Supporting Mobility in a Pub/Sub Architecture
Publish Subscribe Internet (PSI - Ψ) in mobile environments
BACKGROUND
Mobility Support in PSI

- PSI architecture can support mobility with **no** adjustment/modifications

- **Goal**: Present a scenario that supports mobility
 - With **no** adjustment/modifications
 - Applies **optimizations** for mobile agents.
Mobility Support in PSI

- **Smart Caches (SC):**
 - An Optimization
 - In-network caches

- **Study Assumptions:**
 - micro-mobility, where mobility is deteriorated, thus mobile agents are not expected to move to far distant access points
 - Publishers and RVPs: fixed **VS.** Subscribers: mobile
- Mobility Scenario
- Smart Cache Selection

SMARTCACHES
Step-by-step Mobility Scenario

Issuing publications, submissions to RVP

1. The publisher (Bob) issues a publication: <Bob_Sid, Bob_Rid, [metadata]>
2. RVP records the publication
3. A Subscriber (Alice) issues a subscription for <Bob_Sid, Bob_Rid>
4. RVP matches publication and subscription based on SID, RID
Step-by-step Mobility Scenario

Smart cache comes in

5. **RVP selects a smart cache (SC)**
 - based on topological knowledge
 - Goal: to better facilitate the delivery of data to subscribers thought SC

6. **The RVP records the SC as both a publisher and a subscriber** for Bob_Sid/Bob_Rid

7. **2 Fids used** upon a matching subscription:
 - \(Fid(Bob, SC) \)
 - \(Fid(SC, Alice) \)
8. Data sent
 - SC caches data for at least as much time as the time required for Alice to move to another access point AP
Step-by-step Mobility Scenario

Alice moves.. while receiving data

9. Alice sends a new subscription <Bob_Sid, Bob_Rid> from the new position

10. 2 different matching publications in RVP.
 - One corresponding to Bob
 - One corresponding to the SC
 - RVP selects the best suited publisher (anycast), e.g., the closer one to Alice
 - in this case most probably the SC
Smart Cache Selection

1st case: Based on topological knowledge

- RVP forecasting (RVPf)
 - Forecast the next possible positions of mobile agent Alice (micromobility)
 - Possible to even assign a SC before Alice “handovers” to another AP.
 - Data sent via multicast tree to all the SCs.
Smart Cache Selection

2nd case

- The AP detects Alice’s movement
- Sends a control message to RVP
 - Triggers the creation of a new SC, suitable for the prospective new AP for Alice
- Initiates the assignment of SC before Alice is detached from the current AP (smooth handover)
- Cost
 - Additional control message (small overhead).
 - Yet, it mitigates the load at RVP.
CONCLUSION
Conclusions

- Ψ architecture supports mobility in any case
 - Asynchrony,
 - ID are independent from the current location
- Optimization for mobility of subscribers
 - Without modifying the PSI architecture
- By products:
 - **Smart Cashes SCs** enhance anonymity as intermediates/proxies
 - SCs could also be used for transport layer reliability
 - Acts as a local rendezvous point
 - useful for new coming subscribers who can receive data by anycast immediately
- SCs feeding other SCs: Multicast trees.
Bibliography
