PROACTIVE SELECTIVE NEIGHBOR CACHING
FOR ENHANCING MOBILITY SUPPORT
IN INFORMATION-CENTRIC NETWORKS

X. Vasilakos, V.A. Siris, G.C. Polyzos and M. Pomonis,

Xenofon Vasilakos - xvas@aueb.gr
Ph.D. Student at AUEB,
MMLab member
Reduce delay experienced after handing off to another location

- Mobile Users (MUs) in an ICN architecture
- Running applications with strict delay requirements
Receiver-Driven model in ICN

Domain A
Publisher

Domain B
Publisher

✓ MU just re-subscribes after completing the handoff
ICN is mobile-ready

- **What about delay after handoff?**
 - Resend request, wait for resolution and path formation
 - Wait to get data from (another?) publisher

- **Delay-sensitive applications:**
 - Realtime/emergency notifications,
 - Teleconferencing, online gaming, etc..

- **Sensitive to delay jittering**
 - Multimedia Streaming services
• Proactive Caching
• SNC: Selective Neighbor Caching
• Evaluation
• Future Work and Conclusion
Proactive Caching

• **Use proxies**
 – Handle requests
 – Proactively Cache IOs

• **Neighboring proxies**
 – One hope ahead
Proactive Caching

• **Full caching**
 – Proactively fetching and caching requests and IOs to all neighbors

• **Blind approach**
 – *Wastes* buffer space
 – *Infeasible* to cache all IOs for all mobiles
 – Increases delay for other mobiles
• Proactive Caching
• **SNC: Selective Neighbor Caching**
• Evaluation
• Future Work and Conclusion
Selective Neighbor Caching (SNC)

- **SNC selects only an optimal subset of neighbors**
- **GOAL:** Minimize total costs

\[S: \text{Subset of neighbor proxies} \]

Current Proxy: \(i \)

Mobile User

\(j \)
Selective Neighbor Caching (SNC)

\[a) \text{ Chit: Delay cost from a selected proxy} \]
Selective Neighbor Caching (SNC)

\(a\) \(Chit\): Delay cost from a selected proxy

\(b\) \(Cmiss\): Delay cost from a non selected proxy
Selective Neighbor Caching (SNC)

a) C_{hit}: Delay cost from a selected proxy

b) C_{miss}: Delay cost from a non selected proxy

c) C_{cache}: The cost for allocating buffer space
Selective Neighbor Caching (SNC)

a) C_{hit}: Delay cost for getting IOs from a selected proxy

b) C_{miss}: Delay cost in case next proxy was not selected

c) C_{cache}: The cost for allocating buffer space

d) P_{ij}: The probability for the MU to move from i and attach to j
What is the optimal subset S^*?

Discover $S \subseteq J$ which **minimizes** the total cost:

$$P_{hit}(S) \times C_{hit} + (1 - P_{hit}(S)) \times C_{miss} + N(S) \times C_{cache}$$

- **Average delay**
- **Cache cost**
Each Proxy decides autonomously

Pre-fetching in neighbor j if and only if:

$$p_{ij} \geq \frac{C_{cache}}{C_{miss} - C_{hit}}$$

- SNC is fully distributed and decentralized
• Proactive Caching
• SNC: Selective Neighbor Caching
• Evaluation
• Future Work and Conclusion
Simulation Delay gains over Full Caching
Simulation delay gains over No Caching

- No Caching, \(|J|=8\)
- No Caching, \(|J|=5\)
• Proactive Caching
• SNC: Selective Neighbor Caching
• Evaluation

• Future work and Conclusion
Future work

- Network topology, multiple levels of proxies
- Traffic demand, IO size, disconnection period
- The influence of in-network caching
- Online cache cost evaluation
- Consider extensions as discussed in the paper
Conclusion

• SNC trades-off delay with cache cost
 – Selects the appropriate subset of proxies which minimizes cost

• Simulation investigations quantify cost gains
