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Abstract
We study the following question:

What is the smallest ¢ such that every symmetric boolean function on k variables
(which is not a constant or a parity function), has a non-zero Fourier coefficient of
order at least 1 and at most t?

We exclude the constant functions for which there is no such ¢ and the parity functions for
which ¢ has to be k. Let 7(k) be the smallest such t. Our main result is that for large k,
T(k) < 4k/logk.

The motivation for our work is to understand the complexity of learning symmetric juntas.
A k-junta is a boolean function of n variables that depends only on an unknown subset of k
variables. A symmetric k-junta is a junta that is symmetric in the variables it depends on.
Our result implies an algorithm to learn the class of symmetric k-juntas, in the uniform PAC
learning model, in time n°*). This improves on a result of Mossel, O’Donnell and Servedio in
[16], who show that symmetric k-juntas can be learned in time n.

1 Introduction

Problem statement

The study of the Fourier representation of boolean functions has proved to be extremely useful in
computational complexity and learning theory. In this paper we focus on the Fourier spectrum of
symmetric boolean functions and we study the following question:

What is the smallest ¢ such that every symmetric boolean function on k variables (which
is not a constant or a parity function), has a non-zero Fourier coefficient of order at
least 1 and at most ¢?7
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We exclude the two constant functions, for which there is no such ¢, and the two parity functions,
for which ¢ has to be k. Let 7(k) be the smallest such ¢. While the above question is interesting
in its own right, there is also an important learning theory application behind it, which we outline
next.

Motivation

The motivation to study 7(k) comes from the following fundamental problem in computational
learning theory: learning in the presence of irrelevant information. One formalization of the problem
is as follows: we want to learn an unknown boolean function of n variables, which depends only on
k < n variables. Typically, k is O(logn). Such a function is referred to as a k-junta. The input is a
set of labeled examples (x, f(x)), where the x’s are picked uniformly and independently at random
from the domain {0, 1}". The goal is to identify the k relevant variables and the truth table of the
function.

The problem was first posed by Blum [3] and Blum and Langley [6], and it is considered [4, 16]
to be one of the most important open problems in the theory of uniform distribution learning. It
has connections with learning DNF formulas and decision trees of super-constant size, see [7, 10,
15, 20, 21] for more details. The general case is believed to be hard and has even been used in
the construction of a cryptosystem [5]. A trivial algorithm runs in time roughly n* by doing an
exhaustive search over all possible sets of relevant variables. Two important classes of juntas are
learnable in polynomial time: parity and monotone functions. Learning parity functions can be
reduced to solving a system of linear equations over Fo [9]. Monotone functions have non-zero
singleton Fourier coefficients (see [16]). For the general case, the first significant breakthrough was
given in [16] - learning with confidence 1 — § in time n%"*poly(2¥,n,log1/6). Note that we allow
the running time to be polynomial in 2%, since this is the size of the truth-table which is output.
In the typical setting of k = O(logn), this becomes polynomial in n.

Fourier based techniques in learning were introduced in [13] and have proved to be very successful
in several problems. Fourier coefficients are easy to compute in the uniform distribution learning
model and furthermore, if a Fourier coeflicient is non-zero then its entire support is contained in
the set of relevant variables. Hence, it is interesting to ask: what are the sub-classes of juntas for
which Fourier based techniques yield fast learning algorithms? An important and natural subclass
is the class of symmetric juntas. While this subclass contains only 2**1 functions, the problem is
not known to be significantly easier than the general case. The bound before our work was n2*/3
[16], which is not much better than the best bound for general juntas (also obtained in [16]). Our
results imply an improved bound for learning symmetric juntas via the Fourier based algorithm.

We believe that the case of symmetric juntas constitutes a good “challenge problem” towards

the goal of learning general juntas. One motivation for this is a consideration of the following
well-known challenge problem [4] :
Let f(z1,...,2,) ;== MAJORITY (21, ..., Zo1/3) D (:c%/gH @ -+ @ axy), where 1, ...,z are some
unknown variables among x1, ..., x,. This subclass has been identified as a candidate hard-to-learn
class [4]. The current bound for learning this subclass of juntas is n¥/3, and it is asked in [4] if a
faster algorithm exists. Note that f is invariant under permutations of {1, ..., z9,/3} and under
permutations of {z, JEIR , Tk}, i.e., it is invariant under a large group of symmetries. This suggests
that it is interesting to begin with the case of symmetric juntas.

2 Our Results

There are two main results in this paper:



2.1 The Self-Similarity Theorem

Theorem 2.1. Let 1 < s <1 be fized integers such that 7(I) < s. Then there exists ko := ko(s, 1),

such that for every k > ko, 7(k) < (ﬁ—ll) k+ o(k).

It was observed in [14], via a computer search, that 7(30) = 2. This implies that 7(k) < 3k/31.

Proof Technique. Not surprisingly, the study of 7(k) is equivalent to the study of 0/1 solutions
of a system of Diophantine equations involving binomial coefficients. As a first step, we simplify
these Diophantine equations by moving to a representation which is equivalent to the Fourier
representation, but seems much simpler for the application of number theoretic tools. Once this
is done, we reduce these Diophantine equations modulo carefully chosen prime numbers to get a
simpler system of equations which we can analyze. Finally, we combine the information about the
equations over the finite fields in a combinatorial manner to deduce the nature of the 0/1 solutions.
The following well-known self-similarity property of Pascal’s Triangle (known as Lucas’ Theorem)
plays an important role: If m = Ip for some integer [, and some prime p, then the values obtained
by reducing the m-th row of Pascal’s Triangle modulo p, can be read off directly from the /-th row
of Pascal’s Triangle.

2.2 The O(k/logk) Theorem
Theorem 2.2. There is an absolute constant kg > 0 such that for k > ko, 7(k) < 4k /log k.

Proof Technique.

e We start again by looking at the 0/1 solutions of the system of Diophantine equations, as in
the proof of Theorem 2.1. We then take a departure from this approach by further reducing
this to the problem of showing that a certain integer-valued polynomial P is constant over
the set {0, 1,...,k}. We manage to prove this in two steps:

e First, we show that P is constant over the union of two small intervals {0, ..., t}U{k—¢, ..., k}.
This is obtained by looking at P modulo carefully chosen prime numbers. One way to prove
this (at least infinitely often) would be to assume the twin primes conjecture (that there are
an infinite number of pairs of primes whose difference is 2). We manage to replace the use of
the twin prime conjecture (and get a result which works for all large enough k) by choosing
four different primes in a more involved manner. To choose these prime numbers we use the
Siegel-Walfisz theorem on the density of primes in arithmetic progressions with modulus of
moderate growth. This is a generalization of Dirichlet’s Theorem, and is stated precisely in
Section 6.

e In the second step, we extend the constant nature of P to the whole interval {0,...,k} by
repeated applications of Lucas’ Theorem. One additional interesting aspect of our proof is the
use of an equivalence between (a) the vanishing of Fourier coefficients, and (b) the equality of
moments of certain random variables under the uniform measure on the hypercube and under
the measure defined by the function itself. This equivalence helps in the proof by eliminating
the need for a large amount of case analysis.

Our results imply a bound of n°*) for the Fourier based learning algorithm for the class of

symmetric k-juntas. To our knowledge, this is the best known upper bound for learning symmetric
juntas under the uniform distribution. Independent of the learning problem, the fact that symmetric



boolean functions have non-zero Fourier coefficients of relatively small order provides new insight
into the structure of these functions.

2.3 Related Work

Previously, the idea of reducing binomial coefficients modulo a prime number has been used in [22]
to prove lower bounds on the degree of polynomials representing symmetric boolean functions.
In [22], their problem reduces to showing that a certain sum of binomial coefficients is non-zero,
which is done by reducing the sum modulo a prime number. Our problem involves a collection of
sums which we have to prove are unequal. For this we need to consider reductions modulo many
different primes which have to be carefully chosen so as to satisfy certain properties. Combining
the information obtained by these reductions is also more involved in our case.

The result of [22] has in fact been used in the proof of the previous best n?*/? bound for
learning symmetric juntas [16]. Using [22], it is shown in [16] that if a symmetric function f is
balanced, i.e., Pr[f(x) = 1] = 1/2, then it has a non-zero Fourier coefficient of order o(k). The
2k /3 bottleneck comes in the case of unbalanced symmetric functions, which are analyzed through
a different argument. As noted in [16] and as we also note in Section 6, the result of [22] does not
seem to be applicable to learning unbalanced functions.

3 Notation

We consider boolean functions from {0,1}* — {0,1}. For a set S C [k], define ys : {0,1}F —
{1, -1} to be the function yg(x) := (—1)2ies ¥, By convention, the boldface x denotes a vector,
in this case (z1,...,x;). For a function f : {0,1}* — {0,1}, and S C [k], define the Fourier
coefficient corresponding to S as f(S) = 2% er{071}k f(x)xs(x). The order of a Fourier coefficient
£(8) is |S|. The Fourier expansion of f is: f(x) = >_SCik] F(8)xs(x).

If f is symmetric, f is completely determined by its value on any k + 1 vectors of distinct
weights where the weight of a boolean vector is the number of 1’s in it. We will use the following
vector representation of f: v(f) := (fo, f1,..., fr). Here f; is the value of f on a vector of weight
i. Further f has precisely k4 1 (non-equivalent) Fourier coefficients, ( fo,- .-, fk) Here f; is defined
as f(S), for some S C [k] with cardinality ¢. Since f is symmetric, this does not depend on the
choice of S. The following four special symmetric functions on k variables will appear often: the
two constant functions 0 and 1, the parity function &, and its complement .

4 An Equivalent Formulation as a Diophantine Problem

In this section we give an equivalent condition for the existence of a non-zero Fourier coefficient of
a boolean function f. While we prove the equivalence for all boolean functions, we use it only for
the special case of symmetric functions.

Let f:{0,1}* + {0,1} be a boolean function. For a vector x = (z1,..., ), and a set S C [k],
xg is the projection of x on the indices of S. Let o € {0, 1}‘3 |. Define the following probabilities:

pso(f) =Pr[f(x) =1|xs = o]. (1)
Unless mentioned, all probabilities are over the uniform distribution.

Definition 4.1. Fort > 1, call a boolean function f on k variables t-null, if for all sets S C [k],
with |S| = t, and for all o € {0,1}!, the probabilities ps(f), as defined in (1), are all equal to each
other.



The notion of t-nullity has been introduced in different contexts and under different names
in other areas including, among others, cryptographic applications [18]. In particular ¢-nullity is
equivalent to the notion of ¢-th order correlation immunity [18], strongly balancedness up to size
t [2] and t-wise independence of the corresponding probability distribution [1]. The following lemma
reveals the connection with the Fourier coefficients of f.

Lemma 4.1. Let f be a boolean function on k variables. f is t-null for some 1 <t < k, if and
only if, for all ) # S C [k] with cardinality at most t, f(S) = 0.

Proof. Tt can be easily verified that if f is t-null, then for all ) # S C [k] with cardinality at most
t f (S) = 0. This follows from the fact that the Fourier coefficients of order at most ¢ can be
expressed as 1 combinations of pg,(f) with o € {0,1}!, and S C [k],|S| = t. When f is t-null,
the terms cancel out. The proof of the other direction is by induction and we omit it here. ]

The following is an immediate corollary of this lemma.

Corollary 4.2. Let f be a boolean function on k variables. If f is t-null for some 1 <t < n then
fis s-null for 1 < s <t.

When we consider the case of symmetric functions, pg(f) just depends on s := |S| and the weight
w of 0. We denote this by ps . (f). It is clear that

1 o (k-
ps,w(f) = Qk—SZfz(Z_;))’
1=0

where (72) is0if m<0orm>1I, and (8) is 1. By definition, f is s-null if for 0 < w <'s, ps(f)
are all equal. Hence, f is s-null iff there exists ¢ := ¢(f, s, k) such that

k
Z(f:;})fl:c, VO<w<s. (2)

i=0
Thus, we have

Lemma 4.3. For 1 <s <k, let A be the (s + 1) x (k + 1) matriz:

Ap,s(i,j) = (lj B f)

A symmetric function f is s-null if and only if there exists a positive integer ¢ := c(f, s, k) such
that:
Aps-v(f) =cl.

It is easy to see that the constant boolean functions {0, 1} satisfy this system of equations for
all s, i.e., they are s-null for all s, s.t. 1 < s < k. One can also see that the boolean functions
{®,®} are s-null for all s s.t. 1 <s < k. From Lemma 4.1 and Lemma 4.3 we get:

Corollary 4.4. All symmetric boolean functions f & {0,1,®, D} have a non-zero Fourier coeffi-
cient of order at most so (and at least 1) iff there exists s, 1 < s < sg s.t. {0,1,D,D} are the only
0/1 solutions to:

2]y B S () B o (| )

i=1 i=s



5 The Self-Similarity Theorem

In this section we prove Theorem 2.1. First we recall a few results from number theory that we will
use repeatedly. The following result is a special case of Lucas’ Theorem [8, Ch. 3] and illustrates
the self-similar nature of the Pascal’s Triangle modulo primes.

Lemma 5.1. For a prime p, an integer m >0 and 0 < i < mp, ("F) = (T) mod p if i = jp for
some 0 < 57 < m, and 0 otherwise.

On numerous occasions, we will use the following result about the density of primes. This
follows from the Prime Number Theorem.

Lemma 5.2. For large enough n, there is a prime p < n, such that p =mn — o(n).

5.1 A Simple Bound of k/2

In this section we give a self-contained proof of the following weaker result. The aim of this
subsection is merely to illustrate the key ideas behind the proof of Theorem 2.1.

Theorem 5.3. For any symmetric boolean function f on k variables (f ¢ {0,1,®,@}), there exists
1<t< %—l—o(k) such that fi # 0.

We need the following combinatorial lemma. For positive integers k,p,q, s.t. p # q, let Gj 4
be the graph with vertex set {0,1,2,...,k}, and the edge set {(i,7) : |i — j| = p or q}.

Lemma 5.4. For positive integers k,p,q such that (p,q) =1 and p+ q < k, Gy p 4 is connected.

Proof. We proceed by induction on p+ ¢. Without loss of generality, let p > ¢. Clearly, the lemma
holds for the base case. Let i,j bes.t. 0 <i< j<kandj—i=p-—gq. Since p+ q < k, either
i+p<kori—gq>0. In either case, there is a path of length 2 between i and j. Hence, replacing
the edges {(u,v) : |u —v| = p} by the new edges {(v/,v') : |[u' — v'| = p — ¢} does not increase
the connectivity of the graph. It suffices to show that G} ;44 is connected, which follows by the
induction hypothesis. O

Proof of Theorem 5.3 : Let f be a symmetric function such that for every 1 <t < g + o(k),
f: = 0. We will show that f € {0,1,®,D}.

By Lemma 5.2, we can pick primes p, g, s.t. g —ok)=p<q< % Since k — p and k — g are
both at most % + o(k), we get from Lemma 4.1 that f is (kK — p)-null and (k — ¢)-null. Hence, by
Lemma 4.3, there are constants ci1, co such that

Ak’k,pV(f) =c1 and Ahk,ql/(f) = csl.

Consider these two systems of equations modulo p and ¢ respectively. Let 0 < ¢, < pand 0 < ¢, < ¢
be s.t. ¢, = ¢; mod p, and ¢; = ¢ mod q. We will use =, to denote congruences mod p (and
similarly for ¢). The systems become:

Ap—p(f) =p 1 and  App_qv(f) =4 ¢41.

Now, from Lemma 5.1, we see that (’;) =,1lifi=0o0ri=p,and (7;) =, 0 otherwise (and similarly
for q). Hence, we see that the equations are of the form

fit firp=pcy for 0<i<k—p



and
fi+ firg=qcq for 0<i<k—q.

Since f; € {0,1} and p > 2, these modular equations are in fact exact equalities and ¢, ¢4 € {0, 1, 2}.
If ¢, = 0, then it follows that ¢; = 0 and f = 0. If ¢, = 2, then ¢; = 2 and f = 1. The only
remaining case is ¢, = ¢, = 1. This gives

fi=1l—fizpfor0<i<k—p and fi=1—fiqfor0<i<k—q.

In other words, |i — j| = p or ¢ implies that f; =1 — f;. Since G} 4 is connected (Lemma 5.4)
it follows that fixing the value of any one f; uniquely determines f, and hence, there are at most
2 possible choices for f. We can see that {®, @} are solutions to these equations, and hence, they
are the only solutions in this case.

O

5.2 Proof of Theorem 2.1

Recall that the hypothesis of the Theorem is that 7(I) < s. Let f be a symmetric boolean function
on k variables. Suppose that f is t-null, for all ¢ < <f+i11> k + o(k). We will show that f €
{0,1,®,d}.

Let m = [ — s. As of now, assume that there is a prime p such that k = (m + s+ 1)p — 1. We
handle the case when there is no such prime p later. Set ¢t := k —mp = (s + 1)p — 1. Since p = &L

= m’
s+1 s+1 s+1
t= k -1< k.
<z+1> T <z+1>
Hence, f being t-null implies that there is an integer ¢ such that
Apv(f) = cl. (4)

We remark that the role of o(k) term is redundant in this case. It will play a role when we cannot
choose p such that k — ¢t = mp.

Reducing to a smaller problem

Note that, by definition of t, k —¢t = mp. For 0 < i < p —1, let ¥; := (fi, fitps firops-- > fitip)-
Hence, reducing Equations (4) modulo p, and using Lemma 5.1, one obtains the following systems
of equations.

AsFg = d1 modp
AsFr = d1 modp
A sFpor = d1 mod p.

Here ¢ = ¢ mod p. If k is greater than (I + 1)2/=%, then it follows that p > 2!=%. Therefore, for
such a k, these modular equations are in fact exact. That is, there is a positive integer d > 0, such
that the following set of equations hold.



A Fy = dl

A173F1 = dl
()

A F, 1 = dl.

Using the fact that 7(I) < s, we deduce that for any i, the system of equations A; ;F; = d1 has
at most 4 solutions. Hence, fixing any two variables in F; fixes all its variables. This implies that
there are at most 4P choices for f. Now we show how to narrow down these choices to 4.
Combining the smaller instances

Let g < mp < q < (m+s)p be a prime. Since f is t-null, and t = k — mp > k — ¢, by Corollary
4.2, fis (k — g)-null. Now, consider the system of equations Ay, ;_,v(f) = c1 modulo the prime g.
Since q¢ > 2, we get, for some e > 0, exact equations of the following form:

f0+fq = €
fi+ fom1

Il
o

(6)

fk—q +fr = e

The idea is that these equations, along with Equations (5), are sufficient to restrict f to one of the
four functions, as desired. First, we need a simple fact. For an integer r > 0, let (1), :=r mod p.
Also, for 0 <i <p—1, let [ig], := {(iq)p, (iq)p + D, - .., (iq)p + (M + s)p}.

Fact 5.5. Let p,q be distinct primes. Then, for 0 < i < j < p —1, [ig], N [jql, = 0, and
[i+qlpnlj+ap=0.

Now, fix fo, f, € Fo. As noticed before, this fixes all the variables in Fy. Using Equations (6), in
particular, we get that f, and fy4, are fixed. Notice that fy, fg+p € F(g),.- Now Equations (5) imply
that all the indices in F(,) get fixed. Note that for any 0 < i’ < p, we have that i/ + ¢ < k by
the choice of g. Now applying this argument to f(,), and f(,) 4, (which are in F(, ), we get that
f@)p+q 204 f(q),1ptq are fixed. Note that these variables are in F(, 1y . By Fact 5.5, F(,4 1), is
disjoint from F (g .

Iterating the alternate use of these two systems of equations, along with Fact 5.5, one obtains
that all the variables in F;, for every i, are fixed, once fy and f, are fixed. Hence, f has at
most four choices: {0,1,®,®}, one for every possible fixing of { fo, fp}. Thus, since p > 215 and

k= (I+1)p—1, we can choose ko := ko({) such that for all k > ko, 7(k) < ¢ = (i) ksl 1<

I+1 I+1
st1
() k.

Handling the residual class of variables

Now we consider the case when there is no prime p such that £ = (m + s+ 1)p — 1. In this case,
et — ok, e
a prime by Lemma 5.2. Let t = k — mp. Hence, (s + 1)p + o(p) > t > (s + 1)p. Since we think
of m as a constant, p = Q(k). Hence, there is a small number (o(k)) of variables, say R, which
remain to be dealt with in the previous argument. In particular, these are the variables starting

from position (m + s + 1)p all the way to k and {fo,..., fr} = (Uf:_&Fi) U R. By the argument

we pick a prime p in the interval . We are guaranteed the existence of such



in the previous case, fixing fo and f, fixes all the variables in Uf:_ol F;. Further, since |R| = o(k),
and ¢ > k/2, every variable in R will appear in one of the Equations (6) along with a variable in
Uf;& F;, and hence, get fixed.

Thus, since p > 2!=% and k = (I + 1)p — 1, we can choose kg := ko(l, s) such that for all k& > ko,

T(k) < (‘;jrr—ll) k + o(k). This completes the proof of Theorem 2.1.

6 A bound of O(k/logk)

This section is devoted to the proof of Theorem 2.2. We start with some general discussion about
the proof. The preliminary setup is the following. Suppose f is a boolean function on G = Z§,
such that all its non-constant Fourier coefficients of order up to ¢k = k — N are 0. Then the values
fj of f satisfy (3) with s = k — N, which, changing indices, can be rewritten as:

N
Z<4)fu+j=CN, forally =0,...,k— N. (7)
; J
It is easy to show by induction on N, starting with N = k£ and going down, that
ey =2VAvg f=2N"F N f(a). (8)
ze{0,1}"

We want to show that if k — N = ek = 4k / log k, then f; is either constant or alternates between 0
and 1. We prove this for all k sufficiently large.

Define D; = fji1 — fj, for j = 0,...,k — 1, and observe that the sequence D; satisfies the
homogeneous version of (7):

Z(N)Dyﬂ:o, forally=0,....,k— N —1. (9)
; J

Recall that in (9) the number N can be replaced by any other integer N; in the interval [N, k]
by Corollary 4.2 and Lemma 4.3.

From (9) the sequence D; may be defined for all j € Z and D; € Z for all j. From the theory
of recurrence relations we know then that the sequence D; may be written as a linear combination
of the following sequences:

(_1)j? (_1)jj7 (_1)jj27 R (_1)ij_1-
The reason for this is that —1 is the only root of the characteristic polynomial of the recurrence,
P(2) =2, (N) 2J = (1 + 2)N. Therefore there is a polynomial P(z), of degree at most N — 1, such

J
that '
D;j = (-1)P(j), forall j € Z.

Clearly P(x) takes integer values on integers and in particular P(j) € {—1,0,1} for j =0,...,k—1.
From the well known characterization of integer-valued polynomials [17, p. 129, Problem 85] it

follows that we may write
N-1

P)=Y q <x> with a; € Z. (10)
— J
7=0
At this point it is instructive to give a proof, in this framework, of a result of [16]. This proof
will also serve to clarify the relation of our method to that of [22]. A boolean function is called
balanced if it takes the value 1 as often as it takes the value 0.



Theorem 6.1. (Mossel, O’Donnell and Servedio, 2003) If f : {0,1}* — {0,1} is a balanced
symmetric function which is not constant or a parity function then some of its Fourier coefficients
of order at most O(k%5*®) are non-zero.

Proof. Subtracting cy from both sides of (7) and using (8) we obtain that the sequence f, — 5% =
fn—Avgf=fn— % satisfies the homogeneous recurrence relation (9) in place of D,,. By the same
reasoning as above (—1)"(f, — %) is then a polynomial of degree at most N — 1. But it only takes
the values :I:% forn=0,1,...,N,...,k — 1. Von zur Gathen and Roche [22] have shown that any
polynomial Q(n) which takes only two values for n = 0,1, ...,k must have degree d > k—O(k%>%8),
hence k — N = O(k%5*®%), which is what we wanted to prove. O

Remark. The method of [22] says nothing about polynomials which may take 3 or 4 values. If
one omits the assumption that f is balanced then the sequence (—1)"(f,, — Avg f) may take up to
4 possible values.

Plan of proof. We assume that f has all non-constant Fourier coefficients of order up to k — N
equal to 0 and we want to show that f € {0,1,®,®}. Since D; = f;41 — f; it is enough to show
that either D; is identically 0 or that D; = (—1)7 or D; = (—1)?*1. This is equivalent to showing
that P(j) = (—=1)7D; is a constant polynomial, constantly equal to —1,0 or 1.

We will first show that the polynomial P is constant in two “small” intervals at the endpoints
of the interval [0, k] (Lemma 6.3). To achieve this we will first show that P has period 2 in each of
these intervals (Lemma 6.2). For this we use some elaborate number-theoretic results (Theorem A)
on the distribution of primes. Many of the technicalities in that part would not be needed if one
knew that there are plenty of twin primes, that is integers p such that p and p+ 2 are both primes.

Once we have that P is constant in these two intervals near the endpoints of [0, k] we show
using the modular approach that P is also constant on a similar interval around the midpoint of
[0, k] (Lemma 6.4). At this point a significant element of our method is to eliminate the possibility
that P is 0 (we are assuming of course that f is not constant). To show this we interpret f as
a probability measure on the discrete cube and the vanishing of Fourier coefficients up to order r
becomes equivalent with r-wise independence of the marginals of that measure (Theorem 6.5). It
follows that if P vanishes in the middle interval in question then the second moment of a certain
random variable would be larger than we know it is (Corollary 6.6). This elimination of 0 as a
possible value is what makes the method work. We repeatedly obtain that P is constant in more
and more intervals of the same length, each in the middle of the existing gaps, until the whole
interval [0, k] is covered (Lemma 6.8).

Notation. In what follows we repeatedly use the letter C' to denote a positive constant which
depends on no parameter (unless we say otherwise). As is customary, this constant C' need not be
the same in all its occurences.

Definition 6.1. I' denotes the mazimum difference between succesive primes in the interval [0, k].
From Theorem A it follows, for instance, that T' = O(k/log'® k) which is o(k — N).
Lemma 6.2. The polynomial P satisfies the 2-periodicity condition
P(j) = P( +2),

whenever j,j+2€ A=[0,k— N -T|U[N+T,k—1].
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Proof. If p > N is a prime, and since all the factors that appear in denominators in (10) are strictly
less than p (hence invertible mod p), it follows that the sequence P(j) mod p, j € Z, may be viewed
as a polynomial with coefficients in Z, and therefore is a p-periodic sequence mod p, i.e.

P(j+p)=P(j) mod p, forall j€Zandp> N. (11)

If, in addition, 0 < j < j +p < k, when all P-values that appear in (11) are in {—1,0, 1}, it follows
that we have the non-modular equality

P(i+p)=P@), (N<p<p+j<k). (12)

We shall need various primes in intervals from now on. The version of the prime number theorem
that we will be using is the Siegel-Walfisz theorem (see [12, Theorem 2]). Define the logarithmic
integral

Todt x

L. — —_—
e 5 logt logax’

(x — o0).

The Euler function ¢(g) below denotes the number of moduli mod ¢ which are coprime to q.

Theorem A (Siegel-Walfisz) Let 7(z; M, a) be the number of primes < x which are equal to
a mod M and assume that (M, a) = 1. Then if M < (logz)?, A a constant, we have
Li
m(x; M, a) = % + O(zexp(—cy/logz)), (as z — o0). (13)
P

where ¢ depends on A only (the constant in the O(:) term is absolute).

For 7(x), the number of primes up to x without any restriction, we thus have 7(x) = Li(x) +
O(z exp(—cy/log x), for some absolute constant c.

These theorems guarantee that, for x — oo, the interval [z, z + A] has the “expected” number
of primes whenever A > Cz/(log x)4, whatever the constant A, even if we impose the condition
that these primes are equal to a mod M, as long as M < (log :U)B, for any constant B.

We use the above theorems along with the p-periodicity of P to deduce that P is in fact 2-
periodic on the union of 2 small sub-intervals of [0, k — 1].

Assume ¢ < 7 are two primes in [N, N + h], where h = (k — N)/3 = $k. (The length of the
interval [N, N + h| is large enough to guarantee the existence of many primes in it.) From (12) it
follows that the finite sequences

P(0),...,P(k—q) and P(q),...,P(k)
are identical. Applying (12) again with r we get that the finite sequences
P(0),...,P(k—r) and P(r),...,P(k)
are identical. It follows that
P(j+r—q)=P(j), forall jwith N+h<j<N+2handr>qprimesin [N,N+h|. (14)

We now assume, as we may, that the difference M = r — ¢ is the smallest difference between two
primes in [N, N + h]. By the prime number theorem M < C'log k. Hence, we can apply Theorem A
with modulus M. Since (M) < M < C'logk in that case Theorem A guarantees that the number
of primes equal to @ mod M in [N, N + h] is at least

h k

C ~C )
log? k log® k
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whenever (M, a) = 1. All that matters here is that this number is positive for large k.

Let t € [N, N + h] be the smallest prime which is equal to —1 mod M. By Theorem A, applied
to modulus M and residue —1, its existence is guaranteed and furthermore that ¢ ~ N. The
same theorem guarantees that we can find a prime s € (¢, N 4+ h] such that s = 1 mod M. Then
s—t =2 mod M or s—t = {M+2, for some nonnegative integer £. Therefore, for N+h < j < N+2h
we have

P(j) = P(j+s—t) (applying (14) for the primes s,1t)
= P(j+{M+2)
= PG+ {—1)M+2) (applying (14) for the primes r, q)

= P(j+2).

This 2-periodicity
P(j) = P(j +2) (15)

is now transferred to all j, j + 2 € A by using (12) repeatedly for appropriate primes p.

We use the following observation: if P(j) is 2-periodic in an interval [a,b] C [0, k] and j € [0, k]
is such that there exists a prime p > N for which j+p,j+2+p € [a,bl or j —p,j+2 —p € [a,b]
then P(j) = P(j + 2).

Since we know that P is 2-periodic in the interval [NV +h, N 4 2h], we first apply the observation
to obtain the 2-periodicity in the interval [0,2h — I'], since for any j in that interval we can find an
appropriate prime to apply the observation.

Using this new interval we now get the 2-periodicity in the interval [V + T, k]. Next we deduce
the 2-periodicity in the interval [0,k — N —T].

O

Notice that in the sequence Dj, if one erases the 0’s, one sees an alternation of —1 and 1
(this follows from the fact that f; € {0,1}). This property greatly reduces the number of allowed
patterns in D; and in fact it implies that P is constant in A.

Lemma 6.3. The polynomial P is constant in A (defined in Lemma 6.2).

Proof. From Lemma 6.2 the values of P in [N + I',k — 1] must be a 2-periodic sequence. The
only essentially different non-constant 2-periodic patterns for the values of P in [N 4+ I',k — 1]
are 010101... and (—1)1(=1)1... and they both violate the property that D; = (—1)7 P(j) must
satisfy, namely that if one erases the 0’s then one must see an alternation of 1 and —1. Therefore
P is constant in each of the two intervals of A. From the p-periodicity (12), applied, say, for some
p~ (k+ N)/2 it follows that the constant is the same in both intervals. O

We now extend the set on which P is constant to a superset of A that contains a small interval
around k/2.

Lemma 6.4. Leta:%%—% (mdb:g%—(k—N)—%. Then P(l) = P(0) fora <1<b.

Proof. We shall apply Lemma 5.1 with m = 2 and with a prime r such that 2r is the least possible
such number larger than N +I'. It follows that 2r < (N +1T') +2I' = N + 3I'. And it follows from
the remark after (9) that

S (-1) <ir> P(j+v)=0, (vez) (16)

J
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Taking residues mod r and using Lemma 5.1 for m = 2 we obtain

P(v)—2P(v+r)+ P(v+2r)=0modr, (veZ).
By our particular choice of r we have P(v) = P(v + 2r) = P(0) whenever v € [0,k — N — 3T']. It
follows that P(v + 1) = P(0) for all such v so we get P(l) = P(0) for all [ in the interval

N 3I' N 2y
— 4+ — k—N
2+22 ( ) -

So far we have proved P(l) = P(0) on the set (a,b are defined in Lemma 6.4)
Ay =10,k—N —-T]U[a,b|U[N + T,k —1],

which consists of three asymptotically equispaced intervals of asymptotic size ek. We consider two
cases for P. The first is when P is 0 on A and the second is when P is 1 or —1.

To eliminate the case that P is 0 on Ay, we shall need the following theorem, which already
gives a lot of significant information about the function f. It should be thought of as analogous to
the fact that the moments of a vector random variable can be read off the Fourier Transform of its
distribution (the characteristic function) by looking at partial derivatives at 0.

Theorem 6.5. Suppose f: G = ZS = {0, l}k — R is nonnegative and not identically 0 and has
all its Fourier coefficients of order at most r (and at least 1) equal to 0. Let p denote the uniform
probability measure on the cube G and v denote the probability measure on G defined by

=Y @)/> f@). (Aca).

z€A z€G

Let also X1,..., X denote the coordinate functions on G, which we view as random variables.
Then for all i1 <19 < --- < 1ig, 0 < s <71, we have

E,(Xi, -+ Xi,) = Eu(Xi, -+ X5,).
Proof. Let F' = . f(z). We assume for simplicity that iy = 1,...,is = s. Then, writing
I =

x = (x1,x9,...,2x) and [s] = {1, ..,s}, we have
B,(Xi X)) = 3 @)
zeG
= Y >”““ P
xEG 2
1 .
- T Y (e
zeG SCl[s]
’G| S 1 T;
= 57 Z Dl ‘Zf 2ies
SCls] zeCG
_ lq] 1)1 7
- 25F 2 (DPAS
SCls]
= 2’?2_,]?(0) (by the vanishing of f(S) for § # S C [s])
_ 2—8
- Eu(Xl' XS)
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O]

Remarks.

1. For functions f : {0,1}¥ — {0, 1}, which is all we shall need here, the above theorem also follows
directly from the definition of ¢-nullity in Section 4.

2. If the nonnegative function f is symmetric then the identity of moments up to order r with those
of the uniform distribution (r-wise independence) and the vanishing of the non-constant Fourier
coefficients of weight up to r are equivalent (see also [1] for a discussion on this connection). This
can be proved by induction on r. We do not use this here.

Corollary 6.6. Under the assumptions and definitions of Theorem 6.5 the random variable S =
X1+ -+ X has the same power moments E(S®) under the probability measures p and v, up to
order s < r.

Proof. The power S® s < r, can be written as a sum of terms of the type X;, --- Xj,, for t < s.
One uses the fact that X 32 = Xj;. O

Lemma 6.7. If P is 0 on Ao, then f is constant.

Proof. Suppose the polynomial P is constantly equal to 0 on the set As and that f is not constant.
The sequence f; is then constant in each of the three intervals of Ay. By possibly considering 1 — f
(whose Fourier coefficients vanish exactly where those of f do, if f is not a constant function), we
may assume that f; = 0 on the middle interval (a,b). Let 7 be the distribution of the random
variable S = X; 4+ - -+ X} under the measure induced by f on G (each vertex x € G has probability
proportional to f(x)), where X,..., X} are the coordinate functions on G. Note that this is a well
defined probability distribution since we assumed that f is not the 0 function.

The s-th moment with respect to the measure 7 of the variable S in Corollary 6.6 is the

expression
1 kY .
M) = 53 (%)

where again F' = ) i fi (l;) By Corollary 6.6, if s < k— N this moment must equal the s-th moment
with respect to the binomial measure p, which is the quantity

M(p,s) =27* Z (?);

But the variance of S under p is

M(p,2) — M(p, 1)2 =k, (17)
since under p the random variables X1, ..., X are independent, while the variance of S under 7 is
E,(S—E.S)?=E.(S—E,S)? =E.(S — k/2)* > C&k* (18)

as the mass of 7 sits to the left of a ~ k/2 — ek/2 and to the right of b ~ k/2 + ek/2. The
orders of magnitude in (17) and (18) are different whenever ¢ > C'/ vk, which is true in our case
ase=4 / log k. This contradiction proves that P cannot equal 0 on As. O
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Extending A, to [0,k — 1].
For 2! = m = 2,4,..., we define the sets

zu[ N+ Am), LN 4 ek~ Am)

where A(m) = A(m/2) +mlI, for m > 4, and A(2) = 3I" (these intervals will be overlapping when
m is large).

Lemma 6.8. There is a constant kg > 0 such that if k > ko and € = 4/logk then
(a) the polynomial P is equal to 1 on By, N[0,k — 1], form = 2,4,8, ... with m < %log k, and
(b) if m takes the highest value allowed in (a) then B, covers [0,k — 1], hence P =1 on [0,k — 1].

Proof. To prove (a) we work by induction on m = 2,4, .... The base case m = 2 is settled since we
have By C Aj (that’s why we chose A(2) large enough).

Assume now that we have proved P =1 on B, /5 N [0,k — 1]. We apply Theorem 5.1 for m and
we choose a prime 7 such that mr is the least possible larger than N. Thus

N/m <r<N/m+T. (19)

Lemma 5.1 together with relation (16) gives for all v € Z
P(v) —mPv+r)+ (?) Pv+2r)—---+(-1)"P(v+mr) =0mod r. (20)

We would like, for j even, the number v + jr to belong to B,,/;, for most values of v in the
interval [0, ek]. That is we want

%N +A(m/2) < v+ jr < %N + ek — A(m/2),

for 0 < 7 <m, j even. Given (19) this follows from

A(m/2) <v <ek—A(m/2) —ml. (21)

For v satisfying (21) the range of the expression v + jr (j fixed) contains the interval
i + A(m/2), jr + ek — A(m/2) — mI],

which, using (19) again, contains the interval
LN +ml + A(m/2), =N + ek — A(m/2) —mT| .
m m

From the relation A(m) = A(m/2) 4+ mI it follows that this last interval is the j-th interval of B,.

We have shown that whenever v satisfies (21) the numbers v + jr, 0 < j < m, j even, are all in
B, /2 so, by the induction hypothesis, the polynomial P takes the value 1 on them.

In the left hand side of (20) the sum of the absolute values of the coefficients is at most 2™ and
as long as 2™ < r it follows that (mod r) can be dropped from (20). If (21) is satisfied it is clear
that the sum of the terms of (20) corresponding to even j is 2™~!, since these P terms are all 1.
If, in addition 2™ < r, we obtain that the terms corresponding to odd j must all have their P term
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equal to 1. The reason for this is that the sum of absolute values of the odd terms is at most 27!
and is equal to that only in case all P’s are equal to 1.

Letting v run through all terms allowed by (21) we obtain that P has the value of 1 on all
intervals of B, corresponding to odd j. Since the intervals corresponding to even j are already
contained in B,, /5 we obtain the desired conclusion, that P is equal to 1 on By, as long as 2™ <,
which is clearly satisfied if 2™ < N/m or

1
m < 5 log k. (22)

This concludes the proof of (a).

To prove (b) observe that A(m) < 2mI. Letting € = 4/ log k, we observe that if we let m be as
large as part (a) allows then each of the intervals of B,, overlaps with the next one thus covering
all of the interval [0,k — 1], which proves (b) and that P is constantly equal to 1, as we had to
prove. [

7 Learning symmetric juntas

In this section we apply Theorem 2.2 to obtain faster learning algorithms for the class of symmetric
k-juntas on n variables. First we need some preliminaries and well known tools from computational
learning theory.

7.1 Preliminaries

We consider the PAC learning model [19]. The learning problem at hand is a Concept Class
C = U,,Cn, where each C, is a collection of boolean functions from {0,1}" — {0,1}. Let € be an
accuracy parameter and ¢ a confidence parameter. A learning algorithm A for C has access to an
oracle Z(f) for f € C,. A query to Z(f) outputs a labeled example (x, f(x)), where x is drawn
from {0, 1}" according to some probability distribution. A4 is said to be a learning algorithm for
the class C if for all f € C, when A is run with oracle Z(f), it outputs, with probability at least
1—4, a hypothesis h such that Prg[h(x) = f(x)] > 1 —e. Although Valiant’s PAC model is defined
for general distributions, in this paper we will be concerned only with the uniform distribution.

We recall the definition of a k-junta. Let f : {0,1}" — {0,1} be a boolean function. We say
that f depends on the variable i, if there are vectors x and y that differ only on the i’th coordinate
and f(x) # f(y). A function that depends only on an (unknown) subset of k < n variables is
called a k-junta. The variables on which f depends are called the relevant variables of f. Typically
k = O(logn). Hence, a running time that is polynomial in 2%, n and log(1/d) is considered efficient.
A symmetric k-junta is a boolean function which is symmetric in the variables it depends on. The
class of all such functions defined on n variables is the class of symmetric k-juntas. In this section,
we present an algorithm for learning this class in the uniform PAC model.

7.2 Analysis of the Fourier based algorithm

We will use the following facts about learning in the PAC model which are well known.

(i) We can exactly calculate the Fourier coefficients of the target function with confidence 1 — ¢
in time poly(log1/8, 2%, n) using standard Chernoff-Hoeffding bounds (see [13, 16)).

(ii) We can decide whether the target function f is constant or not in time poly(log1/4,2%).
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(iii) We can learn a parity function in time n“poly(log1/§,2*) [9]. Here w is the exponent for
matrix multiplication, w < 2.376.

We state the standard Fourier based algorithm below:
Throughout the algorithm, we maintain a set of relevant variables, R.

e Check if the function is constant or parity.
e If not, set R:=0, t:=1.

1. For every subset of ¢t variables, say S = {x;,,...,x;, } do:
(a) Compute f(S).
(b) If f(S) #0, then R:= RUS.
2. If for all sets S of size t, f(S) =0 then ¢t :=t+ 1 and go to step 1.

3. Else, R now contains all the relevant variables. Draw enough samples to build f’s truth
table and halt.

~

If z; is an irrelevant variable for f, then it is easy to see that for any S containing x;, f(S) = 0.
Hence, if f (S) # 0, for some S, then S contains only relevant variables. Since the function is
symmetric, for any two sets S, T of relevant variables such that |S| = |T'|, we have f(S) = f(T).
Hence, the first time that we will identify some relevant variables in the algorithm ( f (S) # 0 for
some S, |S| = s), we will actually be able to identify all the relevant variables, and the running
time will be roughly n®. Hence, as a direct consequence of Theorem 2.2, we obtain a bound of nok)

for learning symmetric juntas.

Theorem 7.1. The class of symmetric k-juntas can be learned exactly under the uniform distri-
bution with confidence 1 — & in time nO%/198k) . poly (2% n, log(1/6)).

8 Discussion

The main open question is to obtain tight upper and lower bounds on the running time of the
Fourier-based algorithm for symmetric juntas. It may even be that for large k, every symmetric
function has a non-zero Fourier coefficient of constant order.

It should also be noted that in the case of balanced symmetric functions, i.e., symmetric func-
tions with Pr[f(z) = 1] = 1/2, a bound of O(k->#®) follows from [22] (see [16]). Hence, to improve
our result, one may focus on finding new techniques for unbalanced functions.
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