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Abstract. We study a game-theoretic model for Plurality, one of the most well-
studied and widely-used voting rules. It is well known that the most standard
game-theoretic approaches can be problematic in the sense that they lead to a
multitude of Nash equilibria, many of which are counter-intuitive. Instead, we
focus on a model recently proposed to avoid such issues [2, 6, 11]. The main idea
of the model is that voters have incentives to be truthful when their vote is not
pivotal, i.e., when they cannot change the outcome by a unilateral deviation. This
modification is quite powerful and recent simulations reveal that equilibria which
survive this refinement tend to have nice properties.

We undertake a theoretical study of pure Nash and strong Nash equilibria of
this model under Plurality. For pure Nash equilibria we provide characterizations
based on understanding some crucial properties about the structure of equilibrium
profiles. These properties demonstrate how the model leads to filtering out unde-
sirable equilibria. We also prove that deciding the existence of an equilibrium
with a certain candidate as a winner is NP-hard. We then move on to strong Nash
equilibria, where we obtain analogous characterizations. Finally, we also observe
some relations between strong Nash equilibria and Condorcet winners, which
demonstrate that this notion forms an even better refinement of stable profiles.

1 Introduction

We study Plurality-based voting systems from a game-theoretic point of view. Voting
mechanisms constitute a popular tool for preference aggregation and decision making
in various contexts involving entities with possibly diverse preferences. Ideally in such
protocols, one would like to ensure that the voters do not have an incentive to mis-
report their preferences in order to get some favorite candidate elected. However, the
famous Gibbard-Satterthwaite theorem [4, 9] states that under mild assumptions, this is
impossible. Strategic behavior is therefore inherent in most voting rules.

In the presence of strategic voting, a large volume of research has emerged that
focuses on various aspects of manipulation. This includes manipulation by coalitions,
but also equilibrium analysis, where voters are viewed as rational agents participating
in a game. In this work we follow the latter approach, which was initiated by [3] and
has led to several game-theoretic models for capturing voting behavior. One problem
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however that emerges in some of the models is the fact that they yield a multitude
of Nash equilibria and hence they lack predictive power. A typical example of this well
known fact is that every candidate (even one who is ranked last by all voters) is a winner
in some equilibrium: if everybody votes for him, then no voter can change the outcome
by a unilateral deviation.

As aresult, the literature has largely concentrated on proposing more realistic mod-
els that avoid such issues. Among these, one promising idea has been formalized in a
series of recent papers, and in particular in [2, 6, 11].

The main idea in these works is to model the voters so that they prefer to be truthful
when their vote is not pivotal, i.e., when they cannot change the outcome by a unilateral
deviation. Such voters are referred to as truth-biased voters in [6]. This twist, which is
the focus of our work, turns out to be quite powerful. For the Plurality rule, this was
empirically evaluated in [11]. Their experiments suggest that the model achieves a sig-
nificant refinement of equilibrium profiles, i.e., models with truth-bias may have more
predictive power than models without. However, there has thus far been no theoretical
study on the properties of Nash equilibria with truth-bias. Further, the interaction be-
tween truth-bias and other equilibrium refinements such as the concept of strong Nash
equilibrium has not yet been investigated.

Contribution We undertake a theoretical analysis of the model with truth-biased agents
under the Plurality rule. We focus on the set of pure Nash and strong Nash equilibria.
In Section 3, we obtain a characterization for the existence of a pure equilibrium with a
given candidate as a winner. Our characterization is based on understanding some cru-
cial properties regarding the performance of “runner up” candidates. These properties
also demonstrate how this model achieves a refinement of equilibrium profiles. Our re-
sults can be seen as a complement to the corresponding experimental findings of [11].
On the negative side, we derive an NP-hardness result for determining if an equilibrium
exists with a given candidate as a winner, implying that any characterization has to rely
on conditions that are not easily checkable. In Section 4, we move on to strong Nash
equilibria. We obtain characterizations for the same type of questions as for the case of
pure equilibria. Interestingly in this case we can check existence in polynomial time.
We also observe some relations between strong Nash equilibria and Condorcet winners,
which imply that there can be only one possible winner in all strong Nash equilibria of
a game, i.e., this notion forms an even better refinement of stable profiles.

Related Work Analysis of Nash equilibria in voting is challenging since natural “ba-
sic” models for voting games have the problems mentioned in the Introduction, i.e.,
multiplicity of equilibria and no predictive power over outcomes. Thus, the literature
on equilibrium analysis of voting can be viewed as a search for models that get away
from these limitations. One approach is to introduce uncertainty, e.g., about how many
voters support each candidate (as in [8]). Another approach involves changing the tem-
poral structure of the game. Xia and Conitzer [12], and also [1] consider the case where
agents vote publicly and one-at-a-time. Yet another line of work considers the case
where voters are allowed to change their votes dynamically [6, 5].

A more direct approach is to assume that voters have a slight preference for a par-
ticular action, so that in situations where a voter cannot influence the outcome, he will
strictly prefer this favored action. Desmedt and Elkind [1] study a model where voters



may prefer to abstain if they are not pivotal. Another line of research considers what
happens when every voter slightly prefers to vote honestly (i.e, for his most preferred
candidate in the case of plurality), when he is not pivotal.

This last approach, introducing a small reward for truthfulness, is the one that we
follow. The works of [6] and [2] are two examples of using this approach with plural-
ity. The former studied convergence of iterative best response procedures, whereas the
latter demonstrated that pure equilibria do not always exist. More recently, Thompson
et al. [11] conducted a large-scale computational experiment, testing how frequently
pure Nash equilibria existed under this model and studied properties of equilibrium
outcomes. Since our work strives to answer similar questions analytically rather than
experimentally, some of their findings are particularly relevant, such as the fact that
most games in their simulations had at least one pure Nash equilibrium, and that equi-
librium outcomes tended to be good, e.g., Condorcet winners often won.

Finally, another way of getting more predictive power is to have a stronger solution
concept, e.g., strong equilibrium. Messner and Polborn [7] investigated the possibility
of strong equilibria and were able to characterize when such equilibria exist, for the
special case of three-candidate plurality elections. Sertel and Sanver [10] also studied
strong equilibria under Plurality, and were able to show that strong equilibria outcomes
are characterized by a generalized form of Condorcet winners.

2 Definitions and Notation

We consider a set of m candidates C = {c1,...,¢n} and a set of n voters V' =
{1, ...,n}. Each voter i has a preference order (i.e., a ranking) over C, which we denote
by a;. For notational convenience in comparing candidates, we will sometimes use >;
instead of a;. When ¢, ~; c¢; for some ¢y, ¢; € C, we say that voter ¢ prefers ¢y, to c;.

At an election, each voter submits a preference order b;, which does not neces-
sarily coincide with a;. We refer to b; as the vote or ballot of voter i. If we denote
by L(C) the space of all linear orderings over C, then the vector of submitted ballots
b = (by,...,b,) € L(C)™ is called a preference profile. An election is then determined
by a pair (C,b). At a profile b, voter i has voted truthfully if b; = a,. Any other vote
from ¢ will be referred to as a non-truthful vote. Similarly the profile a = (a1, ..., a,) is
the truthful preference profile, whereas any other profile is a non-truthful one.

A basic game-theoretic model. The obvious approach is to view the voters as players
whose strategy space is £(C). It is convenient to associate with each voter ¢ and pref-
erence order a;, a utility function u; : C — R. This means that if, e.g., candidate c;
is elected, then voter ¢ derives a utility of u;(c;). The specific numerical values of the
utility functions are not important as long as the functions are consistent with the truth-
ful vote of each voter. That is, we require u;(c) # u;(c;) forevery i € V, ¢j, ¢, € C,
and also if u;(cx) > u;(c;), then ¢ >; ¢; and vice versa.

Consider now a voting rule f : £(C) — C (we consider single-winner elections).
The most natural way to define a voting game is to consider that each voter ¢ derives a
utility of u;(f(b)), when b is the submitted profile. Thus the payoff function of each
player when his real preference is a; will be:



pi(ai, f(b)) = ui(c;), if ¢; = f(b)

We refer to this as the basic model. Given a profile b, we say that a vote b, € L(C)
is a profitable deviation of voter i from b, if p; (a;, f(b},b_;)) > pi(as, f(b)). A profile
b is then a Nash equilibrium if for every ¢ € V, no profitable deviation exists from b.

There are various problematic issues regarding the equilibria of the basic model, as
identified in the Introduction. As a result, it has not received much attention to date.

The model we study. Instead, we focus on a slight but powerful modification that was
introduced recently. The main idea is that since strategizing always incurs some cost
(e.g. cost in time, or effort, for finding how to deviate optimally), voters have a slight
preference for voting truthfully when they cannot unilaterally affect the outcome of the
election. The twist that was used in order to capture this is that there is always a small
extra gain in the payoff function by voting truthfully. This extra gain is small enough so
that voters may still prefer to be non-truthful in cases where they can affect the outcome,
see e.g. [2,6, 11]. Formally, let € < min;e(,) j kem) [wi(c;) — ui(cx)|. If ais the real
profile and b is the submitted one, then the payoff function of voter ¢ is given by:

[ uiley), ifc; = f(b) Aa; # b;,
pz(azvf(b)) - {uz(cj) + €, 1fc; = f(b) Aa; =b;. M

We denote such a game instance by G(C, a). One can now see that with these new
payoff functions, voters have an incentive to tell the truth if they cannot change the
outcome. As a result, this model eliminates some undesirable Nash equilibria of the
basic model, e.g., the bad equilibrium where all voters would vote for a candidate who
is ranked last by everybody is no longer a Nash equilibrium.

An even further refinement is achieved with the concept of strong Nash equilibrium.
Given a profile b, a deviation by a coalition S C V is given by a vector by € £(C)I5],
where b; # b; for at least one member of .S. Such a deviation is profitable for S if all
its members are strictly better off. Hence a strong Nash equilibrium is a profile where
there is no coalition with a profitable deviation. This notion is of interest in voting
theory since voters may often choose to form coalitions to manipulate the election.

Plurality Voting Throughout this work, the rule f is taken to be the Plurality rule,
along with lexicographic tie-breaking. This is one of the most basic and well-studied
voting rules, where the winner is the person with the maximum number of votes that
ranked him as a first choice. In case of ties, we assume without loss of generality that
tie-breaking is resolved by the linear order ¢; > co > ... > Cp.

Given a voter p € V, and his vote b, under a profile b, we denote by top(b,) the
top choice of the vote. We will use repeatedly the following quantities:

Definition 1. Given a preference profile b, we define

N;(b) = {p € V : top(b,) = ¢;}, the set of voters who voted for c; in b,

Ns(b) = {p € V - top(by) € S}

sc(ci, b) = |N;(b)|, the number of supporters of ¢; in b,

n; = sc(c;, a) = |N;(a)|, the number of supporters of c; at the truthful profile a.

AL~




3 Analysis of Pure Nash Equilibria

Due to lack of space, all proofs along with illustrative examples regarding the results of
Section 3 and Section 4 are deferred to the full version of this work.

Before we embark on the study of pure Nash equilibria under truth-biased agents,
we note that unlike the basic model, the refinement can cause some games to not admit
an equilibrium, as already identified in [11]. Despite this fact however, the extensive
simulations in [11] have shown that most of the games they produced had at least one
equilibrium. In fact they have also observed in their simulations that the estimated prob-
ability of a uniformly at random chosen instance having an equilibrium goes to 1, as the
number of voters increases. Hence we do not consider this issue a major concern.

We introduce below some auxiliary notation that we use in this Section.

Definition 2. Given a preference profile b, we define

- W(b) = {¢; € C : sc(c;,b) = maxjec sc(cj, b)}. This is the set of candidates
who attained the maximum score in b. We refer to W (b) as the winning set and if
[W(b)| > 1, the winner is determined from the tie-breaking rule.

- H(b) = {¢; € C : sc(¢;,b) = maxjec sc(c;, b) — 1}. We refer to this set of
candidates as the chasing set.

3.1 When is the truthful profile a Nash equilibrium?

We start our analysis by identifying necessary and sufficient conditions that make truth-
ful voting a Nash equilibrium. Clearly the stability of the truthful profile a, can be
threatened either by members of WW(a), other than the winner, or by the members of
H(a) if it is non-empty. This leads to the cases described below.

Theorem 1. Consider a game G(C, a), and let ¢; = f(a) be the winner under a. Then
a is a Nash equilibrium if and only if none of the following conditions hold.

(1) [W(a)| > 1 and there exists a candidate c¢; € W(a) and a voter p such that
¢j >=p ¢ and c; # top(ap);

(2) |H(a)| > 1 and there exists a candidate c; € H(a) and a voter p such that c; »,
¢i, ¢j # top(ayp), and c; > c; in the tie-breaking linear order.

Remark 1. Theorem 1 still holds if we use any other deterministic tie-breaking rule
instead of the lexicographic one. Condition (2) would now require that tie-breaking
favors ¢; in the winning set YW (b,, a_), where top(b,) = ¢;.

3.2 Properties of non-truthful Nash equilibria.

As we will see, there can be many instances that have non-truthful profiles as Nash
equilibria. However, the model and in particular the definition of our payoff function
imposes some restrictions on how people can lie at equilibrium profiles. The purpose of
this subsection is to identify some important properties that hold for such equilibrium
profiles. None of the properties we establish here hold for the basic model, hence the



properties demonstrate a clear distinction between the basic model and our model and
help us understand the elimination of undesirable equilibria that takes place.

We describe below a running example that will provide some intuition throughout
this subsection.

Example 1. In Figure 1, consider the truthful profile a, shown in Subfigure 1(a). This
is not a Nash equilibrium, since voter 5 can vote for co and make co a winner, a more
preferred outcome for voter 5. However, in Subfigure 1(b), we can see that if voter
5 changes his vote to rank cy first, the resulting profile is an equilibrium. Finally in
Subfigure 1(c), we see that if candidate ¢y collects even more votes, by having voter 6
also support him, then the resulting profile is not an equilibrium any more. The reason
is that voter 5 or 6 would be better off by e if they stick to their truthful vote, since co
will get elected anyway (i.e., this suggests that at an equilibrium, candidate ¢, should
not need more than just the necessary number of votes to get elected).
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(a) Truthful profile
a, with ¢1 = f(a).

(b) Equilibrium pro- (c) Non-equilibrium
file b, with co = profile b’, with c2 =
f(b). f).

Fig. 1: An example with a non-truthful Nash equilibrium

The first property we identify is intuitively very clear and close to what we would
expect in real-life scenarios; at an equilibrium profile, people who lie are among the set
of people who voted the elected candidate as their first choice. There should be no point
in lying otherwise and be in equilibrium (this is unlike the basic model where people
may lie in favor of some candidate who does not get elected and still be in equilibrium).

Lemma 1. Suppose that b # a is a non-truthful profile, which is a Nash equilibrium.
Let c; = f(b). Then all non-truthful votes in b have c; as a top candidate.

The next property, which we will use repeatedly in the sequel, is an important obser-
vation about the structure of non-truthful equilibrium profiles. It further highlights the
differences with the basic model and it is also very useful for the characterizations we
obtain in Subsection 3.3. To state the property, we need first the following definition:

Definition 3. Given a profile b with c; = f(b), a candidate ¢}, # c; is called a thresh-
old candidate with respect to b when the following condition holds:

(1) if ek > cj, then sc(cg, b) = sc(cj, b) — 1,
(2) otherwise sc(cy,b) = sc(cj, b);

Hence a threshold candidate is someone who could win the election if he had one
additional vote. As we show below, a feature of all non-truthful equilibria is that there



must exist at least one threshold candidate. The intuition for this is that since in our
model voters who are not pivotal prefer to vote truthfully, then any equilibrium that
arises from manipulation should provide just enough votes to the winner so as to beat
the required threshold (as provided by the threshold candidate) and not any more. Hence
there cannot be a non-truthful equilibrium where the winner wins by a large margin
from the rest of the candidates. This is evident in Example 1, in Subfigures 1(b) and
1(c). Clearly there can be truthful equilibria where the winner wins by a large margin.

Lemma 2. Consider a game G(C,a), and suppose that b # a is a Nash equilibrium.
Then there always exists at least one threshold candidate ci, with respect to b. Addi-
tionally, it holds that Ni(a) = Ni(b), thus sc(cg,b) = ng.

Remark 2. Tt is not always the case that the winner of a is a threshold candidate in an
equilibrium b.

3.3 Characterization results

This subsection contains necessary and sufficient conditions for the existence of equi-
libria with a specified candidate as a winner. This yields a full characterization of games
that admit some Nash equilibrium.

We start first with the toy case of elections with two candidates, which turn out to
always have a unique Nash equilibrium.

Theorem 2. In any game G(C,a) with 2 candidates, truthful voting is a dominant
strategy, and a is the unique Nash equilibrium.

We consider now elections with at least 3 candidates. We deal first with equilibria
where the specified winner is the truthful winner.

Theorem 3. Consider a game G(C,a), and let ¢; = f(a). If there is a Nash equilib-
rium with c; as the winner, then a is the unique such equilibrium and its existence is
determined by the necessary and sufficient conditions of Theorem 1.

From now on, and for the rest of this subsection, fix a preference profile a, with
¢; = f(a), and fix also a candidate ¢; # ¢;. We want to understand when can there
exist a non-truthful equilibrium b with c¢; being the winner. This question cannot have
a simple answer since as we show below, it is an NP-complete problem.

Theorem 4. Consider a game G(C, a), with ¢; = f(a) and let c; # c;. Given a score
s, deciding if there exists an equilibrium b, with ¢; = f(b) and sc(cj,b) = s, is
NP-complete.

We note here that in our reduction both the number of candidates and the number of
voters is non-constant. For a constant number of voters, the problem becomes polyno-
mial time solvable (since one can check all possible configurations of votes in favor of
a given candidate c;). The complexity of the problem when the number of candidates is
constant is still unknown.

Despite the NP-hardness, one can still try to obtain characterization results, so as
to gain more insights into the difficulty of the problem. To do this, we will utilize the



lemmas and intuitions from Subsection 3.2. We first have to understand what values for
s can yield an equilibrium b with sc(c;j, b) = s. One thing we can immediately deduce
for example is that s has to belong to the interval [n;, n; + 1] (obviously s > n;, and
the upper bound is by having in worst case ¢; as a threshold candidate). We also have
to determine which voters decide to non-truthfully support ¢; at equilibrium, instead of
their top candidate. In light of Lemma 1, we know that there should be exactly s — n;
such voters. Finally, in light of Lemma 2, we need to determine the set of threshold
candidates in such an equilibrium (note that these are candidates whose supporters vote
truthfully for them at the equilibrium, by Lemma 2).

Given this discussion, we will focus first on determining which candidates could be
eligible for being threshold candidates at an equilibrium. Building on Definition 3, we
define below the notion of an s-eligible threshold set, for a given candidate c; and a
winning score of s.

Definition 4. Given a game G(C,a), fix a score s € [n] and a candidate c; € C.
A non-empty set T' C C is an s-eligible threshold set with respect to c;, if it can be
decomposed into two subsets T = TV U T2, such that the following conditions hold:

(i) Forevery c, € T, it holds that nj, = s and Cj > Ck.
(i12) For every cy € T2 it holds that n, = s — 1 and ¢y, > Cj.
(iti) For every voter p € V, we have ¢j »p, c, Ve € T\ {top(ap)}-

To obtain some intuition about this definition, conditions (¢) and (¢¢) simply corre-
spond to the set of possible threshold candidates at some equilibrium, as in Definition
3. Note that we define these candidates with respect to the real profile a, and look at
their score ny = sc(cg,a). This is not an issue, because in any equilibrium b, where
¢k, s a threshold candidate, we know by Lemma 2 that sc(cg, a) = sc(cg, b). Finally,
condition (447) simply ensures stability: in order for 7" to be a potential set of threshold
candidates, every voter should prefer the winner c; to any candidate from 7' (except if a
member of 7" is his top choice). Otherwise, some voter would have an incentive to vote
for such a candidate from 7" and we would not have an equilibrium.

In the analysis below, we will often need to argue about candidates from the set
Mss = {cx € C|ni > s}. This set arises naturally in the analysis, since in any
equilibrium where the winning score is s, there must be non-truthful voters whose real
preferences were candidates from M.

To continue, we consider two cases for the realization of threshold candidates.

Equilibria for threshold sets with T* = (. Given c; and the possible score s, let T'
be an s-eligible threshold set, with T = (), i.e., T := T2. We will characterize when
can there be an equilibrium, such that 7" is precisely the set of all threshold candidates.
For this we establish first some properties that have to hold at equilibrium.

Lemma 3. Given c;j and s, let T' be an s-eligible threshold set w.r.t. ¢, with T = .
Suppose that b # a is a Nash equilibrium such that c; = f(b), and T is the set of all
threshold candidates in b. Then

(a) The only candidate who has s points in b is c;;



(b) A candidate that has s — 1 points in b, either belongs to T? or is beaten by c; under
tie-breaking (and hence beaten also by all candidates in T?).

We now provide some upper bounds on the scores of the members of M> . Define
the set M! = {¢; € Mg : Je, € T? with ¢, = o} Letalso M? = M, \ M.

Lemma 4. Under the same assumptions, as in Lemma 3,

(a) sc(ce,b) < s—2, Ve € MY,
(b) sc(ce,b) < s5—3, Ve € M2,

In order to complete the characterization, we also have to argue about candidates
who have s — 1 or s — 2 points in the truthful profile, as they may affect stability too.
To this end, in analogy to the sets M! and M?, we define the sets: Ut = {¢, € C :
ne=s—1,3c;, € T? withcg, = ¢}, U? = {c, € C:my = s—1,¢¢ = ¢ Ver, € T?}.
Finally we will also need the set U3 = {ce € C:ng=s5—1¢; > ¢, 0rny =
5—2,¢ = cp Ve € T?}.

The theorem below provides an iff condition for determining existence of an equi-
librium with ¢; as a winner. The conditions boil down to finding the correct “book-
keeping” for the s — n; non-truthful supporters of ¢;, i.e., determining a lower bound
on how much other candidates have to lose from their real supporters.

Theorem 5. Given c; and s, let T' be an s-eligible threshold set w.r.t. c;j, such that
T' = (. There exists a non-truthful Nash equilibrium b with c; = f(b), sc(cj, b) = s,
and such that T is the set of all threshold candidates in b, if and only if there exists a
pair of sets (D, R) with D C V' \ Nr(a), |D| = s —nj, R C U?, such that:

(i) forevery c, € MY, |D N Ny(a)| > ng — s+ 2;
(ii) for every c; € M2, |D N Ny(a)| > ng—s+3;
(iii) for every c, € UL, |D N Ny(a)| > 1;

(iv) for every ¢, € U%, |D N Ny(a)| > 2;

(v) for every (p,cx) € D x R, it holds that c; = ci;
(vi) for everyc, € U\ R, |D N Ny(a)| > 1.

Equilibria for threshold sets with ! # (). We now provide analogous results for the
case that we are given an s-eligible threshold set 7', with T # (3. In analogy to M, we
define the set K' = {¢; € M>g : e, € T* with ¢, > o} Letalso K2 = M, \ K.

Lemma 5. Given c; and s, let T' be an s-eligible threshold set w.r.t. c;, with Tt £ .
Suppose that b # a is a Nash equilibrium such that ¢; = f(b) and T is the set of
all threshold candidates in b. Then the set of candidates who have s points in b is
{Cj} U Tl.

Lemma 6. Under the same assumptions as in Lemma 5,

(a) sc(ep,b) <s—1 Ve, € KY,

(b) sc(ce,b) < s —2 Ve, € K2,



As in the previous case, in analogy to the sets U L U2, U3, here we need the sets:
Wl={c,€C:ing=s,Vep, €T ¢/ = cx and c; = ci}, Wr={c, €C:ng=
s,¢0 > ¢}

Theorem 6. Consider a game G(C, a) with ¢c; = f(a), and a candidate c; # c;. Let
T' be an s-eligible threshold set with respect to c;, with T # (. There exists a Nash
equilibrium b # a such that ¢; = f(b), sc(cj,b) = s, and such that T is the set
of all threshold candidates in b, if and only if there exists a pair of sets (D, R) with

D CV\ Ng(a), |D| = s —nj, R C U3, such that:
(i) foreveryc, € K'Y, |[DN Ny(a)| > ny — s+ 1;
(ii) for every cp € K2, |D N Ny(a)| > ng — s+ 2;
(iii) for every c, € W2, |D N Ny(a)| > 1;

(iv) for every (p,cx) € D x R, it holds that ¢j - ci;
(v) forevery cp € W'\ R, |D N Ny(a)| > 1.

Implications: Sufficient conditions for checking existence. Eventually, we are inter-
ested in deciding whether there exists an equilibrium, where ¢; is the winner with score
s (independent of who are the threshold candidates). In the full version of this work*,
we show how to use the characterizations of Theorems 5 and 6 to derive a simple suffi-
cient condition that is also polynomial time checkable. The condition essentially boils
down to checking if the difference s —n; is within “reasonable” bounds. In fact, we can
also establish non-existence for a large range outside these bounds. As a consequence,
despite the NP-hardness result of Theorem 4, it is only for a relatively small range of s
that we cannot have a polynomial time algorithm for checking existence.

4 Strong Nash equilibria

For the basic game-theoretic model, a restricted version of the concept of strong equi-
librium has been studied in [7], where characterizations were obtained for the case of 3
candidates. In our model, we obtain a complete characterization for an arbitrary number
of candidates and voters. We also identify some connections with Condorcet winners.
Our results demonstrate that strong Nash equilibria have an even more restricted struc-
ture than pure Nash equilibria and manage to further refine the set of stable outcomes
(whenever they exist).

4.1 Truthful strong Nash equilibrium

We start by characterizing the profiles where a is a strong Nash equilibrium. In the
following, we denote by N;, ; the set {p € V|c; >, ¢;} (i.e., the definition is with
respect to the truthful profile a). Even though at first sight, one may think that we
should look at an exponential number of coalitional deviations to check if a is a strong
Nash equilibrium, it turns out that we need to check only a small number of conditions,
and therefore it can be done quite efficiently.

4 Available at the authors’ websites.



Theorem 7. Consider a game G(C,a) with ¢; = f(a). Then a is a strong Nash equi-
librium if and only if the following condition holds: for any candidate c; with c; = ¢;
we have |Nj,; \ N;j(a)| < n; — n; and for any candidate c; with ¢; >~ c¢; we have
INjwi \ Nj(a)] < i —nj.

4.2 Characterization results and relations to Condorcet winners

We start this subsection with a characterization of existence of strong Nash equilibria.
To characterize the existence of strong equilibria with a certain candidate c; as a winner,
one needs to distinguish the various special cases that may arise regarding coalitional
deviations. As a result, the characterization comes in two parts. We present in the theo-
rem below the characterization in the first out of the two cases, namely when c¢; beats the
truthful winner ¢; = f(a) in tie-breaking. Hence, suppose that ¢; > ¢;. We eventually
need to argue about the following set in our analysis:

T = {Cg‘Cj > c¢ = ¢; and ‘Ng>j| > nz}

Theorem 8. Consider a game G(C,a), with ¢; = f(a), and suppose c; > c;. There
is no strong Nash equilibrium b # a with ¢; = f(b) if and only if at least one of the
following conditions holds.

(i) n < 2n;.
(ii) There exists a voter in V' \ N;(a) who prefers c; to c;.
(iii) There exists a candidate cg such that | Ny ;| > n; and ¢o > ¢;.
(iv) There exists a candidate co such that | Ny ;| > n; + 1 and ¢; > c.
(v) There exists a candidate cy such that Ny, ;| > n; + 1 and ¢; = ¢ > ¢;.

i) INjwi (N (Neer Njmo)| < 1.

An analogous theorem deals with the other case, which we omit due to lack of space.
Note that despite the large number of conditions to check in this characterization, they
are all verifiable in polynomial time. Hence we have the following corollary.

Corollary 1. Given a game G(C, a), we can decide in polynomial time if a strong Nash
equilibrium exists with a certain candidate as a winner.

We end this section with the following observation, which shows some interesting
connections between strong Nash equilibria and Condorcet winners. This fact can be
derived as a special case of the models studied in [10].

Theorem 9. (/10]) If there exists a strong Nash equilibrium b with c; as the winner,
then c; is a Condorcet winner.

Remark 3. The opposite direction of Theorem 9 is not true.

Finally the next corollary shows that we cannot have too many different strong
Nash equilibria. Hence the notion of strong Nash equilibrium provides a quite powerful
refinement on the set of stable profiles.

Corollary 2. Given a game G(C,a), the winner in all strong Nash equilibria is the
same. Also, if the truthful profile a is a strong Nash equilibrium then it is the unique
strong Nash equilibrium for this game.



5 Conclusions

We have provided a theoretical analysis for Plurality voting under the truth-biased
game-theoretic model of [2, 6, 11]. Our results complement the empirical work of Thomp-
son, et al., in that they both support truth-bias as an effective method of equilibrium
selection. In particular, we have exhibited that certain undesirable equilibria are now
filtered out. Finally, we also characterized the set of strong Nash equilibria. Together,
truth-bias and strong Nash make for a very strong equilibrium refinement as illustrated
in Section 4. One should also be aware however, that the cost we have to pay for such a
strong refinement is that there are instances where no equilibrium exists.

There are plenty of avenues for future research. A challenging question is to find
other refinements where existence is always guaranteed. Another natural direction is
to further exploit the idea of rewarding truthfulness, extending it to other voting rules.
Finally, one more interesting idea is to further enrich our model of truth-bias, so that
when voters vote non-truthfully, their utility can depend on how far their vote is from
their truthful preference. Any notion of distance could be used here.
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