector that corresponds toy. It is not hard to
show that any outcome in the r-core ofG maximizes the social welfare; the proof is similar to that
of Theorem 4. Hence, we can assume without loss of generalitythatCS = (q1, q2, q3, q4) with
v(q1) = v(q2) = v(q3) = 100 andv(q4) = 2, and, moreover,q15 ≥ 2

3 , q26 ≥ 2
3 , q37 ≥ 2

3 . It follows
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that either (a)q11 = q22 = q33 = 1 or (b) qj4 = 1 for somej ∈ {1, 2, 3} andqii = 1 for i ∈ {1, 2, 3},
i 6= j. We say that a playeri is usefulfor a coalitionr if v(r′) < v(r), wherer′ is given byr′i = 0,
r′j = rj for all j 6= i. Observe that in an r-stable outcome no player can get any payoff from a
partial coalition for which he is not useful: otherwise the other members of that coalition, who can
complete the corresponding task on their own, can r-profitably deviate. We will now show that we
havep1 = . . . = p4 = 0 both in case (a) and in case (b). Observe that by the argument above player
1 can get payoff fromq1 only, player 2 can get payoff fromq2 only, player 3 can get payoff from
q3 only, and player 4 can get payoff from exactly one of the coalitionsq1, q2, andq3.

In case (a), we clearly havep4 = 0, as player4 is not useful for any coalition inCS ′. Now, if,
e.g.,y11 > 0, theny15 < 100, and players 4 and 5 can r-profitably deviate by forming a coalition that
performst1. Hencey11 = y22 = y33 = 0, and thereforep1 = p2 = p3 = 0. In case (b), assume
without loss of generality thatq14 = 1. Thenp1 = 0, as player 1 is not useful for any coalition
in CS

′, so y14 = 0, since otherwise players 1 and 5 can r-profitably deviate, and, consequently,
p4 = 0. This implies that alsoy22 = y33 = 0: if, e.g., y22 > 0, theny26 < 100, and players 4 and
6 can r-profitably deviate by forming a coalition that performs t1. Hence, in both cases we have
p1 = · · · = p4 = 0.

Now, asv(q4) = 2, we havey45 + y46 + y47 = 2, so at least one of the payoffsy45, y46 andy47 is
strictly positive. Assume without loss of generality thaty45 = δ > 0. Then players 6, 7 and their
partners inq2 andq3 (i.e., playersi′, i′′ such thatq2i′ = 1, q3i′′ = 1) can r-profitably deviate from
(CS ′,y) by forming a coalition structureCS ′′ = (s1, s2, s3), wheres1 is given by

s1i′ = 1, s16 =
2

3
, s1ℓ = 0 for ℓ 6= i′, 6,

s2 is given by

s2i′′ = 1, s27 =
2

3
, s2ℓ = 0 for ℓ 6= i′′, 7,

ands3 = (0, 0, 0, 0, 0, 1
3 ,

1
3). We will now construct an imputationz for CS

′′ by settingz1i′ =

z2i′′ = δ
4 , z16 = z27 = 100 − δ

4 , z36 = y46 + δ
2 , z37 = y47 + δ

2 , and zji = 0 for all (i, j) 6=
(i′, 1), (6, 1), (i′′ , 2), (7, 2), (6, 3), (7, 3). It is not hard to see thatz ∈ I(CS ′′), and, moreover,
the deviation(CS ′′,z) is r-profitable for 6, 7,i′ and i′′. Hence,(CS ′,y) is not in the r-core of
G.

Proposition 2. There exists an OCF-gameG such thatr-core(G) 6= ∅ whileo-core(G) = ∅.

Proof. Consider an OCF-gameG = (N, v) with 3 agentsN = {1, 2, 3} whose weights are given
byw = (8, 8, 8), and 2 task typest1 andt2. The first task needs 6 units of weight from each player,
and has value 300, i.e.v(r1, r2, r3) = 300 if wiri ≥ 6 for i = 1, 2, 3. The second task needs 4 units
of weight in total from any of the players and has value 2.

Let CS = (r1, r2), wherer1 =
(

7
8 ,

7
8 ,

6
8

)

, r2 =
(

1
8 ,

1
8 ,

2
8

)

. Clearly,v(r1) = 300, v(r2) = 2.
Consider also an imputationx ∈ I(CS ) given byx1 = (100, 100, 100), x2 = (0.5, 0.5, 1). It is
not hard to see that(CS ,x) ∈ r-core(G). Indeed, asCS maximizes the social welfare, there is no
deviation that will be simultaneously profitable for all agents. Furthermore, if any agent withdraws
his contribution fromr1, he will lose the associated payoff of 100 and no deviation can compensate
for this loss. Moreover, it is clear that withdrawing contribution fromr2 cannot be profitable either,
as there is no way to earn more than2 = v(r2) with this amount of weight.
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We will now show thatG has an empty o-core. Suppose for the sake of contradiction that there
exists an outcome(CS ′,y) ∈ o-core(G). It is not hard to show that any outcome in the o-core of
G maximizes the social welfare; the proof is similar to that ofTheorem 4. Hence, we can assume
thatCS ′ = (q1, q2), wherev(q1) = 300, v(q2) = 2, and, moreover,q1i ≥ 6

8 for i = 1, 2, 3. We
havey21 + y22 + y23 = 2, so we can assume without loss of generality thaty21 = δ > 0. This means
that players 2 and 3 can o-profitably deviate from(CS ′,y) as follows: players 2 and 3 withdraw
q12w2 − 6 andq13w3 − 6 units of weight fromq1, respectively (as argued above, we haveq12w2 ≥ 6,
q13w3 ≥ 6), as well as their entire contribution toq2, and use these resources to completet2. If they
divide the resulting payoff by allocatingy22 +

δ
2 to player 2 andy23 +

δ
2 to player 3, this constitutes

an o-profitable deviation for them. Thus,(CS ′,y) is not in the o-core ofG.

Thus, so far in this section we investigated the relationships among our notions of the overlap-
ping core; it is also insightful to compare them to the non-overlapping and the fuzzy one. We now
proceed to do so.

8.1 Comparison with the Non-Overlapping Core

Given an OCF-gameG = (N, v), we can define a non-overlapping gameGno = (N, vno) by
settingvno(C) = v(rC), where the partial coalitionrC is given byrCi = 1 if i ∈ C andrCi = 0
otherwise for allC ⊆ N . Observe that for a threshold task gameG applying this transformation to
its overlapping versioňG gives us exactly its non-overlapping versionĜ. We can now compare the
core of the gameGno and the overlapping cores of the original gameG. In particular, it is natural
to ask whether the core ofGno can be empty when the o-core ofG (and hence by Theorem 5 also
the r-core and the c-core ofG) is not, and vice versa, i.e., whether the c-core (the largest of the
overlapping cores) ofG can be empty when the core ofGno is not. Interestingly, it turns out that the
answer to both of these questions is positive. We demonstrate this via examples based on threshold
task games; as argued above, for any such gameG we haveǦno = Ĝ.

Proposition 3. There exists a TTGG with core(Ĝ) = ∅, buto-core(Ǧ) 6= ∅.

Proof. Consider a threshold task gameG = (N ;w; t), whereN = {1, 2, 3}, w = (2, 2, 2),
t = t1 = (3, 1). In Ĝ, any coalition structureCS contains at most one coalitionC with v(C) = 1.
Let p = (p1, p2, p3) be an imputation forCS . As v(CS ) = 1, there exists somei ∈ N with pi > 0.
Then the coalitionC ′ = N \ {i} can successfully deviate from(CS ,p), as we havew(C ′) = 4,
p(C ′) = 1− pi < 1. Hence, any outcome of̂G is not stable.

In Ǧ, the players can form two successful partial coalitions. Now, consider an outcome(CS ,x),
whereCS = (r1, r2) with r1 = (1, 12 , 0), r

2 = (0, 12 , 1), andx1 = (23 ,
1
3 , 0), x

2 = (0, 13 ,
2
3). We

claim that(CS ,x) is in the o-core ofǦ. Indeed, suppose for the sake of contradiction that there is
a group of playersJ that has an o-profitable deviation from(CS ,x). We have|J | ∈ {1, 2, 3}. It is
easy to see that|J | 6= 1: no player has enough weight to completet1 on his own. Also,|J | 6= 2: any
pair of players earns43 in (CS ,x), and on their own they can make at most1 < 4

3 . Finally, |J | 6= 3,
as(CS ,x) maximizes the social welfare. The contradiction completesthe proof.

Intuitively, Proposition 3 holds becausěG has more feasible outcomes thanĜ, and some of
these additional outcomes turn out to be stable. On the flip side, Ǧ allows for a wider range of
deviations, so an outcome that is stable with respect toĜ may be unstable with respect tǒG. Our
next proposition illustrates this.
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Proposition 4. There exists a TTGG with c-core(Ǧ) = ∅, butcore(Ĝ) 6= ∅.

Proof. Consider a threshold task gameG = (N ;w; t), whereN = {1, 2, 3}, w = (9, 1, 1),
t = (t1, t2) with t1 = (8, 100), t2 = (2, 1).

In Ĝ, player 1 can work on taskt1, while players 2 and 3 can cooperate on taskt2, sharing the
profits equally. Clearly, the resulting outcome is stable.

On the other hand,̌G has no c-stable outcomes. Indeed, suppose that there is an outcome
(CS ,x) in the c-core ofǦ, and letp be the corresponding payoff vector. By Theorem 4,CS

consists of two partial coalitions:r1, which completest1, andr2, which completest2. Hence,
v(CS ) = 101. If p1 > 100, thenp2 + p3 < 1, and hence players 2 and 3 can deviate by forming a
coalitionr = (0, 1, 1) that can completet2 and has value 1. Ifp1 < 100, player 1 can deviate by
forming a coalitionr = (1, 0, 0) that can completet1 and has value 100. Hence, we havep1 = 100,
p2 + p3 = 1, and therefore we can assume without loss of generality thatp2 ≤ 1

2 . Now, players
1 and 2 can deviate by forming a coalition structureCS′ = (89 , 0, 0), (

1
9 , 1, 0) and distributing the

payoffs as((100, 0, 0), (13 ,
2
3 , 0)). We conclude that(CS ,x) is not c-stable, a contradiction.

8.2 Comparison with Fuzzy Games

As mentioned earlier in this paper, Aubin (1981) introducesthe notion of afuzzy game, in which a
player can participate in a coalition at various levels, andthe value of a coalitionS depends on the
participation levels of its members. Thus, at a first glance,the definition of a fuzzy game is identical
to the definition of an OCF-game, as both are given by characteristic functions defined on[0, 1]n.
However, there are several crucial differences between fuzzy and OCF-games.

First, fuzzy games and OCF-games differ in their definition of an outcome. Indeed, while in
OCF-games an outcome is an (overlapping) coalition structure together with a list of payoff vectors,
in fuzzy games the only allowable outcome is the formation ofthe grand coalition. Furthermore, an
outcome of an OCF-core needs to be stable against any deviation of a setS to a (possibly overlap-
ping) coalition structure. In the Aubin core, outcomes needonly be stable against a deviation to a
partial (“fuzzy”) coalition, but not necessarily against deviations to a coalition structure. Indeed, the
formation of coalition structures (overlapping or not) is not addressed in the fuzzy games literature.

One could try to represent games with overlapping coalitionstructures using the fuzzy games
formalism. Indeed, given an OCF-game, we can construct a fuzzy game whose characteristic
function simulates the behaviour of the characteristic function of the original OCF-game on coali-
tion structures. Specifically, given any OCF-gameG = (N, v), we define a related fuzzy game
G′ = (N, v′) as follows. For anyr ∈ [0, 1]n, we define

CSr = {(q1, . . . , qk) | k ≥ 1, qji ≥ 0 for i = 1, . . . , n, j = 1, . . . , k,

k
∑

j=1

qji = ri},

and setv′(r) = supCS∈CSr
v(CS ). That is, for each partial coalitionr, v′ identifies the best

coalition structureCS that can be obtained by splittingr into subcoalitions, and returns its value
v(CS ). The resulting fuzzy gameG′ is very similar to the original OCF-gameG. For example, for
TTGs, this transformation would enable the members of the grand coalition to work on several tasks
simultaneously. More generally, given a TTGG, any outcome of(Ǧ)′ (i.e., a payoff vector for the
grand coalition) corresponds to a social-welfare maximizing outcome(CS ,x) of Ǧ and vice versa.
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In fact, this relationship holds between any OCF-gameG and the corresponding fuzzy gameG′ as
long as the set{v(CS ) | CS ∈ CS(1,...,1)} is compact (and thus contains its least upper bound).

However, this approach fails to capture several delicate aspects of overlapping coalition forma-
tion. The main reason for this is that in the fuzzy game formulation, the actual set of tasks executed
by a partial coalition is implicit in the definition of the characteristic function. Indeed, an outcome
of the fuzzy game is simply a payoff vector, and while we are guaranteed that there is a set of tasks
that provides the corresponding total payoff, this set of tasks cannot be “read off” the description of
the outcome. This leads to a number of difficulties.

First, the fuzzy games formalism would not allow us to reasonabout partial coalition structures
with suboptimal social welfare. While by Theorem 4 such coalition structures are unlikely to be the
final outcomes of a game, a dynamic coalition formation protocol may produce such partial coalition
structures as intermediate steps. Thus, using the languageof fuzzy coalitions impairs our ability to
study the processes that lead to the formation of partial coalition structures. As such processes are
of great interest from the practical perspective, this is animportant disadvantage of the fuzzy model.

Further, under the OCF representation, there is a one-to-one correspondence between partial
coalitions and tasks. This makes the OCF approach intuitively appealing, and suggests that it pro-
vides the right level of granularity for reasoning about partial coalition formation. Indeed, consider
our problem from a computational perspective in the contextof TTGs. While under the OCF repre-
sentation finding a socially optimal coalition structure can be difficult (see Appendix A), computing
the value of a given partial coalitionr is straightforward: we simply pick the most valuable task
that can be completed using the resources posessed byr. In contrast, in the fuzzy game framework,
the two issues are intertwined, so even computing a partial coalition’s worth is a hard problem.

Even more importantly, the definition of the fuzzy core givenby Aubin (1981) is not appropriate
for many natural scenarios, and, in particular, TTGs. Specifically, the fuzzy core of a fuzzy game
G = (N, v) is defined as the set of all outcomes(N,p) such thatp(N) = v(1, . . . , 1) and for any
partial coalitionr it holds that

∑n
i=1 piri ≥ v(r). Essentially, this means that when a group of

players deviates from the grand coalition via a partial coalition r, each deviating playeri receives
both her payoff fromr, and her original payoff from the grand coalition, scaled down by a factor of
(1− ri). Thus, the fuzzy core is even more “optimistic” from the deviators’ perspective than the o-
core. Indeed, the deviators do not worry what the grand coalition will be able to do once they leave.
They simply assume that if they withdraw, say, 40% of their resources, they will get 60% of what
they used to get. However, in many games—and, in particular,TTGs—if some players abandon the
grand coalition, the latter may not have sufficient resources to complete any task. Clearly, in this
case the deviators could not possibly get any payoff from what remains of the grand coalition. Thus,
the fuzzy core may be empty, even if in practice the game is stable. The example in the proof of
Proposition 5 illustrates this.

Proposition 5. There exists a TTGG such thato-core(Ǧ) 6= ∅, but the fuzzy core of the corre-
sponding fuzzy game(Ǧ)′ is empty.

Proof. Consider a TTGG given byN = {1, 2}, w = (10, 10), andt = ((20, 20), (7, 9)), and the
induced OCF-gaměG. The corresponding fuzzy game(Ǧ)′ = (N, v′) is given by

204



COOPERATIVE GAMES WITH OVERLAPPING COALITIONS

v′(r) =























20 if r1 + r2 = 2

18 if 1.4 ≤ r1 + r2 < 2

9 if 0.7 ≤ r1 + r2 < 1.4

0 if r1 + r2 < 0.7

It is not hard to see that the outcome(CS ,x) of Ǧ, whereCS = r = (1, 1) andx = (10, 10) is
o-stable. Moreover, intuitively, it is clear that no rational agent or a coalition of agents would want
to deviate from this outcome. On the other hand, under the definition of the fuzzy core the outcome
(10, 10) of (Ǧ)′ is not stable: indeed, forq = (.7, .7) we havep1q1 + p2q2 = 14 < 18 = v′(q).

We will now prove thatno outcome of(Ǧ)′ is in the fuzzy core. Observe that sincev′(1, 1) =
20, any outcome of(Ǧ)′ is of the form(z1, z2), wherez1 + z2 = 20. Clearly, any outcome with
z1 < 9 or z2 < 9 is unstable, as the partial coalition(1, 0) (respectively,(0, 1)) can profitably
deviate from it. Thus we can assume thatz1 ≥ 9, z2 ≥ 9, or, equivalently,z2 ≤ 11, z1 ≤ 11. Thus,
for the partial coalitionq considered above, we havez1q1 + z2q2 ≤ 11× 1.4 = 15.4 < 18 = v(q),
which means that(z1, z2) is not in the fuzzy core.

Remark 4. To remedy some of the difficulties illustrated above, we can devise a notion of stability
that is defined within the framework of fuzzy games, yet is essentially equivalent to the c-core. Let
us say that an outcomep of G′ is f-stableif for any r ∈ [0, 1]n we havev′(r) ≤

∑

i∈supp(r) pi,
and define thef-core of G′ to be the set of all f-stable outcomes ofG′. Note that this definition is
different from the standard definition of the fuzzy core. ForTTGs, one can show that an outcome
p of G′ is in the f-core of G′ if and only if the corresponding outcome(CS ,x) of Ǧ is in the c-
core of Ǧ. The proof makes use of the fact that in TTGs one can distribute the profitv′(r) of a
deviating partial coalitionr among the members ofsupp(r) arbitrarily. (In more detail, one can
construct a partial coalition structureCS involving agents insupp(r) that performs tasks of total
valuev′(r) so that each agent insupp(r) participates in each partial coalition inCS .) Moreover,
this equivalence is true for general OCF games whose characteristic functions satisfy some natural
regularity conditions; the proof is similar to the proof of Theorem 1. Unfortunately, while the f-core
provides an analogue of the c-core in the fuzzy game setup, itis not clear how to devise an analogue
of the r-core or the o-core for this setting. Indeed, to definethese concepts, we would have to reason
about partial coalitions that are hurt by a deviation. However, the description of an outcome of
a fuzzy game does not indicate which partial coalitions a given player belongs to, so we cannot
determine which tasks will be affected by a deviation.

We conclude that there are natural settings where OCF-gamesprovide a more realistic and
nuanced model than fuzzy games; threshold task games appearto be one such example.

9. Computational Aspects of Stability in Threshold Task Games

In this section, we investigate the computational complexity of core-related questions in TTGs. Our
goal here is twofold. First, TTGs provide a natural model of agent collaboration, and therefore it
is important to understand how to allocate resources in suchgames in a stable manner. Second,
our analysis highlights important differences between thethree definitions of the core for games
with overlapping coalitions. In particular, the results presented in this section provide a complexity-
theoretic separation between the c-core, on one hand, and the r-core and the o-core, on the other
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hand. We believe that results of this type are useful for building a better understanding of stability
in the context of general OCF games.

Unless explicitly stated otherwise, we make the usual assumption that all parameters of the
game—i.e., all weights, thresholds and task utilities—areintegers given in binary. This assumption
can be made without loss of generality, and is necessary for aformal complexity-theoretic analysis.

9.1 Games with Non-Overlapping Coalitions

We start by analyzing the complexity of TTGs in the non-overlapping setting. As mentioned in
Section 5.1, such games can be seen as a generalization of weighted voting games with coalition
structures. Elkind, Chalkiadakis & Jennings (2008) show that several stability-related questions in
such games are computationally hard when weights are integers given in binary. Hence, we can
formulate the following proposition, whose proof follows immediately from those results.

Proposition 6. Given a TTGG = (N ;w; t), it is coNP-hard to decide whether the corresponding
gameĜ has an empty core. Also, given an outcome(CS ,p) of Ĝ, it is coNP-complete to decide
whether(CS ,p) is in the core ofĜ. These results hold even if there is only one task type, and the
utility of this task is1.

On the other hand, Elkind et al. (2008) provide a polynomial-time algorithm for checking if an
outcome of a weighted voting game is in the core if weights aregiven in unary. That algorithm is
based on dynamic programming: given a weighted voting gameG described by a set of playersN ,
a list of weightsw and a thresholdT , for each weight1, . . . , w(N) it identifies the minimum payoff
Pw to a coalition that has weightw, and then checks ifPw < 1 for somew ≥ T .

It is not hard to see that a similar approach works for threshold task games as well. The only
complication is that for each weightw, in addition to computing the minimum payoff to a coalition
of this weight under the given imputation, we have to computethe maximum utility available to a
coalition of this weight, i.e.,max{uj | w ≥ T j}, and compare the two quantities. However, these
additional steps are very easy (in particular, they can be performed efficiently even if task utilities
are large). This gives us the following result.

Proposition 7. There exists an algorithm that, given a TTGG = (N ;w; t) and an outcome(CS ,p)
of Ĝ, checks whether(CS ,p) is in the core ofĜ and runs in timepoly(w(N), |p|), where|p| is the
number of bits in the binary representation ofp.

For weighted voting games with unary weights, Elkind et al. (2008) also show that, by con-
structing a linear program that uses the algorithm of Proposition 7 as an oracle, we can check in
polynomial time whether a given coalition structureCS can be stabilized, i.e., whether there exists
a payoff vectorp ∈ I(CS ) such that(CS ,p) is in the core. This algorithm can be easily adapted to
work for TTGs with unary weights. Hence, the question of whether a given coalition structure can
be stabilized is poly-time solvable for these games, too.

9.2 Games with Overlapping Coalitions

We will now show that, similarly to the non-overlapping case, if all weights, thresholds and utilities
in a TTG are integers given in binary, then it is computationally hard to check if a given outcome
of the corresponding OCF game is stable. Moreover, this hardness result holds for all three defi-
nitions of stabilty, i.e., the c-core, the r-core, and the o-core. While these results are perhaps not
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surprising given the similar result for the non-overlapping setting (i.e., Proposition 6 above), the
reason behind the computational hardness is quite different. Indeed, the reduction used in the proof
of Proposition 6 is based on PARTITION, a classic NP-hard problem which asks whether, given a
set of weights, we can split it into two sets of the same weight. Essentially, the proof proceeds by
constructing an outcome that is stable if and only if a certain subset of agents cannot be split into
two groups that have the same weight. This proof technique isunlikely to work in the overlapping
scenario, as one can always form two partial coalitions of the same weight by allowing all agents to
split their weight equally between two coalitions. Hence, the proof of the following theorem uses a
somewhat different approach.

Theorem 6. Given a TTGG = (N ;w; t) and an outcome(CS ,x) of the corresponding OCF game
Ǧ, it is coNP-complete to decide whether(CS ,x) is in the c-core ofǦ.

Proof. Our reduction is based on UNBOUNDED KNAPSACK, a well-known NP-hard problem. An
instance of UNBOUNDED KNAPSACK (Martello & Toth, 1990) is given by a set ofℓ items, where
each itemi has a sizesi and a valuezi, the knapsack sizeB and the target valueZ. It is a “yes”-
instance if we can fill the knapsack using an unlimited numberof copies of each item so that the
total size of the resulting set of items is at mostB, while their total value is at leastZ, i.e., if there
is a vector of non-negative integers(α1, . . . , αℓ) such that

∑ℓ
i=1 αisi ≤ B and

∑ℓ
i=1 αizi ≥ Z.

Otherwise, it is a “no”-instance.
Consider an instanceI = ((s1, . . . , sℓ); (z1, . . . , zℓ);B;Z) of UNBOUNDED KNAPSACK. We

can assume without loss of generality thatsj < B, zj < Z for all j = 1, . . . , ℓ. Moreover, we can
assume thatI is monotone, i.e.,si ≤ sj implieszi ≤ zj . Indeed, if we have a pair of items such that
si ≤ sj, butzi > zj , we can simply delete thejth item, as it is not used by any optimal solution.

We will now construct an instance of our problem as follows. SetN = {1} and letw1 = B.
Sett = (t1, t2, . . . , tℓ+1), whereT j = sj, uj = zj for j = 1, . . . , ℓ andT ℓ+1 = B, uℓ+1 = Z − 1.
Due to our restrictions onI, the gameG = (N ;w; t) is a threshold task game.

Consider an outcome(CS ,p) whereCS consists of a single partial coalitionr with r1 = 1
andp ∈ I(CS ). AsB > sj for all j = 1, . . . , ℓ, this coalition executes the tasktℓ+1 and receives
utility of Z − 1. Hence, player1 can c-profitably deviate from(CS ,p) if and only if he can find a
collection of tasks whose total resource requirement is at most his weightB and whose total utility
is at leastZ, i.e., if and only if we started with a “yes”-instance of UNBOUNDED KNAPSACK.

In the proof of Theorem 6 the outcome(CS ,x) consists of a single partial coalition. Thus, any
r-profitable deviation from(CS ,x) is c-profitable. This implies the following corollary.

Corollary 2. Given a TTGG and an outcome(CS ,x) of the corresponding OCF gaměG, it is
coNP-complete to decide if(CS ,x) is in the r-core ofǦ.

For the o-core, the situation is somewhat more complicated.However, a more careful examination
of the proof of Theorem 6 allows us to obtain the following corollary.

Corollary 3. Given a TTGG = (N ;w; t) and an outcome(CS ,x) of the corresponding OCF
gameǦ, it is coNP-complete to decide if(CS ,x) is in the o-core ofǦ.

Proof. In the proof of Theorem 6, we construct an OCF game with 1 player and an outcome(r,x).
Consider any o-profitable deviation(CS,y) from (r,x). This deviation itself is not necessarily a
c-profitable deviation from(r,x): under(CS ,y), agent 1 may withdraw some, but not all of his
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resources from(r,x) and therefore continue to derive some benefit from it. However, for a single
agent, allocating some of the resources to the original partial coalition r is equivalent to forming
a new partial coalition using that amount of resources, i.e., given (CS,y), one can construct a
deviation from(r,x) that will be c-profitable for agent 1. On the other hand, any c-profitable
deviation from(r,x) is also o-profitable. Hence,(r,x) is o-stable if and only if it is c-stable, i.e.,
if and only if we started with a “no”-instance of UNBOUNDED KNAPSACK.

In the rest of the section, we will focus on the case where all parameters of the game (i.e.,
all players’ weights, all thresholds and all task utilities) are integers that are given in unary, or,
equivalently, are at most polynomial in the number of players. Given a gameG = (N ;w; t), where
tj = (T j, uj) for j = 1, . . . ,m, let |G| = w(N) +

∑m
j=1(T

j + uj).
It turns out that in this setting checking whether an outcomeis in the c-core becomes easy.

Intuitively, the reason for this is that once a group of players decides to deviate, the agents in this
group can easily decide how to proceed: they need to pool their weights and find the most profitable
set of tasks that can be completed using this amount of resources.

Theorem 7. There exists an algorithm that, given a TTGG = (N ;w; t) and an outcome(CS ,x)
of the corresponding OCF gaměG, checks whether(CS ,x) is in the c-core ofǦ and runs in time
poly(|G|, |x|), where|x| is the size of the binary representation of the imputationx.

Proof. Our algorithm is based on dynamic programming. First, for any w = 1, . . . , w(N), let Uw

be the maximum profit that a coalition of weightw can make, i.e.,

Uw = max







m
∑

j=1

αjuj |
m
∑

j=1

αjT j ≤ w, (α1, . . . , αm) ∈ Nm







.

For eachw = 1, . . . , w(N), the quantityUw can be computed using the dynamic programming
algorithm for UNBOUNDED KNAPSACK. The running time of this procedure is polynomial in|G|.

Now, letp be the payoff vector that corresponds to the imputationx. For all i = 1, . . . , n and
all w = 1, . . . , w(N), setPi,w = min{p(S) | S ⊆ {1, . . . , i}, w(S) = w}. The quantitiesPi,w

can be easily computed using dynamic programming. Indeed, we haveP1,w = p1 if w = w1 and
P1,w = +∞ otherwise (we use the convention thatmin ∅ = +∞). Furthermore, we can compute
Pi+1,w given the values(Pi,w′)w′=1,...,w by settingPi+1,w = min{Pi,w, pi+Pi,w−wi

}. The running
time of this procedure ispoly(|G|, |p|).

Suppose that we have computedPn,w for w = 1, . . . , w(N). Observe that the valuePn,w is the
least amount received by a coalition of weightw underp. Now, for eachw = 1, . . . , w(N), we can
compare the quantitiesPn,w andUw. If there is a value ofw for which the latter exceeds the former,
there is a coalition inN that could increase its collective earnings by deviating from (CS ,x), i.e.,
(CS ,x) is not in the c-core of̌G. It is not hard to see that the converse is also true: ifPn,w ≥ Uw

for all w = 1, . . . , w(N), then no coalition has a c-profitable deviation from(CS ,x), and hence
(CS ,x) is in the c-core ofǦ.

Clearly, this algorithm runs in timepoly(|G|, |x|).

In contrast, the corresponding problems for the r-core and the o-core are computationally hard.
Intuitively, the reason for this is that the decisions the players make are no longer binary: instead
of simply deciding whether or not to deviate, they have to decide which of their coalitions with
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non-deviators to abandon. In the case of the o-core, there isalso the possibility of reducing one’s
contribution to a partial coalition rather than abandoningit altogether.

Theorem 8. Given a TTGG = (N ;w; t) and an outcome(CS ,x) of the corresponding OCF game
Ǧ, it is stronglycoNP-complete to decide whether(CS ,x) is in the r-core ofǦ.

Proof. It is not hard to see that this problem is in coNP: to show that an outcome(CS ,x) is not in
the r-core ofǦ, we can guess a set of deviatorsJ and a deviation(CS ′,y), and check that(CS ′,y)
is r-profitable forJ by computing the payoffs of all players inJ underx andy.

To show coNP-hardness, we reduce from MAXIMUM EDGE BICLIQUE (Peeters, 2003). An
instance on MAXIMUM EDGE BICLIQUE is given by a bipartite graphB = (L,R,E) with a set
of verticesL ∪ R and a set of edgesE ⊆ L × R, and a parameterK. It is a “yes”-instance ifB
contains a biclique of size at leastK, i.e., if there are setsL′ ⊆ L, R′ ⊆ R such that|L′|∗ |R′| ≥ K,
and for allλ ∈ L and allρ ∈ R we have(λ, ρ) ∈ E. Otherwise, it is a “no”-instance.

Suppose that we are given an instance(B,K) of MAXIMUM EDGE BICLIQUE with B =
(L,R,E), L = {λ1, . . . , λ|L|}, R = {ρ1, . . . , ρ|R|}. Then we create an instance of our problem as
follows. Assume without loss of generality that|L| ≤ |R|, We setn = |R|+1, k = |L|, M = k2n2,
V = k2nM , and createn players with weightsw1 = · · · = wn−1 = k, wn = k(kn − n + 1) and
2 task typest1 = (kn;V ) and t2 = (K; (n − 1)k + 1). Also, we create a coalition structure
CS = (r1, . . . , rk) given byrji = 1/k for all i = 1, . . . , n and allj = 1, . . . , k. Observe that the
total weight of eachrj ∈ CS is kn, so each such partial coalition performst1. Finally, to construct
the imputationx = (x1, . . . ,xk), for all j = 1, . . . , k and alli = 1, . . . , n − 1, we setxji = 1 if
(i, j) ∈ E andxji = M otherwise. Also, we setxjn = V −

∑n−1
i=1 xji for all j = 1, . . . , k.

Suppose we started with a “yes”-instance of MAXIMUM EDGE BICLIQUE, and let(L′, R′) be
the corresponding subgraph ofB. Then the subset of playersJ = {i | ρi ∈ R′} can r-profitably
deviate from(CS ,x) by abandoning the partial coalitions in the setS = {rj | λj ∈ L′}, and using
the freed-up resources to embark ont2. Indeed, underx the players inJ collectively earn at most
(n− 1)k from partial coalitions inS, and devote at leastK units of weight to these coalitions.

Conversely, consider any r-profitable deviation(CS ′,y), and letJ be the corresponding set of
deviators. Suppose thatk1 coalitions inCS ′ work ont1, andk2 coalitions work ont2. First, suppose
n ∈ J . Observe that(CS ′,y) is profitable for playern if and only if k1 = k, k2 = 0: indeed, under
(CS ,x) playern earns at leastk(V − (n− 1)M), whereas under any outcome that completes less
thatk copies oft1 he earns at most(k− 1)V + k2n

K
((n− 1)k+1) < k(V − (n− 1)M). However,

any deviation that results in executingk copies oft1 must involve all resources of all players, i.e.,
J = {1, . . . , n}, and any such deviation cannot be simultaneously profitablefor all members of the
deviating set. Hence, we haven 6∈ J , and thereforew(J) ≤ k(n − 1). Consequently,k1 = 0

and the deviators’ total profit is at mostw(J)
K

((n − 1)k + 1) < M . This means that(CS ′,y) is an

r-profitable deviation only if no playeri ∈ J abandons a coalitionrj ∈ CS such thatxji = M .
On the other hand, to successfully execute even one copy oft2, the members ofJ must collectively
withdraw at leastK units of weight. LetR′ = {ρi | i ∈ J}, and letL′ correspond to the set of
partial coalitions inCS affected by the deviation; then(L′, R′) is a biclique of size at leastK.

It is not hard to check that in the proof of Theorem 8 no player can withdraw part of his re-
sources from a partial coalition inCS and still claim any profit from that coalition. This implies
that checking whether a given outcome is in the o-core is computationally hard, too.
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Corollary 4. Given a TTGG and an outcome(CS ,x) of the corresponding OCF gaměG, it is
stronglycoNP-complete to decide whether(CS ,x) is in the o-core ofǦ.

On the other hand, combining the techniques of Theorem 7 and Theorem 4 leads to a pseu-
dopolynomial algorithm for checking whether the c-core of aTTG is non-empty.

Theorem 9. Given a TTGG = (N ;w; t), one can check in timepoly(|G|) whether the corre-
sponding OCF gaměG has a non-empty c-core.

Proof. We will show that if the c-core of a gaměG is non-empty, then for any social welfare-
maximizing set of tasks we can construct a coalition structureCS that executes this set of tasks and
an imputationx ∈ I(CS) such that(CS ,x) is in the c-core ofǦ; moreover, inCS each agent
contributes to each coalition. Hence, our algorithm first selects a social welfare-maximizing set of
tasks, then constructs a coalition structure that can perform this set of tasks, and finally solves a
linear program to check if this coalition structure can be stabilized. The details follow.

Assume for simplicity thatt contains a task typet with T = 1; if this is not the case we
can add a task typet0 = (1, 0) to t. This allows us to assume that in any coalition structure all
agents’ resources are committed to some tasks. Fix a social welfare-maximizing multi-set of tasks
{α1t

1, . . . , αmtm}. Supposec-core(Ǧ) 6= ∅, and let(CS ′,y) be an outcome in the c-core of̌G.
By Theorem 4, we have

∑m
j=1 αju

j = v(CS ′). Consider a coalition structureCS that contains
α1 + · · · + αm coalitions: the firstα1 coalitions have weightT 1 each, the nextα2 coalitions have
weightT 2 each, etc., and each agenti distributes his resources evenly between all coalitions, i.e.,
he contributeswi

T 1

w(N) units of weight to each of the firstα1 coalitions, etc. As inCS all agents

contribute to all partial coalitions, andv(CS ) = v(CS ′), we havey ∈ I(CS ). Moreover, it is
clear that the outcome(CS ,y) is in c-core(Ǧ): any c-profitable deviation from(CS ,y) is also a
c-profitable deviation from(CS ′,y).

By Proposition 9 when all weights are given in unary, we can find a social welfare-maximizing
coalition structureCS = (r1, . . . , rk) in polynomial time. Consider the following linear program:

pi ≥ 0 for i = 1, . . . , n
∑

i∈N

pi = v(CS )

∑

i∈J

pi ≥ Uw(J) for all J ⊆ N,

whereUw is defined as in the proof of Theorem 7. While this linear program has exponentially
many constraints, it can be solved in linear time by the ellipsoid method (Schrijver, 1986), since it
has a polynomial-time separation oracle. Indeed, we can decide whether a given candidate solution
is feasible using the algorithm described in the proof of Theorem 7.

Clearly, if this linear program has a feasible solutionp, then the imputationx given byxji =

pi
v(rj)
v(CS ) for all i ∈ N and allj = 1, . . . , |CS | satisfiesx ∈ I(CS ), and, moreover,(CS ,x) ∈

c-core(Ǧ). Conversely, if it does not have a feasible solution, thenCS cannot be stabilized, and
hence by the argument above the c-core ofǦ is empty.
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10. Conclusions, Extensions, and Future Work

In this paper we introduced a model of cooperative games thatallows for overlapping coalitions and
takes into account the need for resource allocation. In doing so, we generalized the usual models
where either the grand coalition is the only desirable outcome or the outcomes are required to be
partitions of the set of agents. Given our model, we defined and studied in depth a notion of the
core (thec-core) which is a generalization of the core in the traditional models of cooperative game
theory. Under some quite general conditions, we provided a characterization for an outcome—that
is, a(coalition structure, imputation)pair—to belong to the core. We also showed that any outcome
in the core maximizes the social welfare. Further, we introduced a notion of balancedness for OCF-
games, and showed that a coalition structureCS admits an imputationx so that(CS ,x) is in the
core if and only if the game is balanced. Moreover, we extended the notion of convexity to our
setting and showed that convex games have a non-empty core.

In addition, we considered two other notions of core-stability in OCF-games, which differ from
each other (as well as from the first one) in what the deviatorsexpect to obtain from their collabora-
tion with non-deviators. Together, our three notions of thecore span a wide range of beliefs that the
deviators may hold regarding payoffs from coalitions with non-deviators, and can be substantially
different from each other with respect to the sets of outcomes that they characterize, and with respect
to their computational complexity. We also compared the OCF-games with their non-overlapping
analogues, and showed that from the social welfare maximization perspective, OCF-games may
provide higher total utility, and are easier to work with than their classic counterparts. We have
also argued that OCF-games provide a more appropriate modelling framework than fuzzy games
for many scenarios; in particular, this is certainly the case for threshold task games. To summarize,
our paper is one of the very first attempts to provide a theoretical treatment of overlapping coalition
formation, and to study stability in this setting in a thorough manner.

10.1 Extensions

In many environments, when a coalition is formed, it may havea choice of actions to execute.
While in a deterministic setting such as the one considered in this paper, the coalition will simply
choose the action that results in the highest possible payoff, in a probabilistic environment this
choice is more difficult: a coalition may want to strike a balance between the expected payoff and
the variance. To address this issue, we can incorporatecoalitional actionsin our model as follows.

A coalition is allowed to select an action from a (usually finite) action spaceA. Without loss of
generality, we assume that each coalition can undertake anyaction inA.3 The value of a coalition is
then determined by the resource contribution levels of its membersand the action selected. There-
fore, the characteristic function in our setting is then defined on(r, a) pairs, wherer = (r1, . . . , rn)
is a vector of resources, anda ∈ A is an action. All of our definitions and results generalize readily
to the situation where each coalition has a choice of actions(simply put, our presentation so far
corresponds to a situation where each coalition had exactlyone action available to it).

Another extension we have examined has to do with modelling the available resources. For
ease of presentation it was assumed throughout the paper that there exists only one type of (contin-
uous) resource. Nevertheless, all of our results still holdif we assume multiple types of resources
(e.g., agents have to distribute both timeand money among their coalitions). Moreover, we have

3. The situation where this is not the case can be modeled by setting the value of the respective(coalition, action)pair
to 0.
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also studied a “discrete” OCF setting, with agent contribution levels taking values in a finite set
(i.e., an agent may be able to contribute 20%, but not 21% of his resources to a given coalition).
Such a setting is obviously of interest in many applicationsinvolving countable resources (as the
discretization of effectively any kind of resources is common in practice). With discrete resources,
the number of possible coalition structures is now finite (asa coalition in our setting is a collection
of resources—see Section 4). All of our definitions and theorems carry through in this setting with
minor differences in the arguments used in the proofs.

10.2 Future Work

There exist many exciting open questions for future work. First of all, an important research di-
rection is to develop a better understanding of scenarios where overlapping coalitions can natu-
rally arise, and to identify the appropriate stability concepts for these scenarios. We believe that
techniques developed in this paper will prove useful for this purpose. Moreover, one of our first
priorities is to investigate further the alternative notions of stability (i.e., the o-core and the r-core)
proposed above, and obtain relevant characterization results, as we did with the c-core. Extending
other solution concepts for coalitional games—such as, e.g., the Shapley value—to OCF settings is
an important research direction as well.

We also plan to study further the computational complexity of core-related questions in this
setting. First, while we have initiated the study of complexity-theoretic aspects of stability in OCF
games, in this paper we have focused on the complexity of checking whether a given outcome is
stable. Another natural problem in this domain is studying the complexity of checking whether a
game has a stable solution—i.e., whether its c-core (r-core, o-core) is non-empty. Theorem 9 makes
the first steps in this direction, suggesting that this problem may be easier in the overlapping setting
than in the classic setting: indeed, Elkind et al. (2008) conjecture that for WVGs with coalition
structures checking the non-emptiness of the core is hard for unary weights.

Now, the hardness results for computing an allocation in thecore or checking if the core is non-
empty in the traditional setting—as those in the work of Chvatal (1978), Tamir (1991), Deng and
Papadimitriou (1994), Sandholm et al. (1999), Conitzer andSandholm (2006)—and our hardness
results in this paper suggest that one can only hope to identify special classes of games where we can
have efficient algorithms for computing core allocations. As noted earlier, an element of the core in
convex games can be computed in the traditional setting simply by taking the vector of the marginal
contributions of the agents for an arbitrary permutation ofthe set of agents. In our setting, even
though our proof yields a procedure for constructing an element of the c-core, it requires solving a
series of optimization questions, which for arbitrary convex games are NP-hard. Naturally, it would
be desirable to find classes of convex games where our proof yields a polynomial time algorithm.

We are also interested in finding processes that lead to the core in not necessarily convex games;
thoughrandomized algorithmssuch as the ones of Dieckmann and Schwalbe (1998) and Chalki-
adakis and Boutilier (2004) trivially extend to the overlapping setting, they would be of little prac-
tical value here due to the huge space of potential overlapping configurations. Therefore, we are
interested in finding ways to exploit known game structure toprune the search space for potential
stable configurations. Another subject of future research is extending our model to allow for infinite
coalition structures. Furthermore, it would be interesting to establish links between outcomes in the
core and outcomes of bargaining equilibria in overlapping coalitional bargaining games.
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Finally, the incorporation of actions in our model allows for the investigation of action stochas-
ticity and, more generally, uncertainty in an OCF setting. For instance, a coalitional action can
be associated with a distribution over possible payoff outcomes resulting from its execution. This
poses challenges to study such models from both a theoretical and a practical standpoint, since the
introduction of uncertainty leads to several intricacies not readily resolved by the use of “determin-
istic” concepts and models, as the work of Suijs and Borm (1999), Suijs, Borm, Wagenaere, and Tijs
(1999), Blankenburg, Klusch, and Shehory (2003), Chalkiadakis and Boutilier (2004) and Chalki-
adakis, Markakis, and Boutilier (2007) demonstrates. On a related note, enriching our model de-
scription so as to capture type uncertainty (Chalkiadakis &Boutilier, 2004; Chalkiadakis et al.,
2007) would allow for the ready translation of uncertainty regarding the types (capabilities) of play-
ers to coalitional value uncertainty, while still capturing the potential stochasticity of coalitional
action outcomes at the same time.
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Appendix A. Algorithmic Aspects of Social Welfare Maximization in TTGs

In this appendix, we study the complexity of finding a social welfare-maximizing outcome in TTGs,
both in the overlapping and in the non-overlapping scenario. Unless explicitly mentioned otherwise,
we make the standard assumption that all parameters in the description of a TTG (i.e., all agents’
weights, all thresholds and all task utilities), are integers given in binary.

It is not hard to see that finding a non-overlapping coalitionstructure that maximizes the social
welfare is an NP-hard problem.

Proposition 8. Given a TTGG = (N ;w; t) and a parameterK, it is NP-complete to decide if̂G
has an outcome(CS ,p) with v(CS ) ≥ K. This holds even if there is just one task type, i.e.,t = t1,
and all weights, thresholds and utilities are given in unary.

Proof. It is easy to see that the problem is in NP. To show NP-hardness, we give a reduction from 3-
PARTITION (Garey & Johnson, 1990) to our problem. An instance of 3-PARTITION is given by a list
of non-negative integersA = (a1, . . . , a3ℓ) and an integer parameterB that satisfies

∑3ℓ
i=1 = ℓB

andB/4 < ai < B/2 for all i = 1, . . . , 3ℓ. It is a “yes”-instance if the elements ofA can
be partitioned intoℓ setsS1, . . . , Sℓ such thata(S1) = · · · = a(Sℓ) = B and a “no”-instance
otherwise.

Given an instance of 3-PARTITION, consider a TTGG with N = {1, . . . , 3ℓ}, wi = ai for
i = 1, . . . , 3ℓ and a single task typet = (T, u) with T = B andu = 1. Clearly, deciding whether
the maximum social welfare achievable in̂G is at leastℓ is equivalent to checking whether the given
instance of 3-PARTITION is a “yes”-instance. Moreover, since 3-PARTITION is known to remain
NP-hard when the input is given in unary, the same is true for our problem.
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In contrast, finding a social welfare-maximizing coalitionstructure in the OCF game that cor-
responds to a TTG is a somewhat easier problem. Indeed, we cansimply add together all agents’
weights, and then find an optimal set of tasks to execute giventhis amount of resource. The latter
problem is equivalent to UNBOUNDED KNAPSACK, which is known to be NP-hard when the inputs
are given in binary, but is polynomial-time solvable if all elements of the input are given in unary or
if there are at most2 items; for details, see (Martello & Toth, 1990), Section 3.6. Consequently, a
similar conclusion holds for our problem.

Proposition 9. Given a TTGG = (N ;w; t) and a parameterK, it is NP-complete to decide if
Ǧ has an outcome(CS ,x) with v(CS) ≥ K. However, this problem becomes polynomial-time
solvable if all weights, thresholds and utilities are givenin unary or if there are at most2 task types.
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